HOMEWORK 7

Due in class Fri, Apr. 27.

- **1.** (Bass 16.1) Find the Fourier transform of $\mathbf{1}_{[a,b]}$, and in particular, find the Fourier transform of $\mathbf{1}_{[-n,n]}$.
- **2.** (Bass 16.2) Find a real-valued function $f \in L^1$ such that $\hat{f} \notin L^1$.
- **3.** (Bass 16.4) If f is integrable, real-valued, and all the partial derivatives $f_j = \partial f / \partial x_j$ are integrable, prove that the Fourier transform of f_j is given by $\hat{f}_j(u) = -iu_j\hat{f}(u)$.
- 4. (Bass 16.5) Let S be the class of real-valued functions f on \mathbb{R} such that for every $k \ge 0$ and $m \ge 0$, we have $|x|^m |f^{(k)}(x)| \to 0$ as $|x| \to \infty$, where $f^{(k)}$ is the kth derivative of f when $k \ge 1$, and $f^{(0)} = f$. The collection S is called the *Schwartz class*. Prove that if $f \in S$, then $\hat{f} \in S$.
- **5.** (Folland 8.16) Let $f_k = \mathbf{1}_{[-1,1]} * \mathbf{1}_{[-k,k]}$.
 - (a) Compute $f_k(x)$ explicitly and show that $||f||_u = 2$, where $||\cdot||_u$ is the uniform norm.
 - (b) Find $g_k \in L^1$ such that $\hat{g}_k = f_k$; show that $||g_k||_1 \to \infty$ as $k \to \infty$.
 - (c) Prove that $\mathcal{F}(L^1)$ is a proper subset of C^0 . (Hint: consider g_k and use the open mapping theorem.)