HOMEWORK 5

Due in class Wed, Mar. 28.

- 1. (Bass 17.6) Let X be a compact metric space and \mathcal{B} its Borel σ -algebra. Let μ_n, μ be finite Borel measures on X such that $\mu_n(X) \to \mu(X)$. Prove that the following are equivalent:
 - (a) $\int f d\mu_n \to \int f d\mu$ for all $f \in C(X)$;
 - (b) $\limsup_{n\to\infty} \mu_n(F) \le \mu(F)$ for all closed $F \subset X$;
 - (c) $\liminf_{n\to\infty} \mu_n(G) \ge \mu(G)$ for all open $G \subset X$;
 - (d) $\lim_{n\to\infty} \mu_n(A) = \mu(A)$ whenever $A \subset X$ is Borel and has $\mu(\partial A) = 0$, where $\partial A = \overline{A} \cap \overline{A^c}$ is the boundary of A.
- **2.** (adapted from Bass 18.4) Let $\alpha \in (0, 1)$. Given $f \in C([0, 1])$, define

$$|f|_{\alpha} = \sup_{x,y \in [0,1], x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}, \qquad ||f||_{\alpha} = ||f|| + |f|_{\alpha}.$$

Let $C^{\alpha}([0,1]) = \{f \in C(X) : ||f||_{\alpha} < \infty\}$. Prove that $||f||_{\alpha}$ is a norm on $C^{\alpha}([0,1])$. Is $C^{\alpha}([0,1])$ complete with respect to this norm?

- **3.** (Folland 5.25) Suppose that X is a Banach space and that X^* is separable. Prove that X is separable. Hint: Take a dense sequence $f_n \in X^*$ and produce $x_n \in X$ such that $||x_n|| = 1$ and $|f_n(x_n)| \ge \frac{1}{n} ||f_n||$; then show that linear combinations of the x_n 's are dense in X.
- 4. (Bass 18.11) Suppose that $\|\cdot\|_1$ and $\|\cdot\|_2$ are two norms on a vector space X such that $\|x\|_1 \leq \|x\|_2$ for all $x \in X$, and that X is complete with respect to both norms. Prove that there is c > 0 such that $\|x\|_2 \leq c\|x\|_1$ for all $x \in X$.
- **5.** (Bass 18.12) Suppose X and Y are Banach spaces.
 - (a) Prove that $X \times Y$ is a Banach space with the norm ||(x, y)|| = ||x|| + ||y||.
 - (b) Let $L: X \to Y$ be a linear map such that if $x_n \to x$ in X and $Lx_n \to y$ in Y, then y = Lx. Such a map is called a *closed map*. Let $G = \{(x, Lx) : x \in X\} \subset X \times Y$ be the graph of L. Prove that G is a closed subset of $X \times Y$, and hence is complete.
 - (c) Prove that the function $(x, Lx) \mapsto x$ is continuous, injective, linear, and maps G onto X.
 - (d) Prove the closed graph theorem: if X, Y are Banach spaces and $L: X \to Y$ is a closed linear map, then L is continuous.