HOMEWORK 6

Due in class Wed, Apr. 11.

- **1.** Let *H* be a Hilbert space and $M \subset H$ a subspace. Prove that $(M^{\perp})^{\perp} = \overline{M}$.
- **2.** (Bass 19.9). Prove that if $A \subset [0, 2\pi]$ is measurable, then $\lim_{n\to\infty} \int_A e^{inx} dx = 0$. (This is a special case of the *Riemann-Lebesgue Lemma*).
- **3.** (Folland 5.57). Let H be a Hilbert space and $T \in L(H, H)$ a bounded linear operator from H to itself.
 - (a) Prove that there is a unique $T^* \in L(H, H)$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in H$. (T^* is called the *adjoint* of T.)
 - (b) Prove that $||T^*|| = ||T||$, $||T^*T|| = ||T||^2$, $(aS + bT)^* = \overline{a}S^* + \overline{b}T^*$, $(ST)^* = T^*S^*$, and $T^{**} = T$.
 - (c) Prove that $T(H)^{\perp} = \ker(T^*)$ and $\ker(T)^{\perp} = \overline{T^*(H)}$.
 - (d) Prove that the following are equivalent: (i) T is invertible and $\langle Tx, Ty \rangle = \langle x, y \rangle$ for all $x, y \in H$; (ii) T is invertible and $T^{-1} = T^*$. In this case T is called *unitary*.
- 4. (Bass 19.13). Suppose $\{e_n\}$ is an orthonormal basis for a separable Hilbert space and $\{f_n\}$ is an orthonormal set such that $\sum ||e_n f_n|| < 1$. Prove that $\{f_n\}$ is a basis.
- 5. (Folland 5.63). Let H be an infinite-dimensional Hilbert space. Recall that we say that a sequence x_n in H converges weakly to $x \in H$ if $\langle x_n, y \rangle \to \langle x, y \rangle$ for all $y \in H$.
 - (a) Prove that every orthonormal sequence in H converges weakly to 0.
 - (b) Prove that the unit sphere $S = \{x : ||x|| = 1\}$ is weakly dense in the unit ball $B = \{x : ||x|| \le 1\}.$
- 6. (Bass 19.11). Suppose f is a continuous real-valued function on \mathbb{R} such that f(x+1) = f(x) for every x. Let γ be an irrational number. Prove that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^n f(j\gamma) = \int_0^1 f(x) \, dx.$$