Math 7352 Riemannian Geometry Spring 2018

HOMEWORK 6

Due in class Fri, Apr. 20.

This assignment walks you through the proof of part of the Gauss—Bonnet theorem.
The goal is to prove a result that relates curvature of a surface to angles in geodesic
triangles (#4), and then use this to prove one specific case of Gauss—Bonnet in #5.

Let M be a two-dimensional Riemannian manifold. Given p € M, fix vy € T,M with
|lvo]] = 1, and for each 6 € R, let vy be the unit vector in T, M that makes an angle ¢
with vg. (This involves a choice of orientation; it does not matter which way we rotate,
just pick one and stick with it.) Define geodesic polar coordinates around p by the
coordinate map ¢: (0,00) x R — M by ¢(r,0) = exp,(rvg). It follows from properties
of the exponential map that ¢ is a local diffeomorphism when r is sufficiently small.

. Prove that in geodesic polar coordinates, the Riemannian metric takes the form ds? =
dr?+g(r, 0)2db? for some positive smooth functlon g, and that llmr_>0+ = 1. Compute
the Christoffel symbols for this Coordlnate system (here 1 =7 and 1’2 = 0), and use

these to compute the vector fields V 2 , V 2 %, \Y% 2 5, and V 2 % You will need

the fact that if g;; represents the metrlc in local Coordlnates, and ¢** is the inverse of
the matrix g;;, then
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. Recall that the Gaussian curvature of M at a point p is the real number given by
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where X,Y are (any) vector fields with X, Y, linearly independent, and R is the
curvature tensor defined by R(X,Y)Z = VxVyZ — VyVxZ — Vix,y14. Using #1,
prove that in geodesic polar coordinates, the Gaussian curvature is given by
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. Let v be a curve given in geodesic polar coordinates by v(t) = ¢(r(t),0(t)). Prove that
v is a geodesic if and only if the following equations are satisfied:
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. We define integration on a Riemannian manifold M with respect to volume as follows:
given a region £/ C M that is covered by a single chart ¢, we write

/Ef(p) AV (p) = /(ME) @, o)y det g, )| diy -+ dy,

When M is two-dimensional, as in the present exercise, we refer to volume as surface
area and write dS (or dA) in place of dV. Let E be a geodesic triangle — that is, F
is the region bounded by three geodesics on M, that intersect in points A, B,C' € M,
where they make angles «, 3,~. Suppose that F is covered by a single set of geodesic
polar coordinates, and prove that
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Hint: Use geodesic polar coordinates centered at A and let w: [b,c] — M be the unit
speed geodesic from B to C. Compute the derivative of ((t) = Z(‘fi—‘:, %) using #3,
and relate ((b), ¢(c) to B and ~v. Then write [,xdS as a double integral in these
coordinates, and simplify as much as possible using #2. Relate the two computations

to complete the proof.

Remark: This says that the angular excess of the triangle F is the total curvature that
it encloses, so triangles enclosing positive total curvature will have angles adding up to
more than 7 (as with great circles on a sphere), while triangles enclosing negative total
curvature will have angles adding up to less than 7 (as with triangles in the hyperbolic
plane). Note that if we move a vector by parallel transport around the perimeter of
the triangle, the result is a rotation of the original vector, determined by the angular
excess, and hence by the total curvature.

. Prove that if ¢ is any Riemannian metric on the torus T?, then [, xdS = 0.

Hint: Consider the torus as [0,1])* with opposite edges identified, and partition it into
a large number of small geodesic triangles with vertices at the points (%, %) for 0 <
1,7 < n, where n is chosen large enough that the necessary geodesics connecting nearby
points all exist. Then show that the angular excesses of these triangles must add up to
0 by counting how many total vertices and edges your partition has.

Remark: One can similarly prove that for any Riemannian metric on the sphere S2,
we have | g2 £ dS = 4w, and that if M is the surface of genus k defined by identifying
opposite edges of a regular 4k-gon, then any Riemannian metric on M has [ y hdS =
4m(1 — k). This is usually written as [,, kdS = 2mx (M), where x(M) = 2 — 2k is
the Euler characteristic. The sphere has Euler characteristic 2, and the process of
“adding a handle” reduces Euler characteristic by 2. Euler characteristic is typically
defined by ‘triangulating’ the surface as in #5, then putting

X(M) = #vertices — #edges + #faces.



