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Part I. Integration

Lecture 1 Review of integration and the substitution rule

Stewart §5.5, Spivak Ch. 19

1.1. Definite and indefinite integrals

Last semester, we motivated the introduction of integrals by considering the question
of how to determine areas. This led us to two definitions:

(1) the definite integral
∫ b
a
f(x) dx is a number obtained as a limit of Riemann sums,

which depends on the interval [a, b] and can be interpreted as an area;
(2) the indefinite integral

∫
f(x) dx is a function whose derivative is f(x).

The two are related by the Fundamental Theorem of Calculus, which has two halves.
The first half says that definite integrals can be used to find indefinite integrals (an-

tiderivatives), since d
dx

∫ x
a
f(t) dt = f(x).

The second half goes in the opposite direction, and says that indefinite integrals can
be used to find definite integrals: if F (x) =

∫
f(x) dx is an indefinite integral of f , so

that F ′(x) = f(x) at every x, then
∫ b
a
f(x) dx = F (b)− F (a).

Although the first half guarantees that every continuous function has an indefinite
integral, it does not give a general procedure for writing down an elementary formula
for
∫
f(x) dx. Our emphasis for the next little while will be on this process, which is

essential if we are to use the second half of the FTC effectively.
By “elementary formula”, we mean a formula that can be written down in terms

of constants, polynomials, rational functions, exponentials, trigonometric functions,
and logarithms using addition, subtraction, multiplication, and division. For exam-
ple, F (x) = tan−1(x) is an elementary formula, but F (x) =

∫ x
0

1
1+t2

dt is not elementary
because it involves an integral, even though it represents the same function.

Given an integral
∫
f(x) dx, then, our goal will be to find an elementary formula for

it. Bear the following warning in mind, though: not every integral admits an elemen-
tary formula. For example, it is possible to show1 that

∫
sin(x2) dx does not have an

elementary formula, and in fact there is a sense in which most indefinite integrals do
not have elementary formulas. Nevertheless, a great many of them do, including some
of the most important ones, and so we will turn our attention now to finding them.

1.2. Substitution rule

The first method of integration is by direct inspection: we have a list of functions
F (x) whose derivatives f(x) = F ′(x) are known, and if f happens to appear on the
corresponding list of derivatives, then we can simply read off the indefinite integral∫
f(x) dx = F (x) + C.

1The proof involves tools that go beyond the scope of this course, and we will not discuss it.
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The second method, which we encountered briefly last semester, is the substitution
rule. This is a consequence of the chain rule for differentiation, which says that if F, g are
differentiable functions, then F ◦ g is differentiable and has (F ◦ g)′(x) = F ′(g(x))g′(x).
In particular, if F ′(x) = f(x) so that F gives the indefinite integral of f , then we have
(F ◦ g)′ = (f ◦ g) · (g′); this can be written in the form∫

f(g(x))g′(x) dx = F (g(x)).

It is usually easier to remember and apply this rule if we introduce a new variable
u = g(x), and observe that d

du
F (u) = f(u), so that the above formula becomes

(1.1)

∫
f(g(x))g′(x) dx =

∫
f(u) du.

It is common to rewrite the formula g′(x) = du
dx

as du = g′(x) dx, in which case (1.1)
appears to become almost trivial:∫

f(g(x)︸︷︷︸
u

) g′(x) dx︸ ︷︷ ︸
du

=

∫
f(u) du.

We emphasize, though, that the formula du = g′(x) dx is purely a bookkeeping device
rather than a valid part of a proof, because we have not yet given du and dx any
independent meaning of their own. We will continue to use it because it simplifies the
appearance of various computation, but please remember the logical order of things:
(1.1) justifies this formula, rather than the other way round.

Example 1.1. We can compute
∫
x
√

1 + x2 dx by putting u = 1+x2 so that du = 2x dx,
and we obtain∫

x
√

1 + x2 dx =

∫ √
1 + x2︸ ︷︷ ︸√

u

· x dx︸︷︷︸
1
2
du

=

∫
1

2
u1/2 du =

1

2
· 2

3
u3/2 + C =

1

3
(1 + x2)3/2 + C.

Example 1.2. To find
∫

tanx dx, we can write tan x = sinx
cosx

and notice that the deriva-
tive of cosx appears in the numerator (up to a negative sign), so putting u = cosx gives
du = − sinx dx and∫

tanx dx =

∫
sinx

cosx
dx =

∫ −du
u

= − ln |u|+ C = − ln | cosx|+ C = ln |1/ cosx|+ C

= ln | secx|+ C.

There is no universal procedure telling us how to make the change of variables u =
g(x), but these examples illustrate some guidelines that are helpful to keep in mind: it
is reasonable to try setting u as the input of some function in the integrand (the square
root function in Example 1.1), or as an expression whose derivative also appears in the
integrand (the cosine function in Example 1.2). Sometimes it even works to let u be
the entire integrand: for example, in

∫ √
2x+ 1 dx we can take u =

√
2x+ 1 so that

u2 = 2x+ 1 and 2u du = 2 dx, and we get∫ √
2x+ 1︸ ︷︷ ︸
u

dx︸︷︷︸
u du

=

∫
u · u du =

1

3
u3 + C =

1

3
(2x+ 1)3/2 + C.
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Note that the substitution u = 2x + 1 would also work here; there is often more than
one route to the correct answer!

When computing an indefinite integral via the substitution rule, it is important to
remember that the final answer must always be written in terms of the original variable,
not the substituted one. Thus the last step in each of the above examples was to convert
an expression involving u into an expression involving x.

The substitution rule can also be used for definite integrals, either by first computing
the indefinite integral and then applying the FTC, or by applying the change of variables
u = g(x) to the limits of integration as well.

Example 1.3. To compute
∫ 2

1
(1−2x)−2 dx, we can write u = 1−2x so that du = −2 dx

and the new integral goes from u = −1 to u = −3:∫ 2

1

dx

(1− 2x)2
= −1

2

∫ −3

−1

u−2 du =
1

2u

∣∣∣−3

−1
=

1

2(−3)
− 1

2(−1)
= −1

6
+

1

2
=

1

3
.

Lecture 2 Integration by parts

Stewart §7.1, Spivak Ch. 19

2.1. A consequence of the product rule

We found the substitution rule for integrals by looking at the chain rule for derivatives,
and exploring its consequences for integrals. We can also do this with the product rule,
which says that if f, g are differentiable functions, then

d

dx

(
f(x)g(x)

)
= f(x)g′(x) + g(x)f ′(x).

This can be rewritten as

f(x)g′(x) =
d

dx

(
f(x)g(x)

)
− g(x)f ′(x) =

d

dx

(
f(x)g(x)−

∫
g(x)f ′(x) dx

)
,

and we conclude that

(2.1)

∫
f(x)g′(x) dx = f(x)g(x)−

∫
g(x)f ′(x) dx.

We do not write a constant of integration because the right-hand side still contains an
indefinite integral. The relationship (2.1) is called integration by parts and is a powerful
tool for evaluating many integrals, especially when f, g can be chosen so that gf ′ is
easier to integrate than fg′.

Example 2.1. Suppose we want to evaluate
∫
x cosx dx. Then we might try f(x) = x

and g′(x) = cos x; to get this, we should put g(x) = sin x, and then (2.1) gives∫
x cosx dx = x sinx−

∫
(sinx)︸ ︷︷ ︸
g(x)

· 1︸︷︷︸
f ′(x)

dx = x sinx− (− cosx)+C = x sinx+cosx+C.
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And indeed, we can verify this by differentiating and using the product rule:

d

dx
(x sinx+ cosx) = (sinx+ x cosx)− sinx = x cosx.

Remark 2.2. Since antiderivatives are only determined up to a constant, the fact that
g′(x) = cosx actually only tells us that g(x) = sinx + C for some C. You can check
that using this g(x) still gives us the same answer. Because we can choose g(x) to be
any antiderivative of g′(x), we may as well choose it to be the antiderivative that is the
simplest to write down, which usually happens when we put C = 0.

Remark 2.3. As with the substitution rule, not all choices are helpful! For example, if
we put f(x) = cosx and g′(x) = x in the example above, we would get g(x) = 1

2
x2 and

f ′(x) = − sinx, so∫
x cosx dx =

1

2
x2 cosx−

∫
1

2
x2(− sinx) dx =

1

2

(
x2 cosx+

∫
x2 sinx dx

)
.

We have done nothing wrong – the equation we derived is true – but we have not done
anything helpful, either, since we do not know how to evaluate

∫
x2 sinx dx.

We pause a moment to recall that we can write the chain rule in an alternate form by
writing u = g(x) and y = f(u) = f(g(x)), so that we have the following diagram:

x u = g(x) y = f(u) = f(g(x))g

f◦g

f

Then the chain rule becomes the very sensible-looking equation dy
dx

= dy
du

du
dx

.

Remark 2.4. It looks like we are simply cancelling the two appearances of the term du,
but this is not quite right; we have not given any independent meaning to the symbols
dy, du, and dx outside of a derivative like dy

dx
, or an integral like

∫
f(x) dx. Thus this

should be regarded as a bookkeeping tool more than anything else; however, it is in
some ways easier to remember, and the fact that it conforms to our expectation of how
fractions should behave suggests that the notation dy

dx
is appropriate to use.

A similar bookkeeping tool is useful for integration by parts. Using the notation
u = f(x) and v = g(x), we write du = f ′(x) dx and dv = g′(x) dx (despite the fact that
dx, du, and dv have no independent meaning in their own right!) and rewrite (2.1) in
the following form, which is easier to remember:

(2.2)

∫
u dv = uv −

∫
v du.

In Example 2.1 we would put u = x, du = dx, dv = cosx dx, and v = sinx, obtaining
the same result as before.

Example 2.5. To evaluate
∫

lnx dx, put u = lnx, dv = dx, du = 1
x
dx, and v = x:∫

lnx︸︷︷︸
u

dx︸︷︷︸
dv

= x︸︷︷︸
v

lnx︸︷︷︸
u

−
∫

x︸︷︷︸
v

1

x
dx︸︷︷︸
du

= x lnx−
∫

1 dx = x lnx− x+ C.
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2.2. Iterated integration by parts

Example 2.6. To evaluate
∫
t2et dt, we can put u = t2 and dv = et dt, so du = 2t dt

and v = et, giving

(2.3)

∫
t2et dt = t2et︸︷︷︸

uv

−
∫

2tet dt︸ ︷︷ ︸∫
v du

.

To evaluate the last integral we use integration by parts a second time; bring out the
factor of 2 and compute

∫
tet dt by putting u = t, dv = et dt, du = dt, v = et, giving∫
tet dt = tet −

∫
et dt = tet − et.

Using this in (2.3) gives∫
t2et dt = t2et − 2

∫
tet dt = t2et − 2(tet − et) + C = t2et − 2tet + 2et + C.

Exercise 2.7. Follow this same approach to show that if f(t) is a polynomial of degree
n, then using integration by parts n times gives∫

f(t)et dt =
(
f(t)− f ′(t) + f ′′(t)− · · ·+ (−1)nf (n)(t)

)
et + C.

Sometimes by using integration by parts multiple times, we end up with an expression
that does not yield the integral directly, but which gives an equation that can be solved
for it. This is best illustrated with an example.

Example 2.8. To evaluate
∫
ex sinx dx, we integrate by parts twice:∫

ex sinx dx = −ex cosx+

∫
ex cosx dx (u = ex and dv = sinx dx)

= −ex cosx+
(
ex sinx−

∫
ex sinx dx

)
(u = ex and dv = cosx dx).

Since this last expression contains the original integral, one might at first think that we
have gotten nowhere. But in fact, we are nearly done! Adding

∫
ex sinx dx to both sides

of the equation gives

2

∫
ex sinx dx = ex(sinx− cosx) ⇒

∫
ex sinx dx =

1

2
ex(sinx− cosx) + C,

where we add a constant of integration to get the most general antiderivative.

2.3. Definite integrals

By the FTC, (2.1) has a counterpart for definite integrals:

(2.4)

∫ b

a

f(x)g′(x) dx =
[
f(x)g(x)

]b
a
−
∫ b

a

g(x)f ′(x) dx

= f(b)g(b)− f(a)g(a)−
∫ b

a

g(x)f ′(x) dx.
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Example 2.9. To evaluate
∫ 1

0
tan−1 x dx, we put f(x) = tan−1 x and g′(x) = 1, so

g(x) = x and f ′(x) = 1
1+x2

, giving∫ 1

0

tan−1 x dx =
[
x tan−1 x

]1
0
−
∫ 1

0

x

1 + x2
dx (then substitute u = 1 + x2)

=
π

4
− 1

2

∫ 2

1

1

u
du (using du = 2x dx)

=
π

4
− ln 2

2
.

Remark 2.10. The integral
∫ 1

0
tan−1 x dx represents the area A1 in the diagram below.

The area A2 can be computed by observing that A1+A2 = π
4
, the area of the rectangle, or

via the integral A2 =
∫ π/4

0
tan y dy, since it is the area to the left of the curve x = tan y.

Thus we conclude that
∫ π/4

0
tan y dy = π

4
− A1 = ln 2

2
. This is consistent with the fact

that (as we computed last semester using the substitution rule)
∫

tan y dy = ln | sec y|
and thus

∫ π/4
0

tan y dy = ln
√

2.

π
4

1

y = tan−1 x
y

x

A2

A1

Lecture 3 Trigonometric integrals

Stewart §7.2, Spivak Ch. 19

3.1. Powers of sine

As Remark 2.10 showed, there may be more than one way to correctly calculate a
given integral. For another example of this, consider

∫
sin2 x dx. One approach is to use

the identity

(3.1) cos(2x) = cos2 x− sin2 x = 1− 2 sin2 x ⇒ sin2 x =
1

2
(1− cos(2x))

together with the substitution u = 2x, du = 2 dx to get

(3.2)

∫
sin2 x dx =

1

2

∫
(1− cos(2x)) dx =

x

2
− 1

4

∫
cosu du

=
x

2
− 1

4
sinu+ C =

x

2
− 1

4
sin(2x) + C.
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A second, equally good, approach is to use integration by parts to get∫
sin2 x dx =

∫
(sinx)︸ ︷︷ ︸

u

(sinx) dx︸ ︷︷ ︸
dv

= (sinx)︸ ︷︷ ︸
u

(− cosx)︸ ︷︷ ︸
v

−
∫

(− cosx)︸ ︷︷ ︸
v

(cosx) dx︸ ︷︷ ︸
du

= − sinx cosx+

∫
cos2 x dx = − sinx cosx+

∫
(1− sin2 x) dx

= − sinx cosx+ x−
∫

sin2 dx;

then we can add
∫

sin2 x dx to both sides and divide by 2, obtaining

(3.3)

∫
sin2 x dx =

1

2
(x− sinx cosx) + C.

This agrees with (3.2) because 1
4

sin(2x) = 1
4
· 2 sinx cosx = 1

2
sinx cosx.

So why bother with two different approaches? One reason is that they generalize
to solve different classes of problems, as we will soon see: for some integrals, the first
approach via trigonometric identities and substitution is better, while for others, the
second approach via iterated integration by parts has advantages.

3.2. Products of sines and cosines

Let us return to the first way of computing
∫

sin2 x dx, where we used trigonometric
identities and substitutions. Can we use this to compute

∫
sinn x dx for other values of

n, or more generally
∫

sinm x cosn x dx?
For n = 3 we quickly see that the half-angle formula (3.1) does not seem to help:∫

sin3 x dx =

∫
sinx · 1

2
(1− cos 2x) dx = . . .?

For n = 4, on the other hand, we have∫
sin4 x dx =

∫
1

4
(1− cos 2x)2 dx =

1

4

∫
(1− 2 cos 2x+ cos2 2x) dx

=
1

4
x− 1

4
sin 2x+

1

4

∫
cos2 2x dx;

to compute this last integral, observe that (3.1) gives cos2 y = 1
2
(1 + cos 2y), so∫

cos2 2x dx =
1

2

∫
(1 + cos 4x) dx =

1

2
x+

1

8
sin 4x+ C,

and we conclude that∫
sin4 x dx =

1

4
x− 1

4
sin 2x+

1

4

(1

2
x+

1

8
sin 4x

)
+ C =

3

8
x− 1

4
sin 2x+

1

32
sin 4x+ C.

A similar approach works for any even power of sinx, but not for odd powers, as the
case n = 3 illustrates. For odd powers, though, we can use the substitution rule without
using a half-angle identity: writing u = − cosx, so that du = sinx dx, we get∫

sin3 x dx =

∫
(sin2 x)(sinx) dx =

∫
(1− cos2 x) sinx dx =

∫
(1− u2) du
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= u− 1

3
u3 + C = − cosx+

1

3
cos3 x+ C.

The same substitution will work for any odd power, although the computation will
become longer. We could similarly compute

∫
cosn x dx whenever n is odd by using

u = sinx, du = cosx dx.
Now suppose that we want to compute

∫
sin2 x cos5 x dx. By making the substitution

u = sinx, du = cosx dx, we get∫
sin2 x cos5 x dx =

∫
(sin2 x)(cos2 x)2 cosx dx =

∫
u2(1− u2)2 du

=

∫
u2(1− 2u2 + u4) du =

∫
u2 − 2u4 + u6 du

=
1

3
u3 − 2

5
u5 +

1

7
u7 + C =

1

3
sin3 x− 2

5
sin5 x+

1

7
sin7 x+ C.

Indeed, this substitution works to compute
∫

sinm x cosn x dx whenever m,n ≥ 0 and n
is odd: if n = 2k + 1, then u = sinx, du = cosx dx gives

(3.4)

∫
sinm x cosn x dx =

∫
sinm x(1− sin2 x)k cosx dx =

∫
um(1− u2)k du.

The last integral can be computed by expanding (1− u2)k and using
∫
u` du = u`+1

`+1
. In

the case when m is odd, the substitution u = cosx, du = − sinx dx lets us do a similar
computation. Now we can summarize the overall strategy.

Technique 3.1. To compute
∫

sinm x cosn x dx when m,n ≥ 0, do the following:

(1) if n is odd, use the substitution u = sinx, du = cosx as in (3.4);
(2) if m is odd, use the substitution u = cosx, du = − sinx dx;
(3) if n,m are both even, use the trigonometric identities sin2 x = 1

2
(1− cos 2x) and

cos2 x = 1
2
(1 + cos 2x) to rewrite the integral.

Example 3.2. With m = 4 and n = 2, we use the half-angle formulas to get

I =

∫
sin4 x cos2 x dx =

∫
1

4
(1− cos 2x)2 1

2
(1 + cos 2x) dx

=
1

8

∫
(1− 2 cos 2x+ cos2 2x)(1 + cos 2x) dx

=
1

8

∫
(1− cos 2x− cos2 2x+ cos3 2x) dx.

The first two terms are easy to integrate. For the third we use the half-angle formula
again to get ∫

cos2 2x dx =

∫
1

2
(1 + cos 4x) dx =

1

2
x+

1

8
sin 4x+ C.

For the fourth, we use u = sin 2x and du = 2 cos 2x dx to get∫
cos3 2x dx =

∫
(1− sin2 2x) cos 2x dx =

∫
(1− u2)

du

2

=
1

2
u− 1

6
u3 + C =

1

2
sin 2x− 1

6
sin3 2x+ C.
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Putting it all together gives

I =
1

8
x− 1

16
sin 2x− 1

8

(1

2
x+

1

8
sin 4x

)
+

1

8

(1

2
sin 2x− 1

6
sin3 2x

)
+ C

=
1

16
x− 1

64
sin 4x− 1

48
sin3 2x+ C.

3.3. Products of tangents and secants

The technique above works well enough when m,n ≥ 0. But what if one or both
of them is negative? For the moment we consider the case when cos appears in the
denominator, and see that converting the expression to tangents and secants is useful.
(When sin is in the denominator, one should use cot and csc instead, and the story is
similar. When both sin and cos are in the denominator, things become more difficult,
and we will not consider this case.)

Example 3.3.

∫
sinx

cos2 x
dx =

∫
tanx secx dx = secx+ C.

More generally, whenever n ≥ m ≥ 0 we can write∫
sinm x

cosn x
dx =

∫
tanm x secn−m x dx,

so now we will study integrals of the form
∫

tanm x seck x dx.

Exercise 3.4. If m > n ≥ 0, show that we can always use the identity sin2 x = 1− cos2 x
to write

∫
sinm x
cosn x

dx in terms of integrals of products of tangents and secants, as in the
following:∫

sin3 x

cos2 x
=

∫ ( sinx

cos2 x
− sinx cos2 x

cos2 x

)
dx =

∫
(secx tanx− sinx) dx = secx+ cosx+C.

Since the substitutions u = sin x and u = cos x worked in the previous section, it is
natural to try the substitutions u = tanx and u = secx to evaluate

∫
tanm x seck x dx.

• u = tanx gives du = sec2 x dx, so for this to be effective we need to peel off a
factor of sec2 x and then be able to use the identity sec2 x = tan2 x+ 1:∫

tanm x seck x dx =

∫
(tanm x seck−2 x)(sec2 x) dx =

∫
um(1 + u2)

k−2
2 du.

As long as k is even, this will lead to a polynomial that we can integrate.
• u = sec x gives du = sec x tanx dx, which helps if we can to remove a factor of

secx tanx and then use the identity tan2 x = sec2 x− 1 = u2 − 1:∫
tanm x seck x dx =

∫
(tanm−1 x seck−1 x)(secx tanx) dx =

∫
(u2 − 1)

m−1
2 uk−1 du

This leads to a polynomial if m is odd.

Thus for
∫

tanm x seck x dx, we have the following analogue of Technique 3.1: use the
substitution u = tanx if k ≥ 2 is even, and u = secx if m ≥ 1 is odd (as long as k ≥ 1).
If k is even and m is odd, then either substitution can be used.
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Example 3.5. When m = 2 and k = 4 we use u = tanx, du = sec2 x dx to get∫
tan2 x sec4 x dx =

∫
tan2 x(1 + tan2 x) sec2 x dx =

∫
u2(1 + u2) du

=

∫
(u2 + u4) du =

1

3
u3 +

1

5
u5 + C =

1

3
tan3 x+

1

5
tan5 x+ C.

Example 3.6. When m = k = 5 we use u = secx, du = secx tanx dx together with
tan2 x = sec2 x− 1 = u2 − 1 to get∫

tan5 x sec5 x dx =

∫
(tan2 x)2 sec4 x(secx tanx) dx =

∫
(u2 − 1)2u4 du

=

∫
(u8 − 2u6 + u4) du =

1

9
sec9 x− 2

7
sec7 x+

1

5
sec5 x+ C.

So far we have seen that
∫

tanm x seck x dx can be computed by the substitution
u = tanx if k ≥ 2 is even, and by u = secx if m ≥ 1 is odd (unless k = 0). The
remaining cases not covered by this approach are the following:

(1) k = 0, so there are no powers of secx to remove.
(2) The power on tanx is even, and the power on secx is odd.

In the first case, we have
∫

tanm x dx. Whenm = 1 we recall that this can be computed
by the substitution u = cosx:∫

tanx dx =

∫
sinx

cosx
dx = −

∫
1

u
du = − ln | cosx|+ C = ln | secx|+ C.

For m = 2 we can use the identity tan2 x = sec2 x− 1 to get∫
tan2 x dx =

∫
(sec2 x− 1) dx = tanx− x+ C.

For m ≥ 3, we can use the same identity and the substitution u = tanx to write∫
tanm x dx =

∫
tanm−2 x sec2 x dx−

∫
tanm−2 x dx =

∫
um−2 du−

∫
tanm−2 x dx

=
1

m− 1
tanm−1 x−

∫
tanm−2 x dx.

Iterating this, we eventually reach either
∫

tanx dx or
∫

tan2 x dx.

Example 3.7.

∫
tan3 x dx =

1

2
tan2 x−

∫
tanx dx =

1

2
tan2 x− ln | secx|+ C.

What about the second case above,
∫

tan2m x sec2k+1 x dx? In this case we can still
use the identity tan2m x = (tan2 x)m = (sec2 x + 1)m to write the integral in terms of
integrals of the form

∫
sec2`+1 x dx. But how do we evaluate such integrals?

Lecture 4 More trigonometric integrals

Stewart §7.2, Spivak Ch. 19
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4.1. The integral of secant

The last lecture left open the problem of how to evaluate
∫

sec2`+1 x dx, where ` ≥ 0.
Let us focus on the case ` = 0 and compute

∫
secx dx. It turns out that the substitution

rule is enough, but we need to be quite clever about how we use it. We have∫
secx dx =

∫
1

cosx
dx =

∫
cosx

cos2 x
dx =

∫
cosx

1− sin2 x
dx,

which looks like it is moving in the wrong direction (getting more complicated). However,
upon putting u = sinx we get du = cosx dx and thus∫

secx dx =

∫
1

1− u2
du =

∫
1

(1 + u)(1− u)
du =

1

2

∫ ( 1

1 + u
− 1

1− u
)
du,

where the second equality is natural to do, and the third can be easily checked but
is probably not the first thing that would have popped into your head.2 Once we are
at this point, however, we are nearly done! Indeed, since

∫
1

1+u
du = ln |1 + u| and∫

1
1−u du = − ln |1− u|, we have∫

secx dx =
1

2

(
ln |1 + u| − ln |1− u|

)
=

1

2
ln
∣∣∣1 + u

1− u
∣∣∣,

omitting the constant of integration for the time being. Recalling that u = sinx, we
multiply top and bottom by (1 + u) to obtain 1 − u2 = 1 − sin2 x = cos2 x in the
denominator, and get∫

secx dx =
1

2
ln
∣∣∣(1 + u)2

1− u2

∣∣∣ =
1

2
ln
∣∣∣(1 + sin x)2

cos2 x

∣∣∣ = ln
∣∣∣1 + sin x

cosx

∣∣∣ = ln | secx+ tanx|.

In order to get the most general antiderivative we add the constant of integration:

(4.1)

∫
secx dx = ln | secx+ tanx|+ C.

Although this argument does not use any rules that you have not learned yet, it is
certainly not one that I would expect you to come up with on your own! It does,
however, illustrate a little bit of the nature of computing indefinite integrals; there are
many different steps that one might take next at any given stage, and it is a little bit
of an art form to decide which one is most likely to be useful. Certain tricks appear
over and over again – factor a difference of squares, add and subtract the same thing,
multiply and divide by the same thing, look for any useful trigonometric identities that
may be relevant – but in the end there is no substitute for just working through lots of
problems and gaining practice and experience in integrating.

4.2. More trigonometric identities

One more set of trigonometric identities is worth mentioning at this point.

Exercise 4.1. Use the formulas for cos(A±B) and sin(A±B) to prove that

sinA cosB =
1

2

[
sin(A+B) + sin(A−B)

]
,

2It will seem more natural once we have discussed partial fractions.
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sinA sinB =
1

2

[
cos(A−B)− cos(A+B)

]
,

cosA cosB =
1

2

[
cos(A−B) + cos(A+B)

]
.

These identities can be used to evaluate integrals involving products of sin(mx) and
cos(nx).

Example 4.2. The first identity above gives∫
sin 2x cos 7x dx =

1

2

∫ [
sin(2x+ 7x) + sin(2x− 7x)

]
dx

=
1

2

∫
sin 9x dx− 1

2

∫
sin 5x dx = − 1

18
cos 9x+

1

10
cos 5x+ C.

4.3. *A reduction formula for powers of sine

Now let us return to the second approach given in §3.1 to compute
∫

sin2 x dx, using
integration by parts, and see what happens if we try to use this approach to compute∫

sinn x dx. Mimicking the integration by parts from that section, we can write∫
sinn x dx =

∫
(sinx)n−1︸ ︷︷ ︸

u

(sinx) dx︸ ︷︷ ︸
dv

= (sinx)n−1︸ ︷︷ ︸
u

(− cosx)︸ ︷︷ ︸
v

−
∫

(− cosx)︸ ︷︷ ︸
v

(n− 1)(sinx)n−2(cosx) dx︸ ︷︷ ︸
du

= − cosx sinn−1 x+ (n− 1)

∫
sinn−2 x cos2 x dx.

Then using sinn−2 x cos2 x = sinn−2 x(1− sin2 x) = sinn−2 x− sinn x, we get∫
sinn x dx = − cosx sinn−1 x+ (n− 1)

∫
sinn−2 x dx− (n− 1)

∫
sinn x dx.

Adding (n− 1)
∫

sinn x dx to both sides gives

n

∫
sinn x dx = − cosx sinn−1 x+ (n− 1)

∫
sinn−2 x dx,

and dividing by n we obtain

(4.2)

∫
sinn x dx = − 1

n
cosx sinn−1 x+

n− 1

n

∫
sinn−2 x dx.

This is not a complete answer in and of itself, but it lets us reduce the problem to a
similar question for a smaller value of n, and by iterating the procedure we will eventually
reach

∫
sinx dx or

∫
sin2 x dx, both of which we know how to compute.

Example 4.3. Using n = 3 in (4.2) gives∫
sin3 x dx = −1

3
cosx sin2 x+

2

3

∫
sinx dx = −1

3
cosx sin2 x− 2

3
cosx+ C.

Exercise 4.4. Use integration by parts to prove a similar reduction formula for
∫

sec2 x dx;
together with §4.1 this lets you compute

∫
secn x dx for all n ∈ N.
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4.4. *The Wallis product

Now suppose we compute the definite integrals associated to these examples over the
interval [0, π]. That is, we consider for each n = 0, 1, 2, 3, . . . the real number

In =

∫ π

0

sinn x dx.

Before doing any computations, observe that the sequence In represents the areas of the
regions shown here.

I0 I1 I2
. . .

I8
. . .

Remark 4.5. It appears that these regions are getting smaller and smaller, so that
limn→∞ In = 0. This turns out to be true, but it takes a little bit of work to prove,
and we will not do so here.

The first two terms are easy to compute:

I0 =

∫ π

0

1 dx = π,

I1 =

∫ π

0

sinx dx =
[
− cosx

]π
0

= − cos π + cos 0 = 2.

For larger values of n, we use the reduction formula (4.2):

In =

∫ π

0

sinn x dx =
[
− 1

n
cosx sinn−1 x

]π
0

+
n− 1

n

∫ π

0

sinn−2 x dx.

Since sin 0 = sin π = 0, the first term on the RHS vanishes, and the last integral is just
In−2, so we get

(4.3) In =
n− 1

n
In−2.

Thus the next few terms in the sequence are

I2 =
1

2
I0 = π · 1

2
, I3 =

2

3
I1 = 2 · 2

3
,

I4 =
3

4
I2 = π · 1

2
· 3

4
, I5 =

4

5
I3 = 2 · 2

3
· 4

5
,

and so on. The general formula is

I2n = π · 1

2
· 3

4
· · · · · 2n− 1

2n
, I2n+1 = 2 · 2

3
· 4

5
· · · · · 2n

2n+ 1
.

So far this is kind of cute, but now something surprising happens. We see that there
is one rule for the even terms in the sequence In, and another rule for the odd terms.
What happens if we compare two consecutive terms, one even and one odd? Are they
close together, or far apart? Note that since 0 ≤ sinx ≤ 1 for all x ∈ [0, π], we have
sinn+1 x ≤ sinn x for all n, and thus

In+1 =

∫ π

0

sinn+1 x dx ≤
∫ π

0

sinn x dx = In.
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In particular, this gives I2n ≥ I2n+1 ≥ I2n+2, and dividing through by I2n gives

1 =
I2n

I2n

≥ I2n+1

I2n

≥ I2n+2

I2n

=
2n+ 1

2n+ 2
using (4.3).

Since limn→∞
2n+1
2n+2

= limn→∞ 1 = 1, the Squeeze Theorem implies that

(4.4) lim
n→∞

I2n+1

I2n

= 1.

From the formulas for I2n and I2n+1, we see that

I2n+1

I2n

=
2 · 2

3
· 4

5
· · · · · 2n

2n+1

π · 1
2
· 3

4
· · · · · 2n−1

2n

=
2

π
· 2

1
· 2

3
· 4

3
· 4

5
· · · 2n

2n− 1

2n

2n+ 1
.

Together with (4.4), this implies that

1 = lim
n→∞

( 2

π
· 2

1
· 2

3
· 4

3
· 4

5
· · · 2n

2n− 1

2n

2n+ 1

)
,

or if you prefer, after multiplying both sides by π
2
,

(4.5)
π

2
= lim

n→∞

(2

1
· 2

3
· 4

3
· 4

5
· · · 2n

2n− 1

2n

2n+ 1

)
.

This is the Wallis product, a formula for π that was discovered in 1655 by the English
mathematician John Wallis. It is often written as an infinite product :

π

2
=

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· 8

9
· · · .

We will have more to say about expressions like this when we study sequences and series
at the end of the course; for the time being I merely urge extreme caution. Because
this expression is infinite and not finite, it does not always behave in the way we might
expect. For example, one might be tempted to say that because it does not matter in
which order we multiply and divide things, we could just as well write the final expression
as

(4.6)
2

3
· 2

3
· 4

5
· 4

5
· 6

7
· 6

7
· · ·

by moving all the denominators one spot to the left. But this turns out to be quite
wrong! Indeed, if we write xn = 2

1
· 2

3
· 4

3
· 4

5
· · · 2n

2n−1
2n

2n+1
and yn = 2

3
· 2

3
· 4

5
· 4

5
· · · 2n

2n+1
2n

2n+1
,

then (4.5) says that limn→∞ xn = π
2
, and we see clearly that yn = xn

2n+1
, so the product

in (4.6) should be interpreted as

lim
n→∞

yn = lim
n→∞

xn
2n+ 1

= 0.

But all this is really a discussion for another time, mentioned here merely to illustrate
why we should exercise some care when treating infinite expressions.

Lecture 5 Trigonometric substitutions

Stewart §7.3, Spivak Ch. 19
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5.1. Reversing the substitution rule

We know that the area of the unit circle is π, so the area under the curve y =
√

1− x2

from 0 to 1 is π
4
: in other words, ∫ 1

0

√
1− x2 dx =

π

4
.

Can we compute this integral using the fundamental theorem of calculus, by finding
an antiderivative? The function

√
1− x2 is not on our list of known derivatives, and

integration by parts will not get us anywhere. Neither will the first substitutions we
might try: u = x2, u = 1− x2, u =

√
1− x2. On the other hand, there is a substitution

we can make that helps, but it looks rather different: instead of replacing x with a new
variable that is a function of x, we write x as a function of a new variable t by putting
x = sin t. Then we have dx = cos t dt, and the usual trigonometric identities give∫ √

1− x2 dx =

∫ (√
1− sin2 t

)
cos t dt =

∫
cos2 t dt =

1

2

∫
(1 + cos 2t) dt

=
1

2
t+

1

4
sin 2t+ C =

1

2
t+

1

2
sin t cos t+ C

=
1

2
sin−1 x+

1

2
x
√

1− x2 + C.

In previous lectures we have made some effort to point out that dx and dt do not have
an independent meaning in their own right, so the proper way to justify the above
substitution is to define t by t = sin−1 x, and then observe that writing g(t) = sin t, the
usual substitution rule gives

(5.1)

∫
f(g(t))g′(t) dt =

∫
f(x) dx.

In this example, though we are going the reverse of the usual direction. In previous
applications of the substitution rule, we wanted to find functions f and g so that the
integral we were given could be rewritten as the LHS of (5.1), and then transformed
into the RHS; in the present example, we start with the integral on the RHS and look
for a function g such that transforming it into the LHS is productive.

Remark 5.1. Since sin is not 1-1 on its entire domain, any use of the inverse function sin−1

must always come with a choice of which branch we use. It is standard to choose sin−1 x ∈
[−π

2
, π

2
], which is why we chose cos t =

√
1− sin2 t instead of cos t = −

√
1− sin2 t in

the above computation; the latter choice would correspond to a different branch of the
inverse function, although it would still lead to a valid antiderivative.

(0, b)

(a, 0)
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Example 5.2. To find the area enclosed by the ellipse x2

a2
+ y2

b2
= 1, where a, b > 0 are

the lengths of the two semi-axes of the ellipse, we can solve for y in the first quadrant
and get

y2

b2
= 1− x2

a2
=
a2 − x2

a2
⇒ y =

b

a

√
a2 − x2,

so that the total area of the ellipse is A = 4
∫ a

0
b
a

√
a2 − x2 dx. Then we use the substi-

tution x = a sin θ, dx = a cos θ dθ, to get∫ a

0

√
a2 − x2 dx =

∫ π/2

0

√
a2 − a2 sin2 θ · a cos θ dθ = a2

∫ π/2

0

cos2 θ dθ

=
a2

2

∫ π/2

0

(1 + cos 2θ) dθ =
a2

2

[
θ +

1

2
sin 2θ

]π/2
0

=
πa2

4
,

and we conclude that the area of the ellipse is

A =
4b

a

∫ a

0

√
a2 − x2 dx =

4b

a
· πa

2

4
= πab.

Notice that in the case a = b this reduces to the familiar formula for the area of a circle.

Technique 5.3. Trigonometric substitutions such as the one above are useful for sim-
plifying integrals involving quadratic polynomials inside square roots.

• If you see
√
a2 − x2, use x = a sin θ, dx = a cos θ dθ, and 1− sin2 θ = cos2 θ.

• For
√
a2 + x2, use x = a tan θ, dx = a sec2 θ dθ, and 1 + tan2 θ = sec2 θ.

• For
√
x2 − a2, use x = a sec θ, dx = a sec θ tan θ dθ, and sec2 θ − 1 = tan2 θ.

5.2. More examples

Example 5.4. To compute
∫ √

4−x2
x2

dx, put x = 2 sin θ, dx = 2 cos θ dθ, and get∫ √
4− x2

x2
dx =

∫ √
4− 4 sin2 θ

4 sin2 θ
2 cos θ dθ =

∫
cos2 θ

sin2 θ
dθ =

∫
cot2 θ dθ

=

∫
(csc2 θ − 1) dθ = − cot θ − θ + C.

To complete the solution we must write this in terms of x. It is
useful to draw the triangle shown at right, where the edges are
determined by the condition that sin θ = x/2 together with the

Pythagorean theorem. We see that cot θ =
√

4−x2
x

, and obtain
√
4− x2

x
2

θ

∫ √
4− x2

x2
dx = −

√
4− x2

x2
− sin−1 x

2
+ C.

Remark 5.5. We could also evaluate this integral using integration by parts, with u =√
4− x2 and dv = x−2 dx, so v = −1/x, and we would obtain the same result. But the

approach using trigonometric substitution is a little more routine in that we do not have
to guess at a choice of u and v that work.
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Example 5.6. To compute
∫

1
x
√
x2+1

dx we put x = tan θ, dx = sec2 θ dθ, and get∫
1

x
√
x2 + 1

dx =

∫
sec2 θ

tan θ
√

tan2 θ + 1
dθ =

∫
sec2 θ

tan θ| sec θ| dx.

To eliminate the absolute value signs we choose θ ∈ (−π
2
, π

2
) so that sec θ > 0, and we

get ∫
1

x
√
x2 + 1

dx =

∫
sec θ

tan θ
dθ =

∫
1/ cos θ

sin θ/ cos θ
dθ =

∫
csc θ dθ.

We have not evaluated this before, but we did compute
∫

sec θ dθ = ln | tan θ + sec θ|.
Thus it is natural to expect that the integral of csc θ is related to ln | cot θ + csc θ|, and
differentiating this expression gives

d

dθ
ln | cot θ + csc θ| = − csc2 θ − csc θ cot θ

cot θ + csc θ
= − csc θ.

We conclude that ∫
1

x
√
x2 + 1

dx =

∫
csc θ dθ = − ln | cot θ + csc θ|.

To write this in terms of x, we use the triangle shown to get

cot θ = 1
x

and csc θ =
√
x2+1
x

, so that
1

x

√
x2 + 1

θ

∫
1

x
√
x2 + 1

dx = − ln
∣∣∣1
x

+

√
x2 + 1

x

∣∣∣ = ln
∣∣∣ x

1 +
√
x2 + 1

∣∣∣ = ln |x|− ln(1+
√
x2 + 1)+C.

Example 5.7. For
∫

x√
x2+1

dx, we use x = tan θ and dx = sec2 θ dθ with θ ∈ (−π
2
, π

2
) to

get∫
x√
x2 + 1

dx =

∫
tan θ sec2 θ√

tan2 θ + 1
dθ =

∫
tan θ sec θ dθ = sec θ + C =

√
x2 + 1 + C.

Observe that we could also have used the substitution u = x2 + 1.

Example 5.8. To compute
∫

1√
x2−a2 dx, where a > 0, we put x = a sec θ and dx =

a sec θ tan θ dθ, using the range θ ∈ (0, π
2
) ∪ (π, 3π

2
) so that tan θ > 0, and get∫

1√
x2 − a2

dx =

∫
a sec θ tan θ√
a2 sec2 θ − a2

dθ =

∫
sec θ tan θ

tan θ
dθ

=

∫
sec θ dθ = ln | sec θ + tan θ|+ C

= ln
∣∣∣x
a

+

√
x2 − a2

a

∣∣∣+ C.

a

√
x2 − a2x

θ

To obtain a marginally simpler expression we can absorb − ln a into the constant of
integration and write

∫
1√

x2−a2 dx = ln |x+
√
x2 − a2|+ C.
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Example 5.9. The previous example could also be computed by using the hyperbolic
substitution x = a cosh t, dx = a sinh t dt, since then we have∫

1√
x2 − a2

dx =

∫
a sinh t√

a2 cosh2 t− a2
dt =

∫
sinh t

sinh t
dt = t+ C = cosh−1

(x
a

)
+ C.

Recalling the definition cosh t = et+e−t

2
, one can use the quadratic formula to verify that

the two solutions agree with each other.

Lecture 6 Complicated quadratics

Stewart §7.3, Spivak Ch. 19

6.1. Trigonometric substitutions for complicated quadratics

If an integral contains the square root of a quadratic polynomial in one of the three
simple forms from Technique 5.3, then the corresponding trigonometric substitution is
clear. For more complicated quadratic polynomials, a preliminary substitution can be
used to bring the expression to one of the forms there.

Example 6.1. If we are confronted with the integral
∫
x2(9x2 + 4)−3/2 dx, then we

can first make the substitution u = 3x to write 9x2 + 4 = u2 + 4, and then make the
trigonometric substitution u = 2 tan θ. In terms of x, this is 3x = 2 tan θ, so x = 2

3
tan θ,

dx = 2
3

sec2 θ dθ, and we get∫
x2(9x2 + 4)−3/2 dx =

∫
4

9
tan2 θ(4 tan2 θ + 4)−3/2 · 2

3
sec2 θ dθ

=
8

27

∫
4−3/2 tan2 θ(sec2 θ)−3/2 sec2 θ dθ =

1

27

∫
tan2 θ

sec θ
dθ,

where we choose θ ∈ (−π
2
, π

2
) to guarantee that sec θ > 0. Writing everything in terms

of sine and cosine gives∫
x2(9x2 + 4)−3/2 dx =

1

27

∫
sin2 θ

cos θ
dθ =

1

27

∫ ( 1

cos θ
− cos θ

)
dθ

=
1

27

(
ln | sec θ + tan θ| − sin θ

)
+ C.

Using the triangle at right, we have sec θ =
√

9x2+4
2

,

tan θ = 3x
2

, and sin θ = 3x√
9x2+4

, so
2

3x

√
9x2 + 4

θ

∫
x2(9x2 + 4)−3/2 dx =

1

27

(
ln |
√

9x2 + 4 + 3x| − 3x√
9x2 + 4

)
+ C,

where as before we absorb a factor of 1
27

ln 2 into the constant of integration.

If the quadratic contains a linear term, then we need to complete the square first.
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Example 6.2. To compute I =

∫
x2

√
3− 2x− x2

dx, we complete the square as

3− 2x− x2 = −(x+ 1)2 + 4,

and so the preliminary substitution to make is u = x+ 1. Then the quantity inside the
square root is 4− u2, so we make the substitution u = 2 sin θ. Doing both substitutions
successively gives∫

x2

√
3− 2x− x2

dx =

∫
(u− 1)2

√
4− u2

du =

∫
(2 sin θ − 1)2√

4− 4 sin2 θ
· 2 cos θ dθ

=

∫
(4 sin2 θ − 4 sin θ + 1) dθ =

∫
(2(1− cos 2θ)− 4 sin θ + 1) dθ

= 2θ − sin 2θ + 4 cos θ + θ + C.

To transition back to x we use the triangle to get sin θ = x+1
2

,

cos θ = 1
2

√
3− 2x− x2, and thus √

3− 2x− x2
x+ 1

2

θ

I = 3 sin−1
(x+ 1

2

)
− 2 · x+ 1

2
·
√

3− 2x− x2

2
+ 4 ·

√
3− 2x− x2

2
+ C

= 3 sin−1
(x+ 1

2

)
+ (3− x)

√
3− 2x− x2

2
+ C.

Lecture 7 Rational functions

Stewart §7.4, Spivak Ch. 19

7.1. Polynomial long division

We know how to integrate polynomials using linearity and the power rule. But what
about rational functions? The following example is instructive.

Example 7.1.∫
2x+ 3

x+ 1
dx =

∫
2(x+ 1) + 1

x+ 1
dx =

∫ (
2 +

1

x+ 1

)
dx = 2x+ ln |x+ 1|+ C.

Observe that while it was not clear how to integrate the original rational function
directly, we were able to transform it into the sum of a polynomial (in this case the
constant function 2) and a new rational function ( 1

x+1
), where the new rational function

has a simpler numerator and is easier to integrate.
We can carry this out more generally. Suppose we want to integrate a rational function

P (x)
Q(x)

, where P,Q are polynomials. The first step is to use polynomial long division to

write

P (x) = S(x)Q(x) +R(x),
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where S,R are polynomials and degR < degQ. Then we have∫
P (x)

Q(x)
dx =

∫
S(x) dx+

∫
R(x)

Q(x)
dx.

The first integral on the RHS can be computed directly. For the second, we can compute
it directly if Q is linear (so that R(x) is constant), while for more general Q we will need
the method of partial fractions that we introduce in the next section.

Example 7.2. Suppose we want to compute
∫

x3−x
x+2

dx. Then P (x) = x3 − x and

Q(x) = x + 2, so polynomial long division gives x3 − x = (x2 − 2x + 3)(x + 2)− 6, via
the following computation.

x2 − 2x + 3

x+ 2
)

x3 − x
− x3 − 2x2

− 2x2 − x
2x2 + 4x

3x
− 3x− 6

− 6

Recall how the algorithm goes: since degP = 3 and degQ = 1, we must have degS =
3− 1 = 2, so we start by determining the quadratic coefficient of S. This must be 1 in
order for the leading terms of P (x) and S(x)Q(x) to agree, so we write x2 in the top
line and then subtract x2Q(x) from S(x), obtaining −2x2 − x. This polynomial now
plays the role of P , and we repeat the process until the remaining polynomial has degree
smaller than degQ = 1.

Using the result of the long division, we get∫
x3 − x
x+ 2

dx =

∫
(x2 − 2x+ 3)(x+ 2)− 6

x+ 2
=

∫ (
x2 − 2x+ 3− 6

x+ 2

)
dx

=
1

3
x3 − x2 + 3x− 6 ln |x+ 2|+ C.

7.2. Partial fraction decompositions

The above procedure is not always enough; it may still not be immediately clear how
to integrate the resulting rational function. For example, when we derived the formula
for

∫
sec θ dθ, an important step was to compute

∫
1

1−x2 dx, which is not as easy as

integrating 1
ax+b

. The trick was to notice that

1

1− x +
1

1 + x
=

(1 + x) + (1− x)

(1− x)(1 + x)
=

2

1− x2
,

which let us write∫
1

1− x2
dx =

1

2

∫
1

1− x +
1

1 + x
dx =

1

2
(ln |1 + x| − ln |1− x|) + C.

This is an example of a partial fraction decomposition. But how did we come up with
it? And how can we use a similar trick to help us compute other integrals?
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Example 7.3. To compute
∫

x+5
x2−2x−3

dx, we can factor the denominator as x2−2x−3 =
(x− 3)(x+ 1) and conjecture that

(7.1)
x+ 5

x2 − 2x− 3
=

A

x− 3
+

B

x+ 1
for some choice of A,B ∈ R.

Observe that the RHS can be rewritten as

A(x+ 1) +B(x− 3)

(x− 3)(x+ 1)
=

(A+B)x+ (A− 3B)

x2 − 2x− 3
,

and so we want to choose A,B such that

(A+B)x+ (A− 3B) = x+ 5 for every x ∈ R.
This happens if and only if A+B = 1 and A−3B = 5; this is a system of two equations
in two variables, which we can easily solve to get A = 2, B = −1, so that∫

x+ 5

x2 − 2x− 3
dx =

∫
2

x− 3
− 1

x+ 1
dx = 2 ln |x− 3| − ln |x+ 1|+ C.

Technique 7.4. A similar method works anytime the denominator can be factored into
distinct linear polynomials: if degP < degQ = n and Q(x) = (x − r1) · · · (x − rn), so
that r1, . . . , rn are the roots of Q, then our goal is to find A1, . . . , An ∈ R such that

(7.2)
P (x)

Q(x)
=

A1

x− r1

+ · · ·+ An
x− rn

for every x ∈ R \ {r1, . . . , rn}.

Putting the RHS over a common denominator equal to Q(x), one sees that (7.2) is true
if and only if A1, . . . , An satisfy a certain system of n linear equations in n variables,
obtained by comparing the coefficients of the polynomial P (x) (up to degree n − 1) to
the coefficients of the numerator on the RHS. Once the values of A1, . . . , An are found,
the RHS can easily be integrated using

∫
A
x−r dx = A ln |x− r|.

The procedure of rewriting the rational function P (x)
Q(x)

as the RHS of (7.2) is called a

partial fraction decomposition.

Remark 7.5. We stress that (7.2) is not an equation to be solved for x; rather, it is a
condition that is supposed to hold for every x, and this then determines the values of
the numbers A1, . . . , An using comparison of coefficients.

Technique 7.6. An alternate technique for finding the coefficients in (7.2) is to put the
RHS over a common denominator and then instead of comparing coefficients, evaluate
both P (x) and the numerator of the RHS at n specific points. It makes sense to choose
points where the RHS takes a simple form, and one can often achieve this by evaluating
it at the points r1, . . . , rn.

Example 7.7. In Example 7.3, we could rewrite (7.1) as

x+ 5

x2 − 2x− 3
=
A(x+ 1) +B(x− 3)

(x− 3)(x+ 1)
,

just as we did before, so that we want to find A,B such that

x+ 5 = A(x+ 1) +B(x− 3) for all x;



22

then instead of comparing coefficients, we could evaluate this equation at x = 3 and
x = −1, where it gives

3 + 5 = A(3 + 1) +B · 0 and − 1 + 5 = A · 0 +B(−1− 3),

which are easily solved to give A = 2 and B = −1, just as before.

It is important to observe that both of these methods fail as currently formulated if
the factors of Q(x) are not distinct.

Example 7.8. If P (x) = x and Q(x) = (x+ 1)2, then (7.2) becomes

x

(x+ 1)2
=

A1

(x+ 1)2
+

A2

(x+ 1)2
=
A1 + A2

(x+ 1)2
;

this can only be satisfied if A1 + A2 = x for every x, which is impossible. (The corre-
sponding system of linear equations is A1 + A2 = 0, 0 = 1.)

Now there are three questions that need to be addressed.

(1) Does the system of equations coming from (7.2) always have a solution if the
linear factors are all distinct?

(2) What do we do if the factors are not distinct; how do we deal with repeated roots
of Q(x)?

(3) What do we do if Q(x) does not factor into linear polynomials? For example,
what if Q(x) = x2 + 1?

We will address the second and third questions in the following sections. For the first
question, we start by thinking about the case n = 2. Suppose that P (x) = ax + b and
Q(x) = (x− r1)(x− r2). Then (7.2) becomes

ax+ b

(x− r1)(x− r2)
=

A1

x− r1

+
A2

x− r2

=
A1(x− r2) + A2(x− r1)

(x− r1)(x− r2)

and thus A1, A2 must satisfy

ax+ b = A1(x− r2) + A2(x− r1) for every x.

We could expand the RHS and compare coefficients, but it is easier to evaluate the above
equation at x = r1 and x = r2, when it gives

ar1 + b = A1(r1 − r2) and ar2 + b = A2(r2 − r1).

If r1 6= r2, then we can immediately solve for A1 and A2, and see that they are uniquely
determined by a, b, r1, r2. On the other hand, we observe that ari + b 6= 0 for both
i = 1 and i = 2 (since otherwise we could have simplified the expression ax+b

(x−r1)(x−r2)
by

dividing top and bottom by x − ri), and thus if r1 = r2 then there can be no solution
A1, A2, since the right-hand sides vanish.

Proposition 7.9. Suppose that Q(x) factors as Q(x) = (x−r1)(x−r2) · · · (x−rn), and
P (ri) 6= 0 for all i.3 Then there are real numbers A1, . . . , An satisfying (7.2) if and only
if the roots r1, . . . , rn are all distinct. Morever, in this case there is exactly one solution:
the values of A1, . . . , An are uniquely determined by P,Q.

3Again, the assumption on P is reasonable because otherwise P (x) would have (x− ri) as a factor,
and we could cancel this term from both P and Q.



23

Proof. Collecting the terms in the RHS of (7.2) over a common denominator, we get

P (x) = A1(x− r2)(x− r3) · · · (x− rn) + A2(x− r1)(x− r3) · · · (x− rn)

+ · · ·+ An(x− r1) · · · (x− rn−1),

where in each term we multiply Aj by the product of the factors x − ri taken over all
i 6= j. In particular, the only term on the RHS that does not include a factor of (x− r1)
is the first, and thus evaluating the above equation at x = r1 gives

P (r1) = A1(r1 − r2)(r1 − r3) · · · (r1 − rn).

Similarly, evaluating at x = r2 gives

P (r2) = A2(r2 − r1)(r2 − r3) · · · (r2 − rn).

Continuing in this way we get n equations, one for each Ai. If all the roots ri are distinct,
then each Ai is multiplied by a nonzero number to get P (ri), and we can solve for Ai
to get the unique solution. On the other hand, if ri = rj for some i 6= j, then we get
P (rj) = Aj · 0 = 0, contradicting the assumption that P (rj) 6= 0. Thus when the roots
are not distinct, there is no solution. �

Lecture 8 General partial fraction decompositions

Stewart §7.4, Spivak Ch. 19

8.1. Repeated factors

Now we address the second question, about what to do when Q(x) has a repeated

root, so that P (x)
Q(x)

does not admit a partial fraction decomposition of the form (7.2),

where all the numerators are constants and all the denominators are linear.
Start by considering Example 7.8, and observe that we can still perform the following

computation:∫
x

(x+ 1)2
dx =

∫
(x+ 1)− 1

(x+ 1)2
dx =

∫
1

x+ 1
− 1

(x+ 1)2
dx = ln |x+ 1|+ 1

x+ 1
+ C.

This suggests a general way of dealing with repeated factors.

Technique 8.1. To integrate P (x)
(x−r)n , where P is a polynomial of degree < n, find real

numbers A1, . . . , An such that

P (x) = A1(x− r)n−1 + A2(x− r)n−2 + · · ·+ An−1(x− r) + An.

Then we obtain the following result:∫
P (x)

(x− r)n =

∫
A1

x− r +
A2

(x− r)2
+ · · ·+ An

(x− r)n dx

= A1 ln |x− r| − A2

x− r −
1

2
· A3

(x− r)2
− · · · − 1

n− 1
· An

(x− r)n−1
+ C.
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Example 8.2. To integrate 1
x(x+1)3

, we combine the ideas from (7.2) and Technique 8.1:

we want to find real numbers A,B,C,D such that

1

x(x+ 1)3
=
A

x
+

B

x+ 1
+

C

(x+ 1)2
+

D

(x+ 1)3
.

Putting everything over a common denominator, we see that our goal is

1

x(x+ 1)3
=
A(x+ 1)3 +Bx(x+ 1)2 + Cx(x+ 1) +Dx

x(x+ 1)3
.

This holds if and only if the numerators agree for all x, that is, if

(8.1) 1 = A(x+ 1)3 +Bx(x+ 1)2 + Cx(x+ 1) +Dx.

To find A,B,C,D, we can use either Technique 7.4 and compare coefficients, or Tech-
nique 7.6 and evaluate both sides at appropriate values of x.

Comparing coefficients: Expanding the RHS of (8.1) and comparing coefficients be-
tween the two sides, we obtain a system of four linear equations in four variables:

1 = A(x3 + 3x2 + 3x+ 1) +Bx(x2 + 2x+ 1) + C(x2 + x) +Dx

= (A+B)x3 + (3A+ 2B + C)x2 + (3A+B + C +D)x+ A,

which yields

0 = A+B cubic coefficients

0 = 3A+ 2B + C quadratic coefficients

0 = 3A+B + C +D linear coefficients

1 = A constant coefficients.

The fourth equation gives A = 1, then the first gives B = −A = −1, then the second
gives C = −3A − 2B = −3 + 2 = −1, then the third gives D = −3A − B − C =
−3 + 1 + 1 = −1.

Evaluating at specific values: When x = 0, the RHS of (8.1) is equal to A, so we
conclude that A = 1. Similarly, when x = −1, the RHS is equal to −D, and we conclude
that D = −1. Because 0 and −1 are the only roots of Q(x), it is not clear what two
other values of x to use in order to find B and C. Choosing two values essentially at
random would lead to a system of two equations in two variables, which could then be
solved. Alternately, we can take one of the following two approaches.

Simplify and divide: Using A = 1 and D = −1, (8.1) can be rewritten as

(8.2) 1 = (x+ 1)3 +Bx(x+ 1)2 + Cx(x+ 1)− x;

adding x− (x+ 1)3 to both sides gives

Bx(x+ 1)2 + Cx(x+ 1) = 1 + x− (x+ 1)3 = (x+ 1)(1− (x+ 1)2)

= (x+ 1)(1− x2 − 2x− 1) = −x(x+ 1)(x+ 2).

Divide both sides by x(x+ 1) to get

B(x+ 1) + C = −x− 2.
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Again, recall that this is an equation that we want to be true for all x. Evaluating both
sides at x = −1 gives C = −(−1)− 2 = 1− 2 = −1, and thus we are left with

B(x+ 1) = −x− 2− (−1) = −x− 1 = −(x+ 1),

so B = −1.
Differentiate: Another way to find B and C is to observe that the LHS and RHS of

(8.2) are two different ways of writing the same function, so their derivatives must also
be equal:

0 = 3(x+ 1)2 +B(x+ 1)2 + 2Bx(x+ 1) + C(x+ 1) + Cx− 1.

Evaluating this at x = −1 gives C = −1, and so the equation becomes

0 = 3(x+ 1)2 +B(x+ 1)2 + 2Bx(x+ 1)− 2(x+ 1).

Differentiating again gives

0 = 6(x+ 1) + 2B(x+ 1) + 2B(x+ 1) + 2Bx− 2,

and putting x = −1 gives B = −1.
Whichever of the above approaches we use, we conclude that A = 1 and B = C =

D = −1, so ∫
1

x(x+ 1)3
dx =

∫
1

x
− 1

x+ 1
− 1

(x+ 1)2
− 1

(x+ 1)3
dx

= ln |x| − ln |x+ 1|+ 1

x+ 1
+

1

2(x+ 1)2
+ C,

where this last C is a constant of integration (not the coefficient from the earlier com-
putations).

At some level it is a matter of taste which approach we use to determine the coefficients
in any given problem. However, it may be the case that one of the methods is easier
than the others, and thus it is useful to be familiar with all of them. And indeed, there
are other ways to proceed as well.

Example 8.3. Revisiting
∫

1
x(x+1)3

dx, suppose we start by only going partway in the

partial fraction decomposition (here A,B,C,D are not the same as in the previous
computations):

1

x(x+ 1)3
=
A

x
+
Bx2 + Cx+D

(x+ 1)3

Collecting the RHS over a common denominator we get

1 = A(x+ 1)3 +Bx3 + Cx2 +Dx = (A+B)x3 + (3A+ C)x2 + (3A+D)x+ A,

so A = 1, B = −1, C = −3, and D = −3. Then we make the substitution u = x + 1
and get∫

1

x(x+ 1)3
dx =

∫
1

x
− x2 + 3x+ 3

(x+ 1)3
dx = ln |x| −

∫
(u− 1)2 + 3(u− 1) + 3

u3
du

= ln |x| −
∫
u2 + u+ 1

u3
du = ln |x| −

∫
(u−1 + u−2 + u−3) du
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= ln |x| − ln |u| − u−1 − 1

2
u−2 + C

= ln |x| − ln |x+ 1| − 1

x+ 1
− 1

2(x+ 1)2
+ C.

8.2. Quadratic factors

Now we have enough tools to integrate P (x)
Q(x)

whenever Q(x) factors into linear terms.

But what if it does not? The prototypical example of a polynomial that does not factor
into linear terms is Q(x) = x2 + 1, and we recall from our work on differentiating
trigonometric functions that

(8.3)

∫
1

1 + x2
dx = tan−1 x+ C.

More generally, given a > 0 we can use the trigonometric substitution x = a tan θ,
dx = a sec2 θ dθ to obtain

(8.4)

∫
1

x2 + a2
dx =

∫
a sec2 θ

a2 tan2 θ + a2
dθ =

∫
1

a
dθ =

θ

a
+ C =

1

a
tan−1 x

a
+ C.

Technique 8.4. Any integral of the form
∫

Ax+B
x2+bx+c

dx, where x2 + bx+ c is irreducible,

can be evaluated by completing the square as x2 + bx+ c = (x− b
2
)2 + (c− b2

4
), making

the substitution u = x − b
2

so that the denominator becomes u2 + a2 for a =
√
c− b2

4
,

and then using (8.4).
For integrals of the form

∫
Ax+B

(x2+bx+c)k
dx, we can do the same substitution to obtain

an integrand with denominator (u2 + a2)k, and then use the substitution u = a tan θ as
above to obtain an integrand in terms of tangents and secants.

This turns out to be the final piece of the puzzle.

Technique 8.5 (Integrating rational functions by partial fractions). Given any rational

function P (x)
Q(x)

, we can use the method of partial fractions to integrate it by going through

the following steps.

(1) Use polynomial long division to reduce to the case when degP < degQ.
(2) Factor Q(x) as a product of linear and quadratic terms, where the quadratic

terms have no real roots.4

(3) Use any of the techniques described earlier to find coefficients that let us write
P (x)
Q(x)

as a sum of expressions of one of the following forms:

A

x− r ,
A

(x− r)k ,
Ax+B

x2 + bx+ c
,

Ax+B

(x2 + bx+ c)k
.

(4) Integrate each of these individually:

(a)

∫
A

x− r dx = A ln |x− r|;

4The fact that this is always possible is called the Fundamental Theorem of Algebra, and its proof is
beyond the scope of this course.
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(b)

∫
A

(x− r)k =
A

k − 1
(x− r)−(k−1) when k ≥ 2;

(c) For the last two types, use Technique 8.4: complete the square, make a
u-substitution, and then either use (8.4) or make a further trigonometric
substitution.

Example 8.6. To compute
∫

1
1+x3

dx, we factor the denominator as

1 + x3 = (1 + x)(1− x+ x2),

but we cannot go any further because 1− x+ x2 has no real roots (this follows from the
quadratic formula since (−1)2 − 4(1)(1) = −3 < 0). As in Example 8.3, though, we can
write

1

1 + x3
=

A

1 + x
+

Bx+ C

1− x+ x2
,

and taking a common denominator we see that A,B,C must satisfy

1 = A(1− x+ x2) + (Bx+ C)(1 + x) for all x.

As before, there are several ways to solve this. Putting x = −1 immediately gives
1 = A(1− (−1) + 1) = 3A, so A = 1

3
. Although Q(x) = 1 + x3 has no other real roots,

we can observe that the expressions obtained for x = 0 and x = 1 are not so complicated:

x = 0 ⇒ 1 =
1

3
+ C and x = 1 ⇒ 1 =

1

3
+ 2(B + C).

Thus C = 2
3

and B + C = 1
3
, so B = −1

3
, and we have∫

1

1 + x3
dx =

1

3

∫
1

1 + x
+
−x+ 2

1− x+ x2
dx.

The first part integrates as 1
3

∫
1

1+x
dx = 1

3
ln |x + 1|, so it remains to integrate the last

part. Completing the square gives x2 − x + 1 = (x − 1
2
)2 + 3

4
= u2 + a2 for u = x − 1

2

and a =
√

3/2, so we get∫ −x+ 2

1− x+ x2
dx =

∫ −(u+ 1
2
) + 2

u2 + a2
du = −1

2

∫
2u

u2 + a2
du+

3

2

∫
1

u2 + a2
du

= −1

2
ln(u2 + a2) +

3

2

1

a
tan−1 u

a

= −1

2
ln(x2 − x+ 1) +

√
3 tan−1 x− 1

2√
3/2

+ C.

Putting it all together gives∫
1

1 + x3
dx =

1

3
ln |x+ 1| − 1

6
ln(x2 − x+ 1) +

√
3

3
tan−1 2x− 1√

3
+ C.

We give one more example to illustrate the procedure in the presence of a repeated
quadratic factor.

Example 8.7. To compute
∫

1−x
x(x2+1)2

dx, we first find A,B,C,D,E ∈ R such that

1− x
x(x2 + 1)2

=
A

x
+
Bx+ C

x2 + 1
+

Dx+ E

(x2 + 1)2
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for all x, which upon putting things over a common denominator is equivalent to

1− x = A(x2 + 1)2 + (Bx+ C)(x2 + 1)x+ (Dx+ E)x.

Evaluating at x = 0 gives A = 1, so we must find B,C,D,E satisfying

(Bx+ C)(x2 + 1)x+ (Dx+ E)x = 1− x− (1 + 2x4 + x4) = −x− 2x2 − x4.

Dividing both sides by x, we want

−1− 2x− x3 = (Bx+ C)(x2 + 1) + (Dx+ E)

= Bx3 + Cx2 + (B +D)x+ (C + E),

and comparing coefficients gives

B = −1, C = 0, B +D = −2, C + E = −1 ⇒ D = −1, E = −1.

We conclude that∫
1− x

x(x2 + 1)2
dx =

∫
1

x
− x

x2 + 1
− x+ 1

(x2 + 1)2
dx

= ln |x| − 1

2
ln |x2 + 1| − 1

2
(x2 + 1)−1 −

∫
1

(x2 + 1)2
dx.

To evaluate the final integral we use the substitution x = tan θ, dx = sec2 θ dθ and
obtain ∫

1

(x2 + 1)2
dx =

∫
sec2 θ

(tan2 θ + 1)2
dθ =

∫
sec2 θ

sec4 θ
dθ =

∫
cos2 θ dθ

=
1

2

∫
(1 + cos 2θ) dθ =

1

2
θ +

1

4
sin 2θ + C.

The triangle at right gives sin θ = x√
x2+1

and cos θ = 1√
x2+1

,

so sin 2θ = 2 sin θ cos θ = 2x
x2+1

, and we get
1

x

√
x2 + 1

θ

∫
1− x

x(x2 + 1)2
dx = ln |x| − 1

2
ln(x2 + 1)− 1

2
(x2 + 1)−1 − 1

2
tan−1 x+

x

2(x2 + 1)
+ C

= ln |x| − 1

2
ln(x2 + 1) +

x− 1

2(x2 + 1)
− 1

2
tan−1 x+ C.

At this point we now have the ability to integrate any rational function, although
the computations involved may be quite intimidating. For example, the partial fraction
decomposition

x3 + x2 + 1

x(x− 1)(x2 + x+ 1)(x2 + 1)2
=
A

x
+

B

x− 1
+

Cx+D

x2 + x+ 1
+
Ex+ F

x2 + 1
+

Gx+H

(x2 + 1)2

leads to a system of 8 linear equations in 8 variables, which would be tedious to solve
by hand (though a computer would do it very quickly), and then we would be left
with 8 separate integrals to compute, some immediate, others requiring appropriate
substitutions.
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Lecture 9 Numerical integration

Stewart §7.7, Spivak Ch. 19

9.1. Endpoint and midpoint rules

When we are tasked with evaluating a definite integral
∫ b
a
f(x) dx, our usual approach

is to find an antiderivative F (x) =
∫
f(x) dx and then apply the FTC to get

∫ b
a
f(x) dx =

F (b) − F (a). However, as the discussion above illustrates, we may not be able to find
a formula for an antiderivative, even if we know the formula for f . And it may be the
case that we do not even know the formula for f , for example if the function is known
only experimentally. In such cases we turn to a different approach to computing definite
integrals, which goes back to their original definition via Riemann sums.

Recall that given n ∈ N, we can partition the interval [a, b] into n subintervals [xi−1, xi]
for i = 1, . . . , n, where xi = a+i∆x, and ∆x = b−a

n
is the width of each subinterval. Then

upon selecting a point x∗i inside each subinterval [xi−1, xi], the corresponding Riemann
sum is

n∑
i=1

f(x∗i )∆x.

There are three natural choices to make for x∗i : we might choose the left endpoint, the
right endpoint, or the midpoint of [xi−1, xi]. Using left endpoints gives the left endpoint
approximation

Ln =
n∑
i=1

f(xi−1)∆x,

and similarly, the right endpoint approximation is

Rn =
n∑
i=1

f(xi)∆x.

Choosing x∗i = x̄i := 1
2
(xi−1 + xi) gives the midpoint approximation

Mn =
n∑
i=1

f(x̄i)∆x.

It follows from the general theory of integration that all three approximations converge

to
∫ b
a
f(x) dx as n→∞; however, we are also interested in the speed of approximation.

Indeed, if you have an application that requires a numerical answer precise to within
10−4, then it is necessary to know how large n must be in order to guarantee this degree
of precision. We state the following theorem without proof.

Theorem 9.1. If f : [a, b]→ R is twice differentiable and K ∈ R has the property that
|f ′′(x)| ≤ K for all x ∈ [a, b], then the error term in the midpoint approximation can be
bounded as follows: ∣∣∣Mn −

∫ b

a

f(x) dx
∣∣∣ ≤ K(b− a)3

24n2
.
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For simplicity’s sake, suppose that a, b,K have the property that K(b − a)3/24 = 1.
Then the error bound is n−2, and so to guarantee precision of 10−4 using the midpoint
rule, we would need to take n = 102 = 100. It turns out that the corresponding error
estimate for the left and right endpoint approximations has a factor of n, not n2, in the
denominator, and to get n−1 = 10−4 requires n = 104; this illustrates that to get an
estimate with a very small error bound, it is useful to use the more efficient midpoint
approximation.

9.2. Trapezoid rule

There are two more methods that are worth mentioning here; both involve replacing
the rectangles used in Riemann sums with more general shapes.

For the trapezoid rule, instead of using a rectangle with height f(x∗i ) for some x∗i ∈
[xi−1, xi], we use a trapezoid with two vertices on the x-axis, at (xi−1, 0) and (xi, 0), and
the other two vertices on the graph of the function, at (xi−1, f(xi−1)) and (xi, f(xi)).
The area of this trapezoid is

average height× base =
f(xi−1) + f(xi)

2
·∆x,

and adding up the areas of the n trapezoids over the intervals [xi−1, xi] for i = 1, . . . , n,

we get the following approximation for
∫ b
a
f(x) dx:

(9.1) Tn :=
n∑
i=1

f(xi−1) + f(xi)

2
·∆x, ∆x :=

b− a
n

, xi := a+ i∆x.

We can rewrite this as

Tn =
∆x

2

(
f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)

)
.

Theorem 9.1 has an analogue for the trapezoid rule, except that the 24 in the denomi-
nator is replaced by 12; the trapezoid rule is actually not quite as good as the midpoint
rule in general.

9.3. Simpson’s rule

Another way to interpret the trapezoid rule is that on each interval [xi−1, xi], we re-
placed the function f with a linear function g ≈ f that agrees with f at the endpoints,
and then integrated g instead of f . (Of course, we use a different function g on each
small interval [xi−1, xi].) To get a better approximation, we might try using a quadratic
function instead. Recall that a quadratic function is determined by its values at three
points, so now we should ask for g to agree with f at the endpoints and at the mid-
point. Notationally, it will be easier to assume that n is even and then approximate
by quadratics on [x0, x2], [x2, x4], and so on. The key computation is contained in the
following lemma.

Lemma 9.2. Suppose we are given h > 0, three points x0 < x1 < x2 related by x1 =
x0 + h and x2 = x1 + h, and three values y0, y1, y2 ∈ R. Let g(x) be the unique quadratic
polynomial g(x) such that g(xi) = yi for i = 0, 1, 2. Then

(9.2)

∫ x2

x0

g(x) dx =
h

3
(y0 + 4y1 + y2).



31

Proof. Without loss of generality we can assume that x0 = −h, x1 = 0, and x2 = h,
since translating the graph horizontally does not change the area underneath it. Since
g is a quadratic polynomial, we must have A,B,C ∈ R such that g(x) = Ax2 +Bx+C.
Evaluating this at x = −h, 0, h and using the fact that g(xi) = yi for i = 0, 1, 2, we get

y0 = Ah2 −Bh+ C,

y1 = C,

y2 = Ah2 +Bh+ C.

Adding the first and the third equations gives y0 + y2 = 2Ah2 + 2C, and the second
equation gives C = y1, so we can evaluate the integral as∫ h

−h
(Ax2 +Bx+ C) dx =

[A
3
x3 +

B

2
x2 + Cx

]h
−h

=
2Ah3

3
+ 2Ch =

h

3
(2Ah2 + 6C)

=
h

3
(y0 + y2 + 4C) =

h

3
(y0 + y2 + 4y1),

which proves the lemma. �

Now return to the question of approximating
∫ b
a
f(x) dx. Given n ∈ N even and

xi = a + i∆x, where ∆x = (b− a)/n, let yi = f(xi). When we add up the areas under
the parabolas over [x0, x2], [x2, x4], and so on, we obtain the following approximation for∫ b
a
f(x) dx, known as Simpson’s rule:

(9.3)
Sn =

∆x

3
(y0 + 4y1 + y2) +

∆x

3
(y2 + 4y3 + y4) + · · ·+ ∆x

3
(yn−2 + 4yn−1 + yn)

=
∆x

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2yn−2 + 4yn−1 + yn).

For Simpson’s rule we have the following improvement on Theorem 9.1, which again
we do not prove here.

Theorem 9.3. If f is four times differentiable on [a, b] and K ∈ R is such that
|f (4)(x)| ≤ K for all x ∈ [a, b], then the error term in Simpson’s rule can be bounded as
follows: ∣∣∣Sn − ∫ b

a

f(x) dx
∣∣∣ ≤ K(b− a)5

180n4
.

The factor of n4 in the denominator means that we can obtain a very precise approx-
imation with a relatively small value of n, which makes this approximation very useful
and explains why we may consider it an improvement over the approximations described
earlier.

Lecture 10 Improper integrals

Stewart §7.8, Spivak exercises 14.25–30
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10.1. Infinite width

We know that if f : [a, b] → (0,∞) is a positive function, then
∫ b
a
f(x) dx represents

the area underneath the graph of y = f(x) over the bounded interval [a, b]. But what
if we consider the area under the graph over an unbounded interval? Can we still make
sense of this notion?

Start with a concrete example: consider the region beneath the graph of y = 1
x2

, above
the x-axis, and to the right of the line x = 1. If we truncate this region by cutting off
everything to the right of the line x = t for some fixed t > 1, then the truncated region
has area

A(t) =

∫ t

1

1

x2
dx = −1

x

∣∣∣t
1

= 1− 1

t
.

Viewing the truncated region as an approximation to the region we are interested in, we
see that the approximation gets better the larger t gets, and that limt→∞A(t) = 1, so
it seems reasonable to say that the region originally described has area 1, and to write∫∞

1
1
x2
dx = 1. This serves as a template for a more general definition.

Definition 10.1. Let f : [a,∞)→ R be such that

(1) f is integrable on [a, t] for every t ≥ a, and

(2) limt→∞
∫ t
a
f(x) dx exists and is finite.

Then we write
∫∞
a
f(x) dx := limt→∞

∫ t
a
f(x) dx, and call this an improper integral (of

type 1); in this case we say that the improper integral is convergent. If the limit does
not exist, we say that it is divergent.

The improper integral
∫ b
−∞ f(x) dx is defined similarly when f : (−∞, b]→ R is inte-

grable on every [t, b], provided the limit limt→−∞
∫ b
t
f(x) dx exists and is finite.

Finally, if both
∫ a
−∞ f(x) dx and

∫∞
a
f(x) dx are convergent, then we write

∫∞
−∞ f(x) dx =∫ a

−∞ f(x) dx+
∫∞
a
f(x) dx.

Exercise 10.2. Prove that in the last part of Definition 10.1, it does not matter what
value of a we choose: if the two improper integrals are convergent for some value of a,
then they are convergent for any other value of a, and their sum has the same value.

In the case when f ≥ 0, we can interpret an improper integral as an area, just as with
more familiar definite integrals.

Example 10.3. lim
t→∞

∫ t

1

1

x
dx = lim

t→∞

[
lnx
]t

1
= lim

t→∞
ln t = ∞, so the improper integral∫∞

1
1
x
dx is divergent.

Example 10.4.∫ 0

−∞
xex dx = lim

t→−∞

∫ 0

t

x︸︷︷︸
u

ex dx︸ ︷︷ ︸
dv

= lim
t→−∞

xex
∣∣∣0
t
−
∫ 0

t

ex dx = lim
t→−∞

[
xex − ex

]0

t

= lim
t→−∞

0e0 − e0 − tet + et = −1,

so the improper integral is convergent.
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Example 10.5. To evaluate
∫∞
−∞

1
1+x2

dx, we first compute∫ ∞
0

1

1 + x2
dx = lim

t→∞

∫ t

0

1

1 + x2
dx = lim

t→∞

[
tan−1 x

]t
0

= lim
t→∞

tan−1 t =
π

2
,

and a similar computation gives
∫ 0

−∞
1

1+x2
dx = π

2
, so∫ ∞

−∞

1

1 + x2
dx =

∫ 0

−∞

1

1 + x2
dx+

∫ ∞
0

1

1 + x2
dx =

π

2
+
π

2
= π.

Example 10.6. Suppose we fix a positive real number p > 0 and consider the improper
integral

∫∞
1

1
xp
dx. For which values of p is this integral convergent? Note that Example

10.3 showed that it is divergent when p = 1. For p 6= 1, we have

lim
t→∞

∫ t

1

1

xp
dx = lim

t→∞

[ x1−p

1− p
]t

1
= lim

t→∞
t1−p − 1

1− p =

{
∞ if p < 1,

1
p−1

if p > 1.

Thus
∫∞

1
1
xp
dx is convergent if p > 1, and divergent if p ≤ 1.

10.2. Infinite height

Another type of improper integral arises from vertical asymptotes. Recall that our

original definition of the definite integral
∫ b
a
f(x) dx required the function f to be bounded

on [a, b] (as well as some other requirements). If f has a vertical asymptote at one of

the endpoints, then we can define
∫ b
a
f(x) dx as an improper integral by using a limiting

procedure similar to the one in the previous section.

Definition 10.7. Let f : [a, b)→ R be continuous and suppose that

(1) limx→b− f(x) does not exist, and

(2) limt→b−
∫ t
a
f(x) dx exists and is finite.

Then we write
∫ b
a
f(x) dx := limt→b−

∫ t
a
f(x) dx for the corresponding improper integral

(of type 2), which we call convergent. If the limit does not exist, we say that the improper
integral is divergent.

Similarly, if f is continuous everywhere on [a, b] except for the left endpoint a, then

we write
∫ b
a
f(x) dx = limt→a−

∫ b
t
f(x) dx provided the limit exists.

Finally, if f is continuous everywhere on [a, b] except for some point c ∈ (a, b), then

we write
∫ b
a
f(x) dx =

∫ c
a
f(x) dx+

∫ b
c
f(x) dx provided both improper integrals converge.

Exercise 10.8. Prove that if f is continuous on all of [a, b], then all of the definitions

above agree with the usual definition of
∫ b
a
f(x) dx.

Example 10.9. f(x) = 1√
x−2

has a vertical asymptote at x = 2, so∫ 5

2

1√
x− 2

dx = lim
t→2+

∫ 5

t

dx√
x− 2

= lim
t→2+

[
2
√
x− 2

]5

t
= lim

t→2+
2
√

3− 2
√
t− 2 = 2

√
3,

and the improper integral converges.
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Example 10.10. secx has a vertical asymptote at x = π/2, so∫ π
2

0

secx dx = lim
t→π

2
−

∫ t

0

secx dx = lim
t→π

2
−

[
ln | secx+tanx|

]t
0

= lim
t→π

2
−

ln | sec t+tan t| =∞,

and the improper integral is divergent.

Example 10.11. To evaluate
∫ 3

0
dx
x−1

, observe that 1
x−1

has a vertical asymptote at

x = 1, so we need to independently evaluate
∫ 1

0
dx
x−1

and
∫ 3

1
dx
x−1

. The first of these is∫ 1

0

dx

x− 1
= lim

t→1−

∫ t

0

dx

x− 1
= lim

t→1−

[
ln |x− 1|

]t
0

= lim
t→1−

ln |t− 1| = −∞,

and thus
∫ 3

0
dx
x−1

is divergent.

Remark 10.12. The previous example shows the need for caution when applying the
FTC. It would be all too easy to unthinkingly push symbols around and write

∫ 3

0
dx
x−1

=

[ln |x − 1|]30 = ln 2, but this is wrong. Observe that the FTC does not apply here,
because it requires the function to be integrable (and in particular, bounded) on the
entire interval.

Example 10.13.∫ 1

0

lnx dx = lim
t→0+

[x lnx− x]1t = lim
t→0+

(−1− t ln t+ t) = −1,

where we use the fact that limt→0+ t ln t = 0. Thus the improper integral is convergent.

10.3. Comparison theorems

Sometimes determining whether or not an improper integral is convergent is signifi-
cantly easier than establishing its numerical value.

Theorem 10.14. Suppose f, g : [a,∞)→ R are continuous and satisfy f(x) ≥ g(x) ≥ 0
for all x ≥ a. Then the following are true.

(1) If
∫∞
a
f(x) dx is convergent, then

∫∞
a
g(x) dx is convergent.

(2) If
∫∞
a
g(x) dx is divergent, then

∫∞
a
f(x) dx is divergent.

Proof. We start by proving the first claim. Suppose that
∫∞
a
f(x) dx is convergent, and

let G(t) :=
∫ t
a
g(x) dx. For every t > a, we have

G(t) =

∫ t

a

g(x) dx ≤
∫ t

a

f(x) dx ≤
∫ ∞
a

f(x) dx,

where the first inequality uses g ≤ f and properties of integrals, and the second inequality
uses the fact that f ≥ 0. Thus the function G is bounded above. Moreover, for every
t1 ≤ t2 > a we have

G(t2) =

∫ t2

a

g(x) dx =

∫ t1

a

g(x) dx+

∫ t2

t1

g(x) dx = G(t1) +

∫ t2

t1

g(x) dx ≥ G(t1),

where the last inequality uses the fact that g ≥ 0. Thus G is a nondecreasing function.
By the monotone convergence theorem, limt→∞G(t) exists (and is equal to sup{G(t) :
t > a}). This means that

∫∞
a
g(x) dx is convergent.
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The second claim in the theorem is equivalent to the first one, so this proves the
theorem. �

Example 10.15. To determine convergence of
∫∞

0
e−x

2
dx, we observe that x2 ≥ x for

all x ≥ 1, and thus e−x
2 ≤ e−x for all x ≥ 1. Since

∫∞
1
e−x dx is convergent, Theorem

10.14 implies that
∫∞

1
e−x

2
dx is convergent as well. This in turn implies that

∫∞
0
e−x

2
dx

is convergent, because∫ ∞
0

e−x
2

dx = lim
t→∞

∫ t

0

e−x
2

dx = lim
t→∞

∫ 1

0

e−x
2

dx+

∫ t

1

e−x
2

dx

=

∫ 1

0

e−x
2

dx+ lim
t→∞

∫ t

1

e−x
2

dx =

∫ 1

0

e−x
2

dx+

∫ ∞
1

e−x
2

dx.

Remark 10.16. In fact, using more sophisticated techniques it is possible to show that∫∞
0
e−x

2
dx =

√
π/2, but this requires tools that we have not yet developed.

10.4. *Cauchy Principal Value integral

Let us return to the world of Example 10.11 for a moment.5 We declared the integral∫ 3

0
1

x−1
dx divergent because

∫ 1

0
1

x−1
dx = −∞. But someone looking at the picture might

argue that the negative part of the graph here should exactly cancel with the positive
part of the graph from x = 1 to x = 2, leaving us with a finite integral on the interval
[0, 3].

Consider the similar example
∫ 1

−1
1
x
dx; the graph is symmetric around the origin,

and so one may argue that the integral should be 0, despite the fact that
∫ 0

−1
1
x
dx

and
∫ 1

0
1
x
dx both diverge. One way of making this precise is to use something called

the Cauchy Principal Value integral, which says that if f : [a, b] → R is continuous
everywhere except for one point c ∈ (a, b), then we put

PV

∫ b

a

f(x) dx := lim
t→0+

(∫ c−t

a

f(x) dx+

∫ b

c+t

f(x) dx
)
.

The notation is meant to remind us that this stands for something different than the
usual integral.

Exercise 10.17. Show that if
∫ b
a
f(x) dx is convergent in the sense of Definition 10.7,

then PV

∫ b

a

f(x) dx =

∫ b

a

f(x) dx.

Observe that with this definition, we have

PV

∫ 1

−1

1

x
dx = lim

t→0+

(∫ −t
−1

1

x
dx+

∫ 1

t

1

x
dx
)

= lim
t→0+

0 = 0,

consistent with our earlier intuition. However, there is a problem, as the following two
examples illustrate.

5This section will not appear on any tests, and largely follows an explanation I read on the website
of Dave Rusin (University of Texas).
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Example 10.18.

PV

∫ 1

−1

2x+ 4

(x2 + 4x)3
dx = lim

t→0+

(∫ −t
−1

2x+ 4

(x2 + 4x)3
dx+

∫ 1

t

2x+ 4

(x2 + 4x)3
dx
)

= lim
t→0+

([
− (x2 + 4x)−2

]−t
−1

+
[
− (x2 + 4x)−2

]1

t

)
= lim

t→0+

(1

9
− 1

(t2 − 4t)2
+

1

(t2 + 4t)2
− 1

25

)
=

1

9
− 1

25
+ lim

t→0+

1

t2

( 1

(t+ 4)2
− 1

(t− 4)2

)
=

16

225
+ lim

t→0+

(t− 4)2 − (t+ 4)2

t2(t2 − 16)2
=

16

225
+ lim

t→0+

−16

t(t2 − 16)2
= −∞.

Example 10.19. Evaluating the same integral using the substitution u = x2 + 4x gives

PV

∫ 1

−1

2x+ 4

(x2 + 4x)3
dx = PV

∫ 5

−3

1

u3
du =

∫ 5

3

1

u3
du =

1

9
− 1

25
=

16

225
.

So we see that if we allow ourselves to evaluate integrals around a broader class of
vertical asymptotes using the Cauchy principal value integral, then we need to come to
terms with the fact that the substitution rule no longer works! One may reasonably
conclude (as we do in this course) that this is too high a price to pay, and thus we will
refrain from assigning finite values to any integrals that are divergent in the sense of
Definition 10.7.

Remark 10.20. A similar phenomenon occurs for improper integrals of the form
∫∞
−∞ f(x) dx.

If the integral is convergent, then we have∫ ∞
−∞

f(x) dx =

∫ 0

−∞
f(x) dx+

∫ ∞
0

f(x) dx = lim
t→∞

∫ 0

−t
f(x) dx+ lim

t→∞

∫ t

0

f(x) dx

= lim
t→∞

(∫ 0

−t
f(x) dx+

∫ t

0

f(x) dx

)
= lim

t→∞

∫ t

−t
f(x) dx.

In light of this, one might be tempted to define
∫∞
−∞ f(x) dx as limt→∞

∫ t
−t f(x) dx,

provided the latter limit exists. However, this turns out to be a bad idea. Imagine
that we adopt this definition. Then since f(x) = x has

∫ t
−t x dx = 1

2
x2|t−t = 0 for all t,

the limit exists and is equal to 0, so our new (bad!) definition would give
∫∞
−∞ x dx = 0.

But if we recall how integrals are supposed to behave, then we expect the following two
properties to be true:

(1) shifting the graph to the left or right does not change the integral;
(2) shifting the graph up or down does change the integral.

Observe that shifting the graph of f(x) = x one unit to the left has the same effect
as shifting it one unit up. So according to the first rule, this shift should not change
the value of the integral, but according to the second rule, it should change it! This
contradiction can only be avoided by declaring that

∫∞
−∞ x dx is undefined (divergent),

and indeed, using the true definition we observe that this improper integral is divergent
because

∫∞
0
x dx is divergent.
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Review of integration strategies

Stewart §7.5, Spivak Ch. 19

This review is not included in a numbered lecture, but will be/was done
during the hour preceding the first class test.

Now that we have learned several different tools for integration, it is worth reviewing
them and describing an overall strategy.

Step 1: Check list of basic examples

The following list of integrals should be committed to memory, so that once we see one
of these integrals appear, we know how to complete the solution. (To avoid cluttering
up the display, we omit the constants of integration.)∫

xn dx =
xn+1

n+ 1

∫
1

x
dx = ln |x|∫

ex dx = ex
∫
bx dx =

bx

ln b
, b > 0∫

sinx dx = − cosx

∫
cosx dx = sinx∫

sec2 x dx = tanx

∫
csc2 x dx = − cotx∫

secx tanx dx = secx

∫
cscx cotx dx = − cscx∫

secx dx = ln | secx+ tanx|
∫

cscx dx = − ln | cscx+ cotx|∫
tanx dx = ln | secx|

∫
cotx dx = ln | sinx|∫

sinhx dx = coshx

∫
coshx dx = sinhx∫

dx

x2 + a2
=

1

a
tan−1 x

a

∫
dx√
a2 − x2

= sin−1 x

a
, a > 0∫

dx

x2 − a2
=

1

2a
ln
∣∣∣x− a
x+ a

∣∣∣ ∫
dx√
x2 ± a2

= ln |x+
√
x2 ± a2|.

Remark 10.21. Some of these have alternate forms; for example Stewart’s book lists the
integral of csc x as ln | cscx− cotx|. A short computation using properties of logarithms
and the identity csc2 x− cot2 x = 1 shows that this agrees with the form here.

Step 2: Simplify if possible

If the integrand can be simplified using standard algebraic manipulations or trigono-
metric identities, this is the next thing to do.
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Example 10.22.∫
(sinx+ cosx)2 dx =

∫
(sin2 x+ 2 sinx cosx+ cos2 x) dx =

∫
(1 + sin 2x) dx.

Step 3: Make an obvious substitution, if there is one

If there is a clear choice for u such that du naturally appears in the integrand, then
it is worth trying this substitution.

Example 10.23.

∫
x

x2 − 1
dx has the derivative of the denominator in the numerator

(up to a constant), so u = x2 − 1 is natural and transforms the integral into
1

2

∫
1

u
du.

Step 4: Classify the integral as a type that we know how to deal with

There are four general classes of integrals that we have developed a procedure for
dealing with by now.

(1) Trigonometric integrals such as
∫

sin4 x cos3 x dx, which can be handled using
various substitutions and identities.

(2) Rational functions, which can be handled using partial fractions.
(3) Integrals of the form

∫
f(x)g(x) dx, where g(x) is something we can integrate

and f(x) gets simpler after differentiating; the most important case is when f is
a polynomial, but this also includes things like f(x) = lnx or f(x) = tan−1 x.
For integrals like this, integration by parts with u = f(x) and dv = g(x) dx is
likely to be useful.

(4) Integrals involving quadratic polynomials inside square roots, for which an ap-
propriate trigonometric substitution is often helpful.

Step 5: Get creative

Sometimes with a little more creativity we can find an algebraic manipulation or a
substitution that helps, even if one was not obvious upon initial inspection.

Example 10.24.∫
1

1− sinx
dx =

∫
1 + sin x

1− sin2 x
dx =

∫
1 + sin x

cos2 x
dx

=

∫
(sec2 x+ secx tanx) dx = tanx+ secx+ C.

Example 10.25. The substitution u =
√
x has x = u2, dx = 2u du, so∫

e
√
x dx =

∫
2ueu du,

which can be integrated by parts.

Similarly, some functions that do not immediately look like rational functions can be
transformed into rational functions via an appropriate substitution, and then integrated
using partial fractions.
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Example 10.26. Using the substitution u =
√
x+ 4, x = u2 − 4, dx = 2u du, we have∫ √

x+ 4

x
dx =

∫
u

u2 − 4
2u du = 2

∫
u2

u2 − 4
du = 2

∫
1 +

4

u2 − 4
du

= 2u+ 2

∫
1

u− 2
− 1

u+ 2
du = 2u+ 2 ln |u− 2| − 2 ln |u+ 2|+ C

= 2
√
x+ 4− ln

x+ 8− 4
√
x+ 4

x+ 8 + 4
√
x+ 4

+ C.

where we use the computation

(u± 2)2 = (
√
x+ 4± 2)2 = x+ 4± 4

√
x+ 4 + 4 = x+ 8± 4

√
x+ 4,

and have omitted the computations to determine the partial fraction decomposition.
Just to continue the fun, we point out that the last term on the first line can also be
integrated with the substitution u = 2 sec θ, so∫

4

u2 − 4
du =

∫
4

4 tan2 θ
2 sec θ tan θ dθ = 2

∫
sec θ

tan θ
dθ = 2

∫
csc θ dθ,

which is a known integral. Turning θ back into u, and then into x, gives the same result
as above.

Remark 10.27. It turns out that we can also integrate any rational function of trigono-
metric functions, such as f(x) = cos2 x−sin3 x

tanx+secx
, by using the Weierstrass substitution

t = tan x
2
, which (after some work) yields cosx = 1−t2

1+t2
, sinx = 2t

1+t2
, and dx = 2

1+t2
dt,

so that
∫
f(x) dx =

∫
g(t) dt for some rational function g.

By now it should be clear that the task of finding formulas for antiderivatives –
symbolic integration – is rather harder than the task of finding formulas for derivatives
– symbolic differentiation. The latter task is fairly routine thanks to various results
like the product rule, the chain rule, etc., which let us write down a formula for the
derivative of any function that is written in terms of polynomials, radicals, exponentials,
logarithms, and trigonometric functions. As we have seen, symbolic integration is an
entirely different matter, and it turns out that there are some integrals that cannot be
evaluated in terms of the ‘elementary’ functions we are used to dealing with; this include
relatively innocuous-looking expressions such as

∫
e−x

2
dx and

∫
1

lnx
dx.6

6To make this claim of impossibility rigorous, one needs to formulate clearly the class of functions
that we consider, and then provide a proof of impossibility; this is beyond the scope of this course.
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Part II. Applications of integration

Lecture 11 Arc length and the catenary

Stewart §8.1, Spivak exercise 13.25

11.1. A formula for arc length

We know how to compute the length of a straight line segment: it is simply the
distance between the two endpoints (x1, y1) and (x2, y2) given by Pythagoras’ formula

distance =
√

(x2 − x1)2 + (y2 − y1)2.

If we consider a “piecewise linear” curve that is a sequence of straight line segments
connecting the points P0, P1, . . . , Pn, then we can similarly compute the total length of
the curve as

∑n
i=1 distance(Pi−1, Pi).

Given a more general curve in the plane, it is reasonable to approximate it by a
piecewise linear curve, compute the length of the approximation, and then take a limit
as the endpoints of the approximating line segments get closer and closer together. To
make this more precise, suppose we consider the graph of y = f(x) between x = a and
x = b. Then we might fix a large integer n ∈ N; choose points in the interval [a, b] by
xi = a + i∆x for 0 ≤ i ≤ n, where ∆x = b−a

n
; denote the point (xi, f(xi)) by Pi; and

then declare the length of the curve to be

(11.1) length = lim
n→∞

n∑
i=1

distance(Pi−1, Pi).

This looks suspiciously similar to a limit of Riemann sums. Using Pythagoras’ formula
we get

(11.2) distance(Pi−1, Pi) =
√

(xi − xi−1)2 + (f(xi)− f(xi−1))2.

If f is continuous on [a, b] and differentiable on (a, b), then the Mean Value Theorem
says that for each 1 ≤ i ≤ n there is x∗i ∈ [xi−1, xi] such that

f(xi)− f(xi−1) = f ′(x∗i )(xi − xi−1).

Using this in (11.2) and recalling that xi − xi−1 = ∆x, we get

distance(Pi−1, Pi) =
√

(∆x)2 + f ′(x∗i )
2(∆x)2 =

√
1 + f ′(x∗i )

2 ·∆x.
Taking a sum over i from 1 to n, and then a limit as n→∞, we see that

lim
n→∞

n∑
i=1

distance(Pi−1, Pi) = lim
n→∞

n∑
i=1

√
1 + f ′(x∗i )

2 ·∆x =

∫ b

a

√
1 + (f ′(x))2 dx
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provided f ′ is continuous on (a, b). Thus we make the following definition: if f is
continuously differentiable,7 the arc length L of the curve y = f(x) from x = a to x = b
is

(11.3) L = length =

∫ b

a

√
1 + (f ′(x))2 dx.

It is also often useful to define the following arc length function: given a continuously
differentiable function f : [a, b]→ R and a value x ∈ (a, b), the arc length of the section
of curve from (a, f(a)) to (x, f(x)) is given by

(11.4) s(x) =

∫ x

a

√
1 + (f ′(t))2 dt.

By the FTC, we have

(11.5) s′(x) =
√

1 + (f ′(x))2.

Writing y = f(x) and using Leibniz notation f ′(x) = dy
dx

, we can write (11.3) as

L =

∫ b

a

√
1 +

(dy
dx

)2

dx,

and (11.5) can be rewritten as

(11.6)
ds

dx
=

√
1 +

(dy
dx

)2

.

In an abuse of notation (since s, dx, and dy have no independent meaning), this is
sometimes written as

(ds)2 = (dx)2 + (dy)2,

which is an infinitesimal version of Pythagoras’ formula (11.2).

11.2. Examples of arc length

Example 11.1. To find the arc length L of the parabola y = x2 from (0, 0) to (1, 1),
we use (11.3) with a = 0, b = 1, f ′(x) = 2x to write

L =

∫ 1

0

√
1 + (2x)2 dx

(
u = 2x, dx =

1

2
du
)

=
1

2

∫ 2

0

√
1 + u2 du

(
u = tan θ, du = sec2 θ dθ

)
=

1

2

∫ α

0

sec3 θ dθ (tanα = 2, sec2 α = 1 + tan2 α = 5).

Thus

2L =

∫ α

0

(sec θ)︸ ︷︷ ︸
u

(sec2 θ) dθ︸ ︷︷ ︸
dv

= [sec θ︸︷︷︸
u

tan θ︸︷︷︸
v

]α0 −
∫ α

0

sec θ tan2 θ dθ

= secα tanα− sec 0 tan 0−
∫ α

0

sec θ(sec2 θ − 1) dθ

7This means that f is differentiable and that f ′ is continuous.
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= 2
√

5−
∫ α

0

sec3 θ dθ +

∫ α

0

sec θ dθ = 2
√

5− 2L+
[

ln | sec θ + tan θ|
]α

0
,

and solving for L gives

L =
1

4

(
2
√

5 + ln | secα + tanα| −
=ln |1+0|=0︷ ︸︸ ︷

ln | sec 0 + tan 0|
)

=

√
5

2
+

ln(
√

5 + 2)

4
.

We get a similar formula for arc length if x is written as a function of y; if x = g(y)

and the curve runs from y = a to y = b, then the arc length is
∫ b
a

√
1 + (g′(y))2 dy.

Example 11.2. Consider the curve x2 = y3 running from (1, 1) to (8, 4). If we write y
as a function of x, then we get y = x2/3 and the formula for arc length gives

L =

∫ 8

1

√
1 +

(2

3
x−1/3

)2

dx =

∫ 8

1

√
1 +

4

9
x−2/3 dx.

It is not at all clear how to evaluate this. On the other hand, if we write x as a function
of y then we have x = y3/2 (note that the curve is in the first quadrant so x > 0) and
the arc length is

L =

∫ 4

1

√
1 +

(3

2
y1/2

)2

dy =

∫ 4

1

√
1 +

9

4
y dy (u = 1 + 9

4
y, du = 9

4
dy)

=
4

9

∫ 10

13/4

√
u du =

4

9

[2

3
u3/2

]10

13/4
=

8

27

(
103/2 −

(13

4

)3/2)
=

1

27
(80
√

10− 13
√

13).

As is already apparent from the previous examples, the presence of the square root in
the arc length formula often leads to a nasty integral.

Example 11.3. Consider the hyperbola x2 − y2 = 1. Let L denote the arc length from
(1, 0) to (2,

√
3). Writing y =

√
x2 − 1 gives dy

dx
= x√

x2−1
, so

L =

∫ 2

1

√
1 +

x2

x2 − 1
dx =

∫ 2

1

√
2x2 − 1

x2 − 1
dx.

The presence of a quadratic inside a square root suggests a trigonometric substitution;
but there are two quadratics in play here! Writing x = sec θ gives

√
x2 − 1 = tan θ and

dx = sec θ tan θ, so∫ √
2x2 − 1

x2 − 1
dx =

∫ √
2 sec2 θ − 1

tan θ
· sec θ tan θ dθ,

and it is not at all clear where to go from here, since none of the usual trigonometric
identities help us simplify

√
2 sec2 θ − 1. In fact it turns out that this integral cannot be

evaluated in elementary terms using the functions that we have introduced so far, and
so we cannot compute L exactly. Given this, our best bet would be to turn to numerical
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integration and use something like Simpson’s rule to obtain an approximate value for
the integral.

In fact, there is one more point to be made here. Note that the integrand
√

2x2−1
x2−1

has a vertical asymptote at x = 1, which was one of the limits of integration. Thus this
is actually an improper integral! Since our discussion of numerical integration did not
include any tools for dealing with improper integrals (and we would need to start by
using a comparison theorem to check that this improper integral actually converges), we

are better off writing x =
√
y2 + 1 and working with the integral

L =

∫ √3

0

√
1 +

(dx
dy

)2

dy =

∫ √3

0

√
1 +

y2

y2 + 1
dy.

We still cannot evaluate this explicitly, but at least the integrand here is a bounded
continuous function, and so we do not need to resort to improper integrals.

The appearance of the improper integral in the first expression comes because the
curve has a vertical tangent line at (1, 0), so the slope dy

dx
that appears in the arc length

formula is infinite at this point. This is a phenomenon you should watch out for when
computing arc lengths.

11.3. *The catenary

Consider a cable that is suspended at its endpoints and hangs freely in between them,
such as a power line or telephone wire between two poles. What shape will it make?

Assume that the cable is relatively thin, so that it can be well-approximated by a
curve y = f(x), and that it is flexible, so that the tension at any point in the cable is
in a direction tangent to the curve. Choose some point on the curve as the origin for x,
and consider the part of the cable that lies between 0 and x. As shown in the picture,
there are three forces acting on this segment of cable: tension pulling it to the left at
the point (0, f(0)) (labeled ~T0), tension pulling it to the right at the point (x, f(x))

(labeled ~Tx), and gravity pulling it downward. Let T0 and Tx denote the magnitude of
the tension forces; then since the tension at x points in the direction of the tangent line,
which has slope tan θ = f ′(x), we see that the horizontal and vertical components of ~T0

are as shown in the picture at right.

tension ~T0

tension ~Tx

gravity

(0, f(0))
(x, f(x))

Tx cos θ

Tx sin θ
Tx

θ

Because the cable is not moving, the forces must all balance out, so T0 = Tx cos θ,
and Tx sin θ equals the magnitude of the force due to gravity. This force is m(x)g, where
g is the gravitational constant and m(x) is the mass of the segment of cable between
0 and x. Assume that the cable has uniform density ρ (mass per unit length), so that
m(x) = ρs(x), where s(x) is the length of the section of cable from 0 to x. Then we
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have
Tx cos θ = T0 and Tx sin θ = m(x)g = ρgs(x).

Dividing these two equations gives

(11.7) f ′(x) = tan θ =
Tx sin θ

Tx cos θ
=
ρg

T0

s(x).

Our goal is to find a formula for the function f that allows us to write y as a function
of x via y = f(x). We will do this by first writing both x and y as functions of arc length
s and as functions of a new variable t; this procedure of obtaining parametrizations for
the curve is one that we will later return to and study in greater detail.

Using (11.6) and writing a = T0
ρg
> 0 for a parameter that depends on the physical

characteristics of the situation, we see that the function x 7→ s(x) satisfies

(11.8)
ds

dx
=

√
1 +

(dy
dx

)2

=

√
1 +

(s
a

)2

=

√
a2 + s2

a
,

where the second equality uses the fact that dy
dx

= f ′(x) = s(x)
a

. Since the derivative of
the inverse function s 7→ x(s) is the reciprocal of the derivative s′(x), we conclude that

dx

ds
=

a√
a2 + s2

⇒ x(s) =

∫
a√

a2 + s2
ds.

To evaluate this integral, we could use the trigonometric substitution s = a tan θ and
the identity 1 + tan2 θ = sec2 θ, but it turns out to be simpler to use the substitution
s = a sinh t and the identity 1 + sinh2 t = cosh2 t:

x(s) =

∫
a√

a2 + a2 sinh2 t
· a cosh t dt =

∫
a dt = at+ C.

Note that when s = 0 we have x = 0 and t = sinh−1 s
a

= 0, so the constant of integration
is C = 0, and we have t = x/a.

To determine y(s) we first use the chain rule to write

dy

ds
=
dy

dx

dx

ds
=
s

a
· a√

a2 + s2
⇒ y(s) =

∫
s√

a2 + s2
ds =

√
a2 + s2 + b,

where b is a constant of integration. Since
√
a2 + s2 =

√
a2 + a2 sinh2 t = a cosh t, we

conclude that

y = f(x) =
√
a2 + s2 + b = a cosh(t) + b = a cosh

(x
a

)
+ b.

Thus the curve formed by a hanging cable – called a catenary – is described by the
hyperbolic cosine function. Note that here a, b are parameters determined by the physical
characteristics of the situation, including the strength of gravity, the density of the cable,
and the location of the two points at which it is suspended.

Lecture 12 Surface area

Stewart §8.2, Spivak appendix to Ch. 19
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12.1. Surfaces of revolution

Suppose we are given a function f : [a, b]→ R whose graph describes a curve {(x, f(x)) :
a ≤ x ≤ b}. The surface of revolution associated to this curve is the surface S ⊂ R3

that is obtained by rotating the curve around the x-axis. Observe that if (x, y, z) is a
point on S, then the distance from (x, y, z) to (x, 0, 0) must be equal to f(x), and thus
a precise description of S can be given by

S = {(x, y, z) :
√
y2 + z2 = f(x)},

though we will not use this in what follows. Our goal in this section is to find a formula
for the surface area of S.

As usual, the simplest case occurs when f is linear; f(x) = mx+c. If m = 0 so that f
is constant, then the corresponding surface of revolution is a cylinder with radius c and
depth b − a; this cylinder can be unrolled into a rectangle with the same surface area,
whose dimensions are (b− a)× 2πc, so the surface area of S is given by 2πc(b− a). We
will find it convenient to write this as 2πr`, where r = c is the radius, and ` = b− a is
the distance between (a, f(a)) and (b, f(b)) (since f(a) = f(b)).

If m 6= 0, then S is a truncated cone. To compute the surface area of S, write
r1 = f(a) and r2 = f(b) for the radii of the circles that form the ends of the truncated
cone. For concreteness, assume that m > 0 so that r1 < r2 (the case m < 0 is similar).
Let P1 = (a, f(a)) and P2 = (b, f(b)) be the two endpoints of the line segment, and let `
be the distance between them. Let O be the point where the line y = mx+ c intersects
the x-axis, and let `1 be the distance from O to P1, as shown in the picture at left.

`1

`

O

P1

P2

r1

r2

S

L
R

L

L

θ

To find the surface area of S, we need to find the formula for the surface area of a
cone. Consider the cone shown in the second picture, where the base has radius R and
the diagonal side has length L. If we cut this cone along a line from the base to the tip
and then unroll it, we obtain a shape such as the one shown in the third picture, which
has the same area as the cone. The arc that forms the outer boundary has length θL
by the formula for length of a circular arc; it also has length 2πR since this boundary
is obtained by unrolling the circle at the cone’s base. Thus we have θL = 2πR, and
moreover, the area of this region is given by

area =
θ

2π
· πL2 =

1

2
θL2 =

1

2
· 2πR

L
· L2 = πRL.

Returning to the surface area of S, observe that S is obtained by taking a cone with
L = `+ `1 and R = r2, and then removing from it a cone with L = `1 and R = r1. Thus
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the surface area of S is

area(S) = πr2(`+ `1)− πr1`1 = π
(
`1(r2 − r1) + `r2

)
.

Observe that `1
r1

= `1+`
r2

, so `1r2 = r1`1 + r1`, and thus `1(r2 − r1) = `r1, which gives

area(S) = π(`r1 + `r2) = π(r1 + r2)`.

Note that this agrees with the formula from above for the surface area of a cylinder
when f is constant, since in this case we have r1 = r2 = r. In order to write everything
directly in terms of the function f , we observe that

r1 + r2 = f(a) + f(b) = 2f(x∗), where x∗ =
a+ b

2
,

since f(x) = mx+ c is linear, and moreover

` =
√

(b− a)2 + (f(b)− f(a))2 =
√

(b− a)2 + (m(b− a))2 = (b− a)
√

1 +m2.

Thus we have proved the following.

Proposition 12.1. If f : [a, b] → [0,∞) is linear (in other words, its graph is a line
segment), then the surface area of the corresponding surface of revolution is

area = 2πf(x∗)
√

1 + (f ′(x∗))2 · (b− a),

where x∗ = a+b
2

is the midpoint of [a, b].

In light of Proposition 12.1, it is reasonable to define the surface area of a surface of
revolution S for an arbitrary continuously differentiable function f : [a, b] → [0,∞) by
approximating the graph of f using a piecewise linear curve with n pieces, whose corre-
sponding surface of revolution has an area that can be computed using the proposition,
and then taking a limit as n→∞. Thus we define the surface area of S to be

(12.1) area(S) = lim
n→∞

n∑
i=1

2πf(x∗i )
√

1 + f ′(x∗i )
2∆x =

∫ b

a

2πf(x)
√

1 + f ′(x)2 dx,

where ∆x = b−a
n

, xi = a+ i∆x, and x∗i = 1
2
(xi−1 + xi).

Using Leibniz notation, (12.1) can be written as
∫ b
a

2πy
√

1 + ( dy
dx

)2 dx, or even more

compactly as
∫ b
a

2πy ds, where ds is shorthand for
√

1 + ( dy
dx

)2 dx, which is integrated to

get arc length; this is a useful way to remember the formula for surface area.

Remark 12.2. The astute reader may notice that in Proposition 12.1, f(x∗) and f ′(x∗)
referred to the linear function f , while in (12.1) f(x∗i ) and f ′(x∗i ) refer to the original
(nonlinear) function f , rather than to its linear approximation. One can proceed as in
the argument for arc length and use the MVT to produce x∗i for which f ′(x∗i ) takes the
value we expect, but even after doing this f(x∗i ) need not be exactly equal to 1

2
(f(xi−1)+

f(xi)). Thus to give a complete proof, one can use continuity of f to estimate the
difference between these two quantities, and then prove that this difference goes to 0 as
n → ∞. We omit the details, but suggest this as a worthwhile exercise for the reader
who wishes to see everything completely justified.
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12.2. Examples of surface area

Example 12.3. Consider the surface of revolution obtained by rotating the curve y =√
2− x for 0 ≤ x ≤ 1 around the x-axis. Then dy

dx
= − 1

2
√

2−x , so the surface area is

S =

∫ 1

0

2πy

√
1 +

(dy
dx

)2

dx =

∫ 1

0

2π
√

2− x ·
√

1 +
1

4(2− x)
dx

= 2π

∫ 1

0

√
2− x ·

√
9− 4x

4(2− x)
dx = π

∫ 1

0

√
9− 4x dx.

Making the substitution u = 9− 4x, du = −4 dx gives

S = −π
4

∫ 5

9

√
u du =

π

4

∫ 9

5

√
u du =

π

4

[2

3
u3/2

]9

5
=
π

6

(
93/2 − 53/2

)
.

Because the function x 7→ y =
√

2− x is 1-1 on [0, 1], we could also study this surface
treating x as a function of y: solving for x gives x = 2−y2, and y ranges over the interval
[1,
√

2]. To make this change of variables in the integral, we replace dx with dx
dy
dy (here

we are using the substitution rule) and write

S =

∫ √2

1

2πy

√
1 +

(dy
dx

)2

· dx
dy

dy =

∫ √2

1

2πy

√(dx
dy

)2

+
(dy
dx
· dx
dy

)2

dy.

By the rule for derivatives of inverse functions, we have dy
dx
· dx
dy

= 1, and so this formula

can be rewritten as

(12.2) S =

∫ √2

1

2πy

√
1 +

(dx
dy

)2

dy

Recall from our discussion of arc length that the symbol ds can be interpreted either

as
√

1 + ( dy
dx

)2 dx or as
√

1 + (dx
dy

)2 ds; then the mnemonic formula
∫

2πy ds for surface

area can reasonably be interpreted as standing for either

(12.3)

∫ b

a

2πy

√
1 +

(dy
dx

)2

dx or

∫ d

c

2πy

√
1 +

(dx
dy

)2

dy,

where [a, b] is the integral over which x ranges and [c, d] is the integral over which y
ranges.

Remark 12.4. Be careful to note that in both versions of the surface area formula (12.3),
the first part of the integrand is 2πy, regardless of whether we are integrating with
respect to x or y. This part of the integrand represents the fact that the surface is
constructed by rotation around the x-axis, so that y represents the distance from the
axis and 2πy represents the circumference of the circle obtained by cutting a cross-section
of the surface at a given value of x. The part of the integral that depends on which
variable we integrate with respect to is the derivative appearing inside the square root.



48

Returning to Example 12.3, we see that the surface area can also be computed using
(12.2) and the formula dx

dy
= −2y:

S =

∫ √2

1

2πy
√

1 + (−2y)2 dy = 2π

∫ √2

1

y
√

1 + 4y2 dy (u = 1 + 4y2, du = 8y dy)

= 2π

∫ 9

5

1

8

√
u du =

π

4

∫ 9

5

√
u du,

which is exactly the same integral we obtained the first time around (after making the
substitution u = 9− 4x).

Remark 12.5. One can also consider surfaces of revolution around the y-axis, and in this
case the roles of x and y are reversed, so the general formula is

∫
2πx ds.

Example 12.6. To find the surface area of a sphere of radius R, we can treat it as the
surface of revolution around the y-axis of the curve x =

√
R2 − y2 for −R ≤ y ≤ R,

which has dx
dy

= −y/
√
R2 − y2, and we get

S =

∫ R

−R
2πx

√
1 +

(dx
dy

)2

dy = 2π

∫ R

−R

√
R2 − y2 ·

√
1 +

y2

R2 − y2
dy

= 2π

∫ R

−R

√
R2 − y2 ·

√
R2

R2 − y2
dy = 2π

∫ R

−R
Rdy = 2π

[
Ry
]R
−R

= 2πR(2R) = 4πR2.

Example 12.7. Consider the curve {(x, 1
x
) : x ∈ [1,∞)}, which has infinite length. The

corresponding surface of revolution is called Gabriel’s horn. Its surface area is given by
the improper integral

(12.4) S =

∫ ∞
1

2π · 1

x

√
1 +

(
− 1

x2

)2

dx =

∫ ∞
1

2π

x

√
1 +

1

x4
dx.

Observe that for every x ≥ 1, we have

2π

x

√
1 +

1

x4
≥ 2π

x
≥ 1

x
,

and that we showed earlier that the improper integral
∫∞

1
1
x
dx is divergent. By the

Comparison Theorem, the integral in (12.4) is divergent, which we interpret as meaning
that Gabriel’s horn has infinite surface area.

On the other hand, the volume of the region enclosed by Gabriel’s horn is given by

V =

∫ ∞
1

πy2 dx =

∫ ∞
1

π

x2
dx = lim

t→∞

[−π
x

]t
1

= π,

so this improper integral is convergent and the volume is finite.8 This is a somewhat
counter-intuitive state of affairs; can you explain it?

8You may also observe that if P ⊂ R3 is a plane containing the x-axis, then the corresponding
cross-section of the enclosed region (its intersection with P ) has infinite area, while this area is finite
for any plane not containing the x-axis.
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Lecture 13 Physical applications

Stewart §8.3

13.1. *Hydrostatic force and pressure

Here is an application from engineering. Suppose we have a dam that is holding
back water, and we want to compute the total force that the water exerts on the dam;
this is the hydrostatic force. The force per unit area at a given point is the hydrostatic
pressure, and varies from point to point; near the surface of the water the pressure is
relatively small, while deep down it is greater. Thus the force is obtained by integrating
the pressure.

Imagine a small cube of water at depth d. If the water is motionless (we are at
equilibrium) then all 6 faces of the cube experience the same force from the surrounding
water; if it were not so, then the cube would move or deform. The top face experiences
a downward force due to the column of water above it, which has mass ρAd, where ρ is
the density of the fluid and A is the surface area of the top face of the cube. Thus the
total force on the top face is gρAd, where g is the gravitational constant, and thus the
pressure in any given direction is force/area = gρd.

Example 13.1. Suppose that we consider a dam shaped like a trapezoid whose bottom
and top edges are horizontal, with lengths 10 m and 18 m, respectively; suppose the
total height of the dam is 16 m; and suppose that the water is 3/4 of the way to the top
of the dam, so it is 12 m deep.

Let w(x) denote the width of the dam at a depth x below the surface of the water.
Then if we divide the interval [0, 12] into n pieces [xi−1, xi] of equal length ∆x = 12/n,
the strip of the dam between depths xi−1 and xi is roughly a rectangle with width
w(xi) and height ∆x, so its area is w(xi)∆x and it experiences a hydrostatic force of
pressure× area = ρgx · w(xi)∆x. Summing up over all n strips and taking a limit as
n→∞ gives a total force of

(13.1) F = lim
n→∞

n∑
i=1

ρgxw(xi)∆x =

∫ 12

0

ρgxw(x) dx.

In this case we see that w(x) = ax + b for some a, b ∈ R, which can be determined by
using the fact that w(12) = 10 (at the deepest point) and w(−4) = 18 (at the top of the
dam), so we have

12a+ b = 10 and − 4a+ b = 18.

Subtracting the two equations gives 16a = −8, so a = −1/2, and thus b = 18 + 4a =
18− 2 = 16, which gives w(x) = 16− x/2, and the total hydrostatic force on the dam is

F =

∫ 12

0

ρg
(

16x− x2

2

)
dx = ρg

[
8x2 − x3

6

]12

0
= ρg

(
8 · (12)2 − (12)3

6

)
= ρg · 144 ·

(
8− 12

6

)
= ρg · 144 · 6 = 864ρg.
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Note that the number 864 represents
∫ 12

0
xw(x) dx and thus has units m3. Using the

values g = 9.8 m/s2 and ρ = 1000 kg/m3, we get

F ≈ 8.47× 106 N,

where the units of force are Newtons, 1 N = 1 kg m/s2.

Example 13.2. An undersea laboratory is built on the ocean floor where the water is
100 m deep. The end of the lab has the shape of a sine function, with width 10 m and
height 5 m. How much hydrostatic force does the end of the lab experience?

Let y be the height above the ocean floor; then the depth of the water at any given
point is 100− y, and the same arguments that lead to (13.1) show that the total force is

F =

∫ 5

0

ρg(100− y)w(y) dy,

where w(y) is the width of the lab at height y. Taking the x-axis to be centred at the
centre of the lab, the height of the lab at position x is given by y(x) = 5 cos(πx

10
) (draw

the graph of this function and observe that it has the height and width specified), and so
if y is given, we have x = ±10

π
cos−1(y

5
). The distance between these two x-coordinates

is 20
π

cos−1(y
5
), and this is our value for w(y). Thus the total force is

F =

∫ 5

0

20

π
ρg(100− y) cos−1

(y
5

)
dy (z = y

5
, dy = 5 dz)

=
100

π
ρg

∫ 1

0

(100− 5z) cos−1(z) dz,

and we can integrate this using parts with u = cos−1 z, dv = (20− z) dz to get

F =
500

π
ρg

∫ 1

0

cos−1(z)︸ ︷︷ ︸
u

(20− z) dz︸ ︷︷ ︸
dv

=
500

π
ρg
[

cos−1(z)(20z − 1
2
z2)
]1

0
− 500

π
ρg

∫ 1

0

20z − 1
2
z2

−
√

1− z2
dz.

Observe that cos−1(1) = 0, so the first term vanishes at both z = 0 and z = 1, giving

F =
500

π
ρg

∫ 1

0

20z − 1
2
z2

√
1− z2

dz.

To evaluate the first part of the integral we observe that∫ 1

0

z√
1− z2

dz =
[
−
√

1− z2
]1

0
= 0− (−1) = 1.

For the second part, we put z = sin θ, dz = cos θ dθ,
√

1− z2 = cos θ, and get∫ 1

0

z2

√
1− z2

dz =

∫ π/2

0

sin2 θ

cos θ
cos θ dθ =

∫ π/2

0

sin2 θ dθ

=

∫ π/2

0

1− cos 2θ

2
dθ =

π

4
−
[1

4
sin 2θ

]π/2
0

=
π

4
.
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Putting it all together gives

F =
500

π
ρg
(

20 · 1− 1

2
· π

4

)
= ρg

(1000

π
− 125

2

)
≈ 3.07× 108 N.

13.2. Center of mass

Suppose we have a rigid plank supported on a fulcrum, with two masses m1 and m2

placed on opposite sides of the fulcrum, at distances r1 and r2, as shown in the picture.
For simplicity, assume that the plank is massless.

r1 r2
m1 m2

We want to determine conditions on m1,m2, r1, r2 such that the system balances; that
is, if the masses are initially at rest, then they remain at rest.9 Use a coordinate system
in which the initial height of the masses is 0; then their initial potential energy is 0,
and so is their initial kinetic energy. Let θ(t) be the angle made by the plank with the
horizontal at time t, and let v1(t), v2(t) be the velocities of the two masses at time t.
Then the total energy at time t is

E(t) =
1

2
m1v

2
1 +

1

2
m2v

2
2︸ ︷︷ ︸

kinetic energy

+m1g(−r1 sin θ) +m2g(r2 sin θ)︸ ︷︷ ︸
(gravitational) potential energy

By conservation of energy, we must have E(t) = 0 for all t. Observe that if m1r1 = m2r2,
then the potential energy is 0 no matter what θ is. Thus the kinetic energy must also
be 0, which means that m1v

2
1 +m2v

2
2 = 0, but this is only possible if v1 = v2 = 0 for all

t. Thus we have proven the following.

Proposition 13.3 (Law of the lever). If m1r1 = m2r2 in the situation above, then the
system is balanced and remains in equilibrium, motionless.

Exercise 13.4. Prove that if m1r1 > m2r2, then the plank will rotate counterclockwise –
m1 will sink and m2 will rise – and vice versa if m1r1 < m2r2.

Now suppose we have a finite set of masses m1,m2, . . . ,mn at locations x1, x2, . . . , xn
along the plank, and that the fulcrum is located at position x̄. Note that these values
can be either positive or negative, since we are not specifying which side of the fulcrum
each mass lies on, and we do not require the fulcrum to lie at 0. In particular, the
location of the mass mi relative to the fulcrum is given not by xi, but by xi − x̄, with a
negative value indicating that the mass is to the left of the fulcrum, and a positive value
indicating that it is to the right.

Repeating the same reasoning as before, we see that the system will be in equilibrium
if and only if the values of mi, xi, x̄ have the property that the change in potential energy
is 0 no matter what value θ takes. If the plank is at angle θ, then mass mi is at height
(xi − x̄) sin θ, and thus the total change in potential energy is

n∑
i=1

mi(xi − x̄) sin θ.

9I learned the argument given here from a short write-up by Peter McLoughlin.



52

We need this to vanish for all θ; equivalently, we require that

0 =
n∑
i=1

mi(xi − x̄) =
( n∑
i=1

mixi

)
−
( n∑
i=1

mi

)
x̄.

Thus we have proved the following.

Proposition 13.5. The plank with masses m1, . . . ,mn placed at positions x1, . . . , xn is
in equilibrium if and only if the fulcrum is placed at position

(13.2) x̄ =

∑n
i=1 mixi∑n
i=1mi

.

The point x̄ where the fulcrum must be placed to ensure equilibrium is called the
center of mass of the system; it is also called the center of gravity or the centroid. The
numerator in (13.2) is called the moment10 of the system about the origin, and represents
the tendency that the system would have to rotate clockwise (if the moment is positive)
or counterclockwise (if the moment is negative) if we were to place the fulcrum at the
origin. The denominator in (13.2) is of course the total mass of the system.

Lecture 14 Two- and three-dimensional objects

Stewart §8.3

14.1. Center of mass in two dimensions

Now suppose we have a system of masses m1, . . . ,mn located in the plane R2, at
positions (x1, y1), . . . , (xn, yn). We would like to find the point (x̄, ȳ) with the property
that if our masses are placed on a flat (massless) surface, which is then placed on a
fulcrum located at (x̄, ȳ), then the system would balance in equilibrium. This point
(x̄, ȳ) will again be called the center of mass, or centroid, of the system.

First imagine that we support the surface not on a fulcrum placed at a single point, but
on a rod that is oriented parallel to the y-axis, so that rotation is only possible around
this axis. Then the y-coordinates of the masses are irrelevant, and all that matters is
their x-coordinates. As in the previous section, we see that

(14.1) x̄ =
My

m
where My =

n∑
i=1

mixi and m =
n∑
i=1

mi.

We call My the moment around the y-axis. A similar argument reveals that

(14.2) ȳ =
Mx

m
where Mx =

n∑
i=1

miyi and m =
n∑
i=1

mi,

where Mx is the moment around the x-axis.

10If we multiply the moment by the gravitational constant g, we get the moment of force, or torque.
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Example 14.1. Suppose we place three small objects with masses 1, 2, and 4 at positions
(0, 1), (1, 1), and (2, 3), respectively. Then the two moments are

My = 1 · 0 + 2 · 1 + 4 · 2 = 10 and Mx = 1 · 1 + 2 · 1 + 4 · 3 = 15.

Since m = 1 + 2 + 4 = 7, we see that the center of mass is at (10
7
, 15

7
).

Remark 14.2. If we have a set of masses with moments My and Mx, then (14.1) and
(14.2) can be rewritten as

My = mx̄ and Mx = mȳ;

the moments of the entire set of masses are the same as the moments of a single point
mass located at the centroid (x̄, ȳ) with mass m. In other words, the moments are
unchanged if we move all of the masses to the centroid.

Remark 14.3. Observe that if we have two sets S1 and S2 of masses, and compute their
moments My(S1) and My(S2) independently, then the moment of the overall system
comprising all the masses is given by My(S1 ∪ S2) = My(S1) +My(S2). A similar result
holds for the the moments around the x-axis.

14.2. Continuous objects

Now we consider the continuous case – a plate with uniform density ρ. Let R ⊂ R2 be
the region describing the shape of the plate, and let C(R) ∈ R2 denote the centroid of
R; that is, the point at which a fulcrum must be placed in order for the plate to balance.
As before, we have C(R) = (My(R)/m,Mx(R)/m), where m is the total mass of the
plate and My(R), Mx(R) are the moments of R around the y- and x-axes, respectively.
The difference is that this time we do not have a formula for My and Mx; we must derive
one. To do this, we assume that the centroid and moments obey the following principles.

(1) Symmetry: If R is symmetric around a line `, then C(R) lies on `.
(2) Replacement: If all of the mass of R is moved to a single point located at C(R),

then the moments My and Mx are unchanged.
(3) Additivity: If R1 and R2 are disjoint regions, then My(R1 ∪ R2) = My(R1) +

My(R2), and similarly for Mx.

Observe that the second and third principles are analogues of Remarks 14.2 and 14.3,
respectively.

For simplicity we first assume that the plate is described by the set

R = {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ f(x)} =
⋃

x∈[a,b]

{x} × [0, f(x)] ⊂ R2

for some function f : [a, b]→ [0,∞). As usual we approximate R by taking n ∈ N large,
dividing [a, b] into n intervals of length ∆x = (b−a)/n with endpoints xi = a+ i∆x, and
considering the union of rectangles Ri := [xi−1, xi] × [0, f(x̄i)], where x̄i = 1

2
(xi−1, xi).

As long as f is continuous, it is reasonable to expect that

(14.3) My(R) = lim
n→∞

My

( n⋃
i=1

Ri

)
and Mx(R) = lim

n→∞
Mx

( n⋃
i=1

Ri

)
.
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By the third principle above (additivity), we have

(14.4) My

( n⋃
i=1

Ri

)
=

n∑
i=1

My(Ri) and Mx

( n⋃
i=1

Ri

)
=

n∑
i=1

Mx(Ri).

The centroid of Ri lies at (x̄i,
1
2
f(x̄i)) by the first principle above (symmetry), and the

mass of Ri is ρf(x̄i)∆x. Thus the second principle above (replacement) gives

(14.5) My(Ri) = ρx̄if(x̄i)∆x and Mx(Ri) = ρ · 1

2
f(x̄i)

2∆x.

Combining (14.3)–(14.5) gives

My(R) = lim
n→∞

n∑
i=1

ρx̄if(x̄i)∆x = ρ

∫ b

a

xf(x) dx,

Mx(R) = lim
n→∞

n∑
i=1

ρ · 1

2
f(x̄i)

2∆x = ρ

∫ b

a

1

2

(
f(x)

)2
dx.

Since m = ρ
∫ b
a
f(x) dx, we conclude that the centroid of R has coordinates given by

(14.6) x̄ =

∫ b
a
xf(x) dx∫ b
a
f(x) dx

and ȳ =

∫ b
a

1
2
f(x)2 dx∫ b

a
f(x) dx

.

Example 14.4. We find the centroid of a semicircular region R with radius r. For
concreteness take the upper half of the circle centered at the origin. Since R is symmetric
around the y-axis we immediately have x̄ = 0. For ȳ, we describe the region via f(x) =√
r2 − x2 on [−r, r] and observe that

∫ r
−r f(x) dx = 1

2
πr2 by the formula for circle area,

so that (14.6) gives

ȳ =

∫ r
−r

1
2
f(x)2 dx∫ r

−r f(x) dx
=

1

πr2

∫ r

−r
(r2 − x2) dx =

2

πr2

∫ r

0

(r2 − x2) dx

=
2

πr2

[
r2x− 1

3
x3
]r

0
=

2

πr2

(
r3 − 1

3
r3
)

=
2

πr2
· 2

3
r3 =

4r

3π
.

Thus the centroid of the region is located at (0, 4r
3π

).

If we consider a more general region described as

(14.7) R = {(x, y) : x ∈ [a, b], y ∈ [g(x), f(x)]},

where g, f : [a, b]→ R are continuous functions with g ≤ f , then similar arguments give

(14.8) x̄ =
1

A

∫ b

a

x(f(x)− g(x)) dx and ȳ =
1

A

∫ b

a

1

2

(
f(x)2 − g(x)2

)
dx,

where A =
∫ b
a
(f(x)− g(x)) dx is the area of R.
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14.3. Pappus’s theorem

Theorem 14.5 (Pappus’s theorem). Let R be a region in the plane that lies entirely
to one side of some line `, and let V be the volume of the solid of revolution formed by
rotating R around the line `. Let A be the area of R and let d be the distance traveled
by the centroid of R as it revolves around `. Then V = Ad.

Proof. Without loss of generality, take ` to be the y-axis, and let R be given in terms of
functions g, f as in (14.7).11 Recall how we find volume by cylindrical shells:

(1) the area of the annulus with inner radius p and outer radius q is πq2 − πp2 =
π(q2 − p2) = 2πm(q − p), where m = p+q

2
;

(2) thus the volume of the cylindrical shell formed by rotating the rectangle [xi−1, xi]×
[g(x̄i), f(x̄i)] around the y-axis is 2πx̄i(f(x̄i) − g(x̄i)), where x̄i is the midpoint
of [xi−1, xi];

(3) the volume of R is

V = lim
n→∞

n∑
i=1

2πx̄i(f(x̄i)− g(x̄i))∆x =

∫ b

a

2πx(f(x)− g(x)) dx,

where ∆x = (b− a)/n and xi = a+ i∆x.

Recalling the first half of (14.8), we have

V = 2π

∫ b

a

x(f(x)− g(x)) dx = 2πAx̄,

and since 2πx̄ is the distance d traveled by the centroid as it rotates, this proves the
theorem. �

Example 14.6. Consider a disc with center (R, 0) and radius r, where 0 < r < R. The
centroid of the disc is its center (by the symmetry principle), and the corresponding
solid of revolution is a torus, whose volume is

V = Ad = (πr2)(2πR) = 2π2r2R.

Lecture 15 *Probability

Stewart §8.5

A random variable is a quantity that depends on some random factors. For example,
any of the following could be described by a random variable:

• W = the sum of the numbers on a pair of dice after they are rolled;
• X = the number of students who come to class on a randomly selected day;
• Y = the height of a randomly selected person;
• Z = the amount of rainfall during a randomly selected week.

11If R cannot be written in this form, you first need to decompose it as a finite union of such regions.
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The first two examples above, W and X, are discrete random variables, meaning that we
can make a list of all the possible values they can take, and then assign a probability to
each individual value. The last two examples, Y and Z, are continuous random variables,
meaning that they can take a continuum of values; instead of listing all possible values,
we allow the value to be any real number. (Of course, some parts of the real line may
have zero probability: both Y and Z will have probability 1 of being ≥ 0.)

The probability distribution of a random variable tells us the probabilities associated
to the different values it can take. For a discrete random variable, we can describe the
distribution by simply listing the probabilities associated to each of the possible values:
for example, if W is the sum of the numbers on a pair of dice, then P(W = 2) = 1

36
because the 6× 6 = 36 equally likely outcomes include exactly one that produces a sum
of 2, and we can similarly list P(W = 3), P(W = 4), and so on.

For a continuous random variable X, we must do something else, since we cannot
list all the possible values. Rather, we describe the distribution by a probability density
function; this is a function f : R→ [0,∞) with the property that

P(a ≤ X ≤ b)︸ ︷︷ ︸
probability that a ≤ X ≤ b

=

∫ b

a

f(x) dx for every a < b ∈ R.

The interpretation of this is that if we make n independent observations of the random
variable X, then the proportion of observations for which a ≤ X ≤ b will converge to∫ b
a
f(x) dx as n→∞ (this is called the law of large numbers).
Probability density functions are required to have f(x) ≥ 0 for all x, and to satisfy∫∞
−∞ f(x) dx = 1. The first condition guarantees that probabilities are always ≥ 0, and

the second condition guarantees that the probability that something happens is equal
to 1.

Example 15.1. An exponentially distributed random variable takes only positive values
and has a probability density function (PDF) that decays exponentially as x → ∞;
that is, f(x) = 0 for x < 0, and there are c, λ > 0 such that f(x) = ce−λx for x ≥ 0.
Random variables like this are often used to model waiting time phenomena in which X
represents the amount of time until the next occurrence of a particular event, such as
my dog barking at a car that drives past my house.

The value of λ reflects the rate at which the PDF decays; smaller λ means that X
is more likely to take larger values, while larger λ means that it is more likely to take
smaller values. We need to determine the value of c to guarantee that f is normalized:∫∞
−∞ f(x) dx = 1. From the definition of f we get∫ ∞

−∞
f(x) dx =

∫ ∞
0

f(x) dx = lim
t→∞

∫ t

0

ce−λx dx = lim
t→∞

[
− c

λ
e−λx

]t
0

=
c

λ
.

Thus we must put c = λ, obtaining a PDF of f(x) = λe−λx. Then the probability that
X lies in an interval [a, b] for a ≥ 0 is given by

P(a ≤ X ≤ b) =

∫ b

a

λe−λx dx =
[
− e−λx

]b
a

= e−λb − e−λa.
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Example 15.2. A normally distributed random variable can take both positive and
negative values and has a PDF given by f(x) = 1

A
e−(x−µ)2/(2σ2), where µ is the mean

of the distribution, σ is the standard deviation, and A =
∫∞
−∞ e

−(x−µ)2/(2σ2) dx is the

normalizing constant that guarantees the property
∫∞
−∞ f(x) dx = 1. This is also called

a Gaussian distribution or sometimes informally a bell curve due to its shape.

µ = 0, σ = 1 µ = 1, σ = 0.5

It is possible to prove that A =
√

2πσ2, but this requires tools that we have not yet
developed (recall that we cannot find

∫
e−x

2
dx explicitly). Note that varying µ has the

effect of sliding the graph of f to the left or right; the graph is symmetric around the line
x = µ. Varying σ has the effect of squeezing or stretching it horizontally, so that when
σ is small more of the area under the graph is concentrated closer to the line x = µ, and
when σ is large more area is located further away from this line. Thus σ quantifies how
likely the value of X is to be close to the mean µ.

In the example of the normal distribution, the symmetry of the PDF makes it rea-
sonable to interpret µ as an average, or mean, since for every range of values greater
than µ, there is a range of values on the opposite side of µ that are achieved with equal
probability. But how do we find the mean of an arbitrary random variable?

First recall that if we measure a random variable N times and record the results of
the measurements as X1, . . . , XN , then the observed average value is

X̄ =
1

N

N∑
j=1

Xj.

Suppose for a moment that we have a discrete random variable, which only takes values
from a finite set {x1, . . . , xn}. Then for each i we can write ki for the number of times
that we see the value xi appear in the list (X1, . . . , XN), and obtain

(15.1) X̄ =
1

N

N∑
j=1

Xj =
1

N

n∑
i=1

kixi.

Now return to the case of a continuous random variable. Suppose we fix a large t > 0,
a large n ∈ N, and split the interval [−t, t] into n intervals of length ∆x = 2t/n by
putting xi = −t+ i∆x. If we measure the random variable N different times, we expect
≈ N

∫ xi
xi−1

f(x) dx ≈ Nf(xi)∆x of these measurements to lie in the interval [xi−1, xi].

Thus (15.1) gives

average of X ≈ 1

N

n∑
i=1

Nf(xi)∆x · xi =
n∑
i=1

xif(xi)∆x.
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Once again we recognize this as a Riemann sum, whose limit as n→∞ is
∫ t
−t xf(x) dx.

Taking a limit as t→∞, we see that the average value (mean) of the random variable
X with probability density function f is given by

(15.2) µ =

∫ ∞
−∞

xf(x) dx.

Exercise 15.3. Use the symmetry of the normal distribution to show that this agrees
with the use of the notation µ there.

Remark 15.4. In light of Remark 10.20, you should be mildly uneasy (at least) with

our casual use of the relationship
∫∞
−∞ xf(x) dx = limt→∞

∫ t
−t f(x) dx. This works fine

provided the improper integral
∫∞
−∞ xf(x) dx is convergent; however, if the improper

integral is divergent then (15.2) is invalid, and in fact we must say that in this case the
mean does not exist!

Exercise 15.5. Find c > 0 such that f(x) = c
1+x2

is a probability density function, and
show that in this case the improper integral in (15.2) is divergent.

Remark 15.6. The mean µ is sometimes called the first moment. Observe that it is given
by the same integral that we used to compute the moment around the y-axis of a region
in R2. Since

∫∞
−∞ f(x) dx = 1 for a PDF, this means that the centroid of the region

under the graph of f lies on the line x = µ.
In probability theory one also needs to study higher moments such as

∫∞
−∞ x

2f(x) dx,∫∞
−∞ x

3f(x) dx, and so on. As with the mean, these integrals may or may not be conver-
gent, depending on which probability density function we consider.

Example 15.7. For the exponential distribution given by f(x) = λe−λx, the mean is

µ =

∫ ∞
0

λxe−λx dx = lim
t→∞

[
λx · (−λ−1e−λx)

]t
0
−
∫ t

0

λ(−λ−1e−λx) dx

= lim
t→∞
−te−λt +

∫ t

0

e−λx dx = lim
t→∞

[
− 1

λ
e−λx

]t
0

=
1

λ
.
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Part III. Differential equations

Lecture 16 Ideas and examples

Stewart §9.1 and §9.2

16.1. Real-world problems modeled by DEs

When we write down a model describing some kind of real-world situation in which our
goal is to determine a particular function f , we often end up with a differential equation
(DE) that contains both f and some of its derivatives. For example, this occurred when
we considered the hanging cable problem and discovered that the equation y = f(x)
describing the catenary could be determined by first finding the arc length function
s(x), which satisfies the equation (11.8): ds

dx
= 1

a

√
a2 + s2. We were able to solve this by

rewriting it as dx
ds

= a/
√
a2 + s2 and then integrating with respect to s; note that this

represents the simplest sort of differential equation, where the function to be determined
(in this case x(s)) appears only on the LHS in terms of its derivative, and thus can be
found by computing a single integral. Most of the DEs we encounter from now on will
be more involved than this.

One instructive example arose last semester when we studied population growth. If
P (t) represents the size of a particular population at time t, then the simplest model
describing how P evolves in time simply accounts for the change due to reproduction and
death:. Write kr > 0 for the rate at which reproduction happens, so that the population
increase due to reproduction in a short time interval ∆t is krP (t)∆t, and kd > 0 for the
rate at which members of the population die, so that the decrease due to death in time
∆t is −kdP (t)∆t. Thus

dP

dt
= lim

∆t→0

∆P (t)

∆t
= lim

∆t→0

krP (t)∆t− kdP (t)∆t

∆t
= (kr − kd)P (t).

Writing k := kr−kd, we see that the population function satisfies the differential equation

(16.1)
dP

dt
= kP.

If kr > kd then k > 0 and the population grows; if kr < kd then k < 0 and the population
shrinks. We saw last semester that (16.1) can be solved by dividing both sides by P and
using logarithmic derivatives:

d

dt
lnP =

P ′

P
=
kP

P
= k ⇒ lnP (t) = kt+ C ⇒ P (t) = C0e

kt,

where C0 = eC is a constant of integration which can take any value in (0,∞). (Here
we assume that the population is positive; if P (t) = 0 then there is nothing to model.)
To determine C0 we need to know the value of the population at some point in time: if
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we know the population at some time t0, then we have

P (t0) = C0e
kt0 ⇒ C0 = P (t0)e−kt0 ⇒ P (t) = P (t0)e−kt0ekt = P (t0)ek(t−t0).

In particular, if we know the population at time 0 then we have

P (t) = P (0)ekt.

The problem of finding P (t) given that

(1) P satisfies (16.1) and
(2) P (t0) is known

is called an initial value problem. In an initial value problem, we expect to get a single
function as the solution. If all we have is a differential equation but are not given the
initial value, then we expect to get a whole family of solutions, such as P (t) = C0e

kt;
here the constant C0 can be thought of as a parameter telling us which member of the
family we are looking at. The picture at left shows some of the members of this family
for the DE in (16.1) when k > 0.

t

P

t

P

L

Of course this model is not entirely realistic, because sooner or later the population will
start to run out of resources and growth will slow. A more realistic model incorporates
the carrying capacity of the environment in which the population lives, and has solutions
with the shape shown in the right-hand figure. To describe it quantitatively, let L be the
largest population that the environment can sustainably support; then we would like to
have P ′ ≈ kP when P is small (P � L), while P ′/P decreases for larger values of P ,
with P ′ becoming negative when P > L. This last requirement represents the idea that
if the population is too large, then it will shrink towards the carrying capacity L. One
DE that meets these requirements is the following logistic DE introduced by Verhulst
in the 1840s:

(16.2)
dP

dt
= kP

(
1− P

L

)
.

This is not quite so easy to solve as (16.1) was: dividing both sides by P does not help,
because the RHS still contains P and so a straightforward integration does not solve the
problem. We will see how to solve DEs like this in a few days. In the meantime, we can
make some qualitative observations.

(1) dP
dt

= 0 if and only if P = 0 or P = L. In particular, P (t) = 0 and P (t) = L are
both solutions of (16.2). Solutions such as these, where the function in question
is constant, are called equilibrium solutions.

(2) dP
dt
> 0 when P ∈ (0, L), and dP

dt
< 0 when P ∈ (L,∞). The picture suggests

(and we will later prove) that limt→∞ P (t) = L as long as the initial condition is
positive.
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Example 16.1. Consider a mass m attached to a spring, moving horizontally on a
frictionless surface. Let x(t) denote the displacement of the mass from its equilibrium
position at time t. Then Hooke’s law says that the spring exerts a force F = −kx on
the mass, where k > 0 is a constant depending on the stiffness of the spring. Since
F = ma = mẍ, the position function x satisfies the DE

(16.3)
d2x

dt2
= − k

m
x.

Exercise 16.2. Show that writing ω =
√

k
m

, the functions x(t) = sin(ωt) and x(t) =

cos(ωt) are both solutions of (16.3). Can you think of any others?

Definition 16.3. The order of a differential equation is the order of the highest deriv-
ative that appears in the equation.

The population DEs (16.1) and (16.2) are first-order differential equations, while the
spring equation (16.3) is second-order.

16.2. Explicit solutions using logarithms

The problem of finding the indefinite integral of a function f can be viewed as a
differential equation F ′ = f , where the indefinite integral F is the solution of the DE. As
we saw already, it is not always possible to find an elementary formula for the indefinite
integral (such as when f(x) = e−x

2
) and thus one should not expect to always be able

to write down an elementary formula for a differential equation. Indeed, in general the
problem of solving differential equations is substantially more difficult than the problem
of finding indefinite integrals, and there is no single technique that we can rely on to
always lead us to the answer.

Remark 16.4. A significant item in the theory of differential equations is to determine
whether or not a given DE even has a solution (existence), and if so, whether it is
possible to have multiple solutions with the same initial conditions, or whether there is
only one (uniqueness). Such existence and uniqueness results are not part of this course,
however.

With that said, there are many classes of DEs for which it is possible to find a solution
by reducing the problem to that of finding an indefinite integral. The population DE
(16.1) illustrated this, and the technique used there works for any DE of the form

(16.4)
dy

dx
= f(x)y,

where f(x) is any given integrable function. Dividing both sides by y gives

d

dx
log y =

y′

y
= f(x) ⇒ log y(x) =

∫
f(x) dx ⇒ y(x) = e

∫
f(x) dx.

Example 16.5. To solve y′ = xy with y(1) = 1, we write it as (log y)′ = x, so log y =
1
2
x2 + C, and log y(1) = log 1 = 0 together with log y(1) = 1

2
+ C gives C = −1

2
, so the

solution of the initial value problem is y = e−1/2ex
2/2.
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16.3. *Qualitative solutions using direction fields

Suppose we are confronted with the differential equation y′ = x + y. This does not
immediately reduce to a simple integration like the examples we solved so far. But we
can still at least sketch the general shape of the solutions by using a direction field (also
called a slope field), where at each point (x, y) ∈ R2 we put a short line segment with
slope x + y, as shown in the first picture below. Then every solution of the DE will be
tangent to these lines at all the points it passes through; the picture shows the specific
solution with initial condition y(0) = 1.

x

y

x

y

This procedure works for every first-order DE of the form y′ = F (x, y); at each point
(x, y) we put a short line segment with slope F (x, y).

Example 16.6. The DE y′ = x2 + y − 1 has a direction field as in the second picture
above. Observe that the points at which the direction field is horizontal can be found by
solving 0 = y′ = x2 + y − 1 to get y = 1− x2; this is the parabola in the picture. Below
this parabola, solutions of the DE are decreasing; above it, solutions are increasing. The
other curve in the picture is the solution with y(0) = 1.

Definition 16.7. A DE of the form y′ = F (x, y) is autonomous if the function F only
depends on y, and not on x, so that it can actually be written as y′ = F (y). In the case
when the independent variable is time, this can be thought of as “time-independence”
of the system; the rule governing how y′ is related to y does not change depending on t,
but is the same for all time.

The two DEs above are not autonomous. The logistic DE P ′ = kP (1 − P
L

) is au-
tonomous. This has the consequence that its direction field looks the same if we shift it
horizontally, and thus any solution curve remains a solution curve if we shift it left or
right.

16.4. *Euler’s method

As was the case when we computed definite integrals, there are situations in which
it is better to take a numerical approach and try to find an approximate solution to an
initial value problem (IVP). Such methods can become very sophisticated, but in this
course we only consider the simplest one, called Euler’s method.
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Roughly speaking, the idea of Euler’s method is to move along the direction field in
small steps of size h, where at each step we look at the direction field to see which way
to move, then move that predetermined distance, and then look again at the direction
field to get our instructions for the next step.

A little more precisely, the algorithm is this. Suppose we are given the IVP whose DE
is y′ = F (x, y) and whose initial condition is y(x0) = y0. Fixing a step size h, we define
(xn, yn) iteratively by

xn+1 = xn + h, yn+1 = yn + hF (xn, yn).

Thus the x-coordinate always increments by the step size, and the y-coordinate incre-
ments by the amount that it would change if F were constant and took the value that
it does at (xn, yn).

x

y
true solution

h = 1

h = 0.5

h = 0.2
h = 0.1

The picture at right shows several applica-
tions of Euler’s method to the initial value
problem y′ = x + y, y(0) = 0.1, with varying
values of h. Observe that as h decreases it ap-
pears that the approximate solutions given by
Euler’s method are converging to the true so-
lution. Whether this in fact occurs as h→ 0+

is an important question in numerical analysis.

Lecture 17 *Separable differential equations

Stewart §9.3

17.1. Separable differential equations

Consider the first-order DE

(17.1)
dy

dx
=
x

y
.

Based on our experience with the ‘logarithm trick’ for solving the DE dy
dx

= xy in Example
16.5, we might expect to get somewhere by multiplying both sides by y and writing
yy′ = x. In the previous example, the next step was to recognize that y′

y
= (log y)′. To

proceed here, we need to replace log y with something that gives yy′ upon differentiation
by x.

After a little thought, you might realize that d
dx

(1
2
y2) = y dy

dx
, so (17.1) becomes

d
dx

(1
2
y2)′ = x, or equivalently d

dx
(y2) = 2x, and integrating with respect to x gives

y2 = x2 + C, so every solution of (17.1) has the form y =
√
x2 + C for some C. (Here
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we consider positive solutions; one could also consider negative solutions, but note that
y = 0 is forbidden since y appears in the denominator of (17.1).)

To make this procedure into a more general strategy, let us replace the words “After
a little thought” in the previous paragraph with the following more helpful argument:
after writing (17.1) as y dy

dx
= x, integrate both sides with respect to x to obtain∫

y
dy

dx
dx =

∫
x dx.

By the substitution rule, the integral on the left-hand side can be rewritten as
∫
y dy,

and thus we get ∫
y dy =

∫
x dx,

which upon evaluation gives the same solution as before.
The general strategy, then, is this: given a first-order DE dy

dx
= F (x, y), we say that

the equation is separable if the RHS can be written as F (x, y) = g(x)f(y), where g
depends only on x and f depends only on y. Then we have

dy

dx
= g(x)f(y) ⇒ 1

f(y)

dy

dx
= g(x) ⇒

∫
dy

f(y)
=

∫
1

f(y)

dy

dx
dx =

∫
g(x) dx,

where the penultimate equality once again uses the substitution rule. Observe that our
solutions of the DEs y′ = xy and y′ = x/y both used this strategy.

In general, evaluating the integrals is not quite the final step of the solution, because
we still need to solve the resulting equation to find y in terms of x.

17.2. Orthogonal trajectories

Suppose we are given a family of curves, such as the set of lines through the origin
in R2. It is occasionally of interest to find curves with the property that they intersect
every curve in our original family at a right angle. For example, in an electrostatic field,
the lines (curves) of force are always perpendicular to the lines (curves) of constant
potential.

In the case of the set of lines through the origin, it is easy to see that the curves
intersecting every such line orthogonally are just the circles centered at the origin, as
shown in the picture at left. But what if we start with the family of parabolas whose
vertex is at the origin, and which open up or down?
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The family of parabolas just described comprises all the curves y = kx2 where k ∈ R.
The picture at right suggests that the orthogonal trajectories for this family are ellipses.
To confirm this, we first observe that if the point (x, y) lies on the parabola y = kx2,
then the slope of the parabola at this point is 2kx. We can eliminate k by observing
that y = kx2 implies k = y/x2, so the slope at this point is 2y/x.

Now recall that two lines are perpendicular if and only if the product of their slopes
is −1. Thus the slope of an orthogonal trajectory through (x, y) must be − x

2y
at this

point. We conclude that a curve x 7→ y(x) describes an orthogonal trajectory if and
only if it has the property that

dy

dx
= − x

2y

everywhere. But this is a separable DE! So we can solve it by writing

2y
dy

dx
= −x ⇒

∫
2y dy = −

∫
x dx ⇒ y2 = −1

2
x2 + C.

Thus the orthogonal trajectories to the family of parabolas are indeed the ellipses with
equations 1

2
x2 + y2 = C.

17.3. Mixing problems

The following example gives another situation where a separable DE arises. Suppose
mercury is leaking into a certain lake at a rate of γ g/min, and that water is flowing
into the lake (from upstream) and out of the lake (downstream) at a rate of R L/min.
(Since these rates are equal, the total volume of water in the lake remains constant.)
Suppose also that at time t = 0, the lake is clean; there is no mercury in it. How much
mercury is in the lake at time t?

Let V be the volume of the lake, which is constant. Let y(t) be the mass of the
mercury in the lake at time t, and let ρ(t) = y(t)/V be the concentration. We make the
simplifying assumption that mixing happens instantaneously, so that the concentration
of mercury is the same throughout the lake. Then the rate at which mercury flows out
of the lake is ρR = yR/V g/min, and since it flows in with rate γ g/min, we conclude
that

(17.2)
dy

dt
= γ − yR

V
.

This is autonomous, and hence separable, so we can divide both sides by γ− yR/V and
then integrate, obtaining ∫

dy

γ − yR
V

dy =

∫
dt = t+ C.

The integral on the LHS can be computed as follows:∫
dy

γ − yR
V

dy =
V

R

∫
dy

γV
R
− y

dy = −V
R

ln
(γV
R
− y
)
,

and we conclude that

− ln
(γV
R
− y
)

=
R

V
t+ C1 ⇒ γV

R
− y = Ae−Rt/V ,
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so that the total amount of mercury in the lake at time t is given by

y(t) =
γV

R
− Ae−Rt/V ,

where A is a constant. To determine A we observe that at time t = 0 we have 0 = y =
γV
R
− A, so A = γV

R
, and we obtain

y(t) =
γV

R

(
1− e−Rt/V

)
.

17.4. Solving the logistic model

The logistic DE dP
dt

= kP (1− P
L

) from (16.2) is separable because the right-hand side

does not depend on t, so we can divide both sides by P (1− P
L

) and then integrate:

(17.3)

∫
dP

P (1− P
L

)
=

∫
k dt.

The integral on the RHS is easy. For the one on the left we use partial fractions to write∫
dP

P (1− P
L

)
=

∫
L

P (L− P )
dP =

∫ ( 1

P
+

1

L− P
)
dP

= lnP − ln |L− P | = ln
P

|L− P | ,

and thus (17.3) gives

ln
P

|L− P | = kt+ C.

Taking the exponential of both sides gives

P

|L− P | = eCekt.

Let Q = eC if L > P and Q = −eC if L < P ; then P
L−P = Qekt, and we can solve for P :

P = LQekt − PQekt ⇒ P (1 +Qekt) = LQekt ⇒ P =
LQekt

1 +Qekt
=

L

1 +Q−1e−kt
.

This gives the general solution of the logistic DE. To find a particular solution given
an initial population P0 at time 0, we observe that P0 = P (0) = L/(1 + Q−1), so
1 +Q−1 = L/P0, and thus Q−1 = L

P0
− 1. Thus it is convenient to write the solution of

the IVP as

P (t) =
L

1 + Ae−kt
where A =

L

P0

− 1 =
L− P0

P0

.

Remark 17.1. Recall that the logistic DE is autonomous; the RHS does not depend on
the independent variable. The example above illustrates the general principle that every
autonomous DE is separable, because it can be written as dy

dx
= f(y), and thus can in

principle be solved by writing 1
f(y)

dy
dx

= 1 and integrating to get
∫

1
f(y)

dy = x+C. There

are then two obstacles to turning this into a complete solution:

(1) the integral may be difficult or impossible to evaluate explicitly;
(2) it may be difficult or impossible to solve the resulting equation explicitly for y

and write down a formula giving y in terms of x.



67

Lecture 18 *Other population models

Stewart §9.4

Beyond the logistic DE, there are other population models that are worth considering
in certain situations. For example, suppose we expect that our population needs to be
above a certain minimum size m to maintain itself, and that a population below this
critical value will eventually die out. Then we might add another factor to the logistic
DE that forces dP

dt
to be negative whenever P < m; we would like this factor to have the

property that
• it is negative when P < m;
• it is positive when P > m;
• it is close to 1 for large values of P (when the popu-

lation is well above the critical threshold, the original
logistic DE should still be nearly accurate).

P

1

m

These suggest that its graph should have the general shape shown in the picture. An
example of such a function is (1− m

P
), so we might multiply the RHS of the logistic DE

by this factor and consider the DE

(18.1)
dP

dt
= kP

(
1− P

L

)(
1− m

P

)
.

We can rewrite the RHS as
dP

dt
=
k

L
(L− P )(P −m).

To understand the behavior of this DE’s solutions, we can draw its slope field.

t

P

This looks an awful lot like the slope field for the logistic DE:

(1) there are two equilibrium solutions, at P = m and P = L;
(2) for P ∈ (m,L), the population grows over time and appears to approach L;
(3) for P > L, the population decreases over time and appears to approach L.

The extra feature here is that there are positive values of P that are below the smaller
equilibrium solution, and if the initial value of P lies in this range, then P decreases and
eventually becomes 0, so the population goes extinct.

One could find an explicit solution of (18.1) by the same method as we used for the
logistic DE, but we omit the details of this. Instead, we make the following observation:
suppose that we write y = P −m for the amount by which the population exceeds the
critical threshold m. Then we have P = y +m and can write

dy

dt
=
dP

dt
=
k

L
(L− (y +m))y =

k

L
y(L−m− y) =

k(L−m)

L
y
(

1− y

L−m
)
.
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But this means that y satisfies the original logistic DE! Granted, we need to change
the parameters – the growth rate for y is k(L−m)/L (instead of k) and the “carrying
capacity” is L −m (instead of L) – but this observation means that we can write any
solution of (18.1) in terms of a solution for the logistic DE, and vice versa, so that in
this sense the two problems are equivalent.

Remark 18.1. In fact, a similar change of variables (or substitution, if you prefer), can
be used to turn any DE of the form y′ = ay2 + by + c into the logistic DE, provided
b2 − 4ac > 0 so the DE has two equilibrium solutions.

So far, our population DEs have depended on parameters that affect the quantitative
values of the solutions, but do not affect their qualitative form; that is, changing the
parameters resulted in a new system that had the same number of equilibrium solutions,
same overall description of types of solutions, etc. The next example is different.

Suppose P (t) represents a population of fish that follows logistic growth but is also
harvested at a constant rate c. Then the DE that it should satisfy is

(18.2)
dP

dt
= kP

(
1− P

L

)
− c.

Again, we could solve this explicitly by dividing both sides by the quadratic on the RHS
and then integrating, but instead of plunging blindly ahead with symbol manipulation, it
is more instructive to take a moment and think about the overall picture. In particular,
we want to understand for which values of P the RHS is positive, negative, and 0.
Rewrite the DE as

dP

dt
= − k

L
P 2 + kP − c.

Observe that the RHS is a quadratic with discriminant12 given by

k2 − 4(−k/L)c = k2 + 4ck/L = k(k + 4c/L).

Since k > 0, we see that the sign of the discriminant is the same as the sign of k+ 4c/L.
This is determined by how the harvesting rate c compares to kL/4. There are three
cases, whose slope fields are shown in the pictures.

t

P

r1

r2

(1) c < kL/4
t

P

r

(2) c = kL/4
t

P

(3) c > kL/4

We describe these one by one.

(1) When c < kL/4, the discriminant k(k+ 4c/L) is positive and thus the quadratic
− k
L
P 2 + kP − c has two real roots r1 and r2, which correspond to equilibrium

solutions of (18.2). When P lies between these roots, the quadratic is positive so

12Recall that the discriminant of the quadratic polynomial ax2 + bx + c is b2 − 4ac, which is the
expression that appears under the square root in the quadratic formula for the roots of the polynomial.
The polynomial has two real roots if the discriminant is positive, one if it is 0, and none if it is negative.
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dP
dt
> 0 and the population grows, converging to r2. When P > r2, the quadratic

is negative and the population shrinks, again converging to r2. When P < r1,
the population shrinks and eventually goes extinct.13

(2) When c = kL/4, the discriminant is 0 and thus the quadratic has exactly one real
root r, so (18.2) has exactly one equilibrium solution P = r. When P > r the
quadratic is negative so the population shrinks, converging to r. When P < r
then quadratic is again negative and the population shrinks, then goes extinct.

(3) When c > kL/4, the discriminant is negative and the quadratic has no real roots.
Thus no matter what value P takes, the quadratic is negative and the population
shrinks, eventually going extinct.

The first case corresponds to a harvesting rate that is sustainable provided the initial
population is between r1 and r2. The final case corresponds to an unsustainable har-
vesting rate that eventually wipes out the population. The second case is borderline
and unstable; although P = r is an equilibrium solution, any fluctuation below this
population (due perhaps to some effects not included in the model) will eventually lead
to extinction.

Remark 18.2. The phenomenon seen here, wherein the solutions of a DE change dra-
matically and exhibit qualitatively different behavior as a parameter (or family of pa-
rameters) is varied, is called a bifurcation, and we say that kL/4 is a bifurcation value
for the parameter c. Such parameter values are extremely important in the study of
differential equations and other models of real-world systems.

Lecture 19 *Linear differential equations

Stewart §9.5

19.1. Linear first-order DEs

Example 19.1. Consider the DE

(19.1) xy′ + y = 2x.

This is a first-order DE, but it is not written in a form where we can immediately
determine if it is separable. To determine this, we need to solve for y′ and get y′ = 2− y

x
;

since we cannot find functions g(x) and f(y) such that g(x)f(y) = 2− y
x
, this DE is not

separable. So what do we do?
In the end, there is only one thing we know how to do: integrate. If we could integrate

both sides of (19.1) with respect to x, then we might hope to once again end up with
an equation that could be solved to determine y. To integrate the LHS, we can first use
integration by parts with u = x, v = y to write∫

x︸︷︷︸
u

y′ dx︸︷︷︸
dv

= xy −
∫
y dx,

13Note that this looks just like the picture we gave for (18.1) above, and indeed, as suggested in
Remark 18.1, the two DEs can be related by a change of variables.
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and then obtain

(19.2)

∫
(xy′ + y) dx =

∫
xy′ dx+

∫
y dx = xy,

so that

xy =

∫
2x dx = x2 + C,

and the solution of (19.1) is

y = x+
C

x
.

In retrospect it should not be surprising that the antiderivative in (19.2) has the form
that it does; the LHS of (19.1) has two terms, one of which includes y′ and the other
of which includes y, so it is reasonable to expect that its antiderivative would have the
form R(x)y for some function R. Indeed, the product rule gives

(R(x)y)′ = R(x)y′ +R′(x)y,

and we see that (19.2) works because R(x) = x has R′(x) = 1. Thus it would be
reasonable to use this approach anytime we have a DE where

• the LHS has the form R(x)y′ +R′(x)y for some function R(x), and
• the RHS depends only on x (not on y).

Now that we have a hammer, let’s go looking for some nails; are there many DEs like
this?

Definition 19.2. A linear first-order differential equation is a DE that can be written
in the form

(19.3) f(x)
dy

dx
+ g(x)y = h(x)

for some functions f, g, h.

Taking f(x) = x, g(x) = 1, and h(x) = 2x gives (19.1).

Remark 19.3. A linear first-order DE can always be rewritten in the form

(19.4)
dy

dx
+ P (x)y = Q(x)

by dividing both sides of (19.3) by f(x) and writing P (x) = g(x)/f(x) and Q(x) =
h(x)/f(x).

Example 19.4. The DE
x2y′ + 2xy = 1

is a linear first-order DE, for which we can use the approach described above: we want
a function R(x) for which the LHS is (R(x)y)′, and since R(x) = x2 has R′(x) = 2x, we
see that indeed we can rewrite the DE as

d

dx
(x2y) = 1,

and integrating gives
x2y = x+ C,

so that the solution is y = 1
x

+ C
x2

.
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In both of the examples we have done so far, the solution was to let R(x) be the
function in front of y′; however, this only worked because we got lucky (and because the
examples were engineered to work out nicely). Indeed, in order for the linear first-order
DE

f(x)y′ + g(x)y = h(x)

to have a LHS that can be written as (R(x)y)′, we must have R(x) = f(x) and R′(x) =
g(x); in other words, we must have f ′(x) = g(x). If the DE we are given does not have
this property, then we need to do a little more work.

19.2. General solution to first-order linear DEs

Example 19.5. The DE

(19.5) y′ = x+ y

appeared in §16.3, when we introduced direction fields to sketch the general shape of
its solutions because we did not yet have the tools to solve it exactly. It is a linear
first-order differential equation since we can rewrite it as

(19.6) y′ − y = x.

However, the LHS of this last equation cannot be written as (R(x)y)′, because we have
f(x) = 1 and g(x) = −1, so f ′(x) 6= g(x). So what are we to do?

The solution is to observe that we can multiply the entire DE (19.6) by an integrating
factor I(x), which if we choose it correctly, will make the previous trick work out. So
we rewrite (19.6) as

(19.7) I(x)y′ − I(x)y = I(x)x.

This is again a linear first-order DE with f(x) = I(x), g(x) = −I(x), and h(x) = xI(x).
We want to choose I(x) so that f ′(x) = g(x); in other words, we need I ′(x) = −I(x).
This is again a DE, but it is one we know how to solve! We can put I(x) = e−x, and
then (19.7) becomes

e−xy′ − e−xy = xe−x.

The LHS has antiderivative e−xy, so we can integrate both sides with respect to x and
get

e−xy =

∫
xe−x dx = −xe−x +

∫
e−x dx = −(x+ 1)e−x + C.

Multiplying both sides by ex gives the general solution

y = Cex − (x+ 1).

This technique works for any linear first-order DE as in (19.3). It is easiest if we first
divide through by f(x) to write the DE in the form (19.4), and then multiply through
by a (not yet determined) integrating factor to obtain

(19.8) I(x)y′ + P (x)I(x)y = Q(x)I(x).

We want the LHS to be equal to (I(x)y)′, which is true if and only if I satisfies the DE

I ′(x) = P (x)I(x).
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We can solve this DE by dividing by I(x) and then using logarithms:

I ′

I
= P ⇒ ln I(x) =

∫
P (x) dx ⇒ I(x) = e

∫
P (x) dx.

Then (19.8) gives

(Iy)′ = Iy′ + PIy = QI ⇒ Iy =

∫
QI dx ⇒ y =

1

I

∫
QI dx.

This is a general procedure for solving linear first-order DEs. Observe that the process
involves two indefinite integrals: one to find ln I, and a second to find y. In the first of
these, we can take the constant of integration to be any value we like; it is enough to
take ln I to be any antiderivative of P . In the second integral, on the other hand, we
need to include the constant of integration, because it is ultimately determined by the
initial condition of the DE.

Example 19.6. Consider the DE

y′ + 3x2y = 6x2.

Multiplying through by an unknown integrating factor I gives

Iy′ + 3x2Iy = 6x2I.

We want to choose I such that I ′ = 3x2I, so

log I =

∫
3x2 dx = x3 ⇒ I = ex

3

.

Thus the second form of the DE gives

(ex
3

y)′ = ex
3

y′ + 3x2ex
3

y = 6x2ex
3

,

and we conclude that

ex
3

y =

∫
6x2ex

3

dx = 2ex
3

+ C.

Thus the solution of the DE is

y = e−x
3

(2ex
3

+ C) = 2 + Ce−x
3

.

19.3. Another solution of the logistic DE

We already solved the logistic DE P ′ = kP (1−P/L) in §17.4, but just for fun let’s do
it again, via a different approach. Let P (t) be a solution of the logistic DE, and define
a new function y(t) by y = 1/P . Then we have

y′ = −P
′

P 2
= −kP −

k
L
P 2

P 2
= − k

P
+
k

L
= −ky +

k

L
,

so y(t) is a solution of the first-order linear DE

y′ + ky =
k

L
.

This can be solved by the method introduced in this lecture; multiplying by an integrat-
ing factor I gives

(19.9) Iy′ + Iky =
k

L
I,
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and we want I to satisfy I ′ = Ik, so we choose I(t) = ekt. Then the left-hand side of
(19.9) is d

dt
(ekty), and integrating both sides of (19.9) gives

ekty =

∫
k

L
ekt dt =

1

L
ekt + C.

Multiplying through by e−kt gives

y =
1

L
+ Ce−kt,

and since y = 1/P we see that the solution to the logistic DE is given by

P (t) =
1

y(t)
=

1
1
L

+ Ce−kt
=

L

1 + CLe−kt
,

which agrees with the solution in §17.4 (by putting Q = (CL)−1).

Lecture 20 Coupled differential equations

Stewart §9.6

20.1. Predator-prey models

Before we leave our discussion of differential equations, we consider two more ex-
amples, starting with a population model. This time instead of considering a single
population, we consider two populations that interact with each other as predator and
prey.

For concreteness, let R(t) represent the population of rabbits in a given area, and
W (t) the population of wolves. We suppose that if there were no wolves, then the
rabbits would reproduce according to the simple population growth DE dR

dt
= kR, where

k > 0. On the other hand, if there were no rabbits, then the wolves would have no food
source and their population would decay following the DE dW

dt
= −rW , where again

r > 0.
Each of these DEs is easy to solve on its own. Things get interesting (and harder!)

when we consider the interaction between the two populations. If R > 0 and W > 0,
then some of the rabbits will be eaten by wolves, which decreases dR

dt
and increases dW

dt
.

A reasonable assumption is that the contribution to the derivatives due to predation is
proportional to RW , since this number represents the number of possible rabbit-wolf
pairs. Thus we arrive at the Lotka–Volterra equations

(20.1)
dR

dt
= kR− aRW, dW

dt
= −rW + bRW,

where a, b, k, r > 0 are parameters determined by the physical characteristics of the
populations, their environment, and their interactions.

Remark 20.1. The DE (20.1) is not a single DE, but rather two DEs coupled together.
This kind of situation arises very often in real-world models, and has the potential to
increase the complexity of the situation tremendously. In particular, we should not
expect to be able to write down explicit formulas for the solutions to such systems.
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It turns out that autonomous systems of two DEs can be more or less completely
understood at a qualitative level, similarly to our qualitative analysis of the various
population models in §18, and the range of possible behaviors are very limited. However,
with three or more DEs, there is the possibility of chaotic behavior, which has the
appearance (in a way that can be made precise) of being nearly entirely random over
long time scales, despite the fact that it is governed by deterministic equations.

To understand the qualitative behavior of the Lotka–Volterra model, it is useful to
find equilibrium solution(s), and more generally to find in which regions R and W are
decreasing and increasing; we should also consider any special cases where the situation
simplifies.

To find any equilibria, we see that

dR

dt
= 0 ⇔ kR = aRW ⇔ R = 0 or W =

k

a
,

dW

dt
= 0 ⇔ rW = bRW ⇔ W = 0 or R =

r

b
.

Thus there are exactly two equilibrium solutions: the trivial solution where R = W = 0
(no rabbits, no wolves), and a nontrivial solution W = k/a, R = r/b.

To proceed further we draw an analogue of the direction field. The difference is that
this time the line segment we draw at the point (R,W ) has direction given by (dR

dt
, dW
dt

),
and since this can be pointed in any direction (not just into the first or fourth quadrants,
as was the case for our earlier direction fields) we will put arrowheads at the end of each
of the line segments. The picture we obtain is called a vector field.

R

W

R = r
b

W = k
a

We refer to the region {(R,W ) : R ≥ 0,W ≥ 0} as the phase space of the system; each
pair (R,W ) represents a state that the system can be in. The horizontal line W = k/a
and the vertical line R = r/b partition phase space into four regions. Observe that

• if W < k
a

then aW < k, so dR
dt

= R(k − aW ) > 0 (rabbit population increases
when wolf population is small);
• if W > k

a
then dR

dt
< 0 (rabbit population decreases when wolf population is

large);
• if R < r

b
then bR < r, so dW

dt
= W (bR− r) < 0 (wolf population decreases when

rabbit population is small);
• if R > r

b
then dW

dt
> 0 (wolf population increases when rabbit population is large).
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Thus in the lower left region, where W and R are both below the thresholds, we see that
W is decreasing and R is increasing, and all the arrows point down and to the right. In
the lower right region, they point up and to the right. In the upper right region, they
point up and to the left, and in the upper left region they point down and to the left.

As time progresses, the point (R(t),W (t)) moves in a counterclockwise direction
around the equilibrium solution ( r

b
, k
a
). The picture shows a typical solution curve,

computed numerically. The numerical computations suggest that the curve returns to
its starting point and then repeats periodically. Is this actually what happens? After all,
a priori it would be equally reasonable for the curve to spiral in towards the equilibrium
point, or to spiral away from it. In fact, the curve is indeed closed, as the numerical
evidence suggests, but we will set this question aside and move to other things.14

t

R(t)

W (t)

We make one final observation: if
we graph the rabbit and wolf popu-
lations and superimpose the pictures,
then the oscillatory behavior shown
above leads to a picture reminiscent of
sine and cosine: two oscillating func-
tions whose phases are offset, with the
peaks of one lagging behind the peaks
of the other.

20.2. Systems with more than
two variables

It turns out that for a system of two
coupled autonomous differential equations, the only possible behaviors (from a qualita-
tive point of view) are the ones we have encountered already; solutions can approach
a fixed equilibrium solution as in the logistic DE, or diverge to infinity, or approach
a periodic solution that oscillates endlessly and repeats itself exactly as in the Lotka–
Volterra model. The precise theorem that describes all the possible behaviors is called
the Poincaré–Bendixson theorem, and its details lie beyond the scope of this course; the
basic idea is that solution curves cannot “get past” each other because everything lies
in a two-dimensional space.

When we have more than two coupled DEs, on the other hand, life changes dra-
matically. In 1963, the meteorologist Edward Lorenz studied the following set of three
coupled DEs as part of a simplified model of atmospheric convection:

(20.2)

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz.

14The idea is to find a function H(R,W ) that depends on the size of both populations and that
has the property that it does not change over time, so that the solution curve lies on a level set
{(R,W ) : H(R,W ) = H0} for some value of H0. It turns out that H(R,W ) = aW+bR−k lnW−r lnR
does the job.
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Here x, y, z are three functions of t whose physical interpretations we omit, and σ, ρ, β are
three real-valued parameters reflecting certain physical properties of the system being
studied; Lorenz used the values σ = 10, β = 8/3, and ρ = 28.

(0, 0, 0)

It is not so difficult to find the equilib-
rium solutions here: if dx

dt
= dy

dt
= dz

dt
= 0,

then the first equation in (20.2) gives y =
x, and the second becomes x(ρ−z−1) = 0,
so either x = y = 0 or z = ρ − 1. If
x = y = 0 then the third equation gives
z = 0, so one equilibrium solution is x =
y = z = 0. If z = ρ−1 then the third equa-
tion gives x = y = ±√βz = ±

√
β(ρ− 1),

so there are two other equilibrium solu-
tions. These three equilibria are shown
in the picture at right, which also draws
a single (numerically computed) solution
of the system for some randomly chosen
non-equilibrium initial condition. Observe
that this solution does not appear to have
any of the long-term behaviors described
above: it does not approach an equilib-
rium solution, nor does it escape off to in-
finity, nor does it approach a periodic so-
lution. Rather, it seems to spiral around
one of the two nonzero equilibria for some
time, then switches to spiral around the other, and so on in some manner that does not
follow any readily discernible pattern.

The butterfly-like object shown in the picture is sometimes called a strange attractor
and is emblematic of the field of chaos theory ; the Lorenz equations display the phe-
nomenon of sensitive dependence on initial conditions, which is a mechanism by which
systems that follow deterministic rules can still exhibit behavior that appears random.
If you search online for animations of the Lorenz attractor, you should have no trou-
ble finding videos showing how solution curves that start very close to each other can
follow each other for a while and then very quickly diverge so that their behavior is
quite different. This means that if you only know the approximate state of a system to
start off with (which reflects the reality that any measurement we make includes some
error), then as time progresses you lose information about what state the system is in,
which can be interpreted as a ‘growth of randomness’. This can be made more precise
by studying entropy, decay of correlations, and other topics in the field of dynamical
systems, but these lie well beyond the scope of this course.
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Part IV. Parametric curves and polar co-
ordinates

Lecture 21 Parametric curves

Stewart §10.1, Spivak Chapter 12 appendix

Suppose we want to write an equation that describes the
curve shown at right. Our usual approach to describing a
curve by an equation is to write y as a function of x, or in
some cases, x as a function of y. However, neither of these
is an option here, since the curve fails both the vertical line
test (so it cannot be written as the graph of y = f(x)) and
the horizontal line test (so it cannot be written as the graph
of x = g(y)).

In such situations, we can describe the curve by writing both x and y as functions of
a new independent variable, instead of writing one as a function of the other. Thus we
introduce a new variable t, called a parameter, and write x = g(t), y = f(t).

We have actually seen this situation several times already. It first appeared when we
solved the catenary problem; although we ended up writing y as a function of x, an
important intermediate step was to write both x and y as a function of arclength s,
and also as a function of another parameter t. We also saw parametric curves appear in
the last lecture on predator-prey models, where a solution of the system of differential
equations was given by a curve written in terms of the parameter t, which represented
time.

Example 21.1. The description of points on the unit circle as x = cos θ, y = sin θ
describes the circle as a parametric curve, where θ is the parameter.

As when graphing curves of the form y = f(x), a useful approach to graphing a
parametric curve is to make a table of values of t together with the corresponding values
of x and y. For example, the curve shown below has the parametrization

(21.1) x = t3 − 3t, y = t2,

and the table at right shows the values of x and y for integer values of t between −3
and 3; the corresponding points are marked on the curve.

x

yt =−3

t =−2

t =1

t =3

t =2
t =−1

t = 0

t -3 -2 -1 0 1 2 3
x -18 -2 2 0 -2 2 18
y 9 4 1 0 1 4 9
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Observe that one needs to be careful to connect the dots in the right order; based on
the positions one might be tempted to connect the dot for t = −2 to the dot for t = 1,
but this would give a very different shape to the curve.

The part of the curve shown in the picture above corresponds to parameter values
lying in the interval [−3, 3]. When we restrict a curve to parameters a ≤ t ≤ b, the
point (x(a), y(a)) is called the initial point of the curve, and (x(b), y(b)) is called the
terminal point.

Remark 21.2. One should be careful to distinguish between a curve, which is a subset of
R2, and a parametric curve, which is a curve equipped with a particular parametrization.
The same curve can be equipped with many different parametrizations. For example,
x = t2, y = t, −1 ≤ t ≤ 1 describes an arc of a parabola opening to the right with vertex
at the origin. This same curve is also described by y = cos t, x = cos2 t. The difference
between two parametrizations is analogous to the difference between two cars following
the same road but with different (and varying) speeds.

As this example illustrates, any curve that can be described as the graph of a function
(y in terms of x, or x in terms of y) can also be given as a parametric curve. The graph
of y = f(x) admits a parametrization x = t, y = f(t), and the graph of x = g(y) admits
a parametrization x = g(t), y = t. Thus our new technique is a more general one.

x(t) = cos t

t

x

y y(t) = sin 2t

t
x

y

x

y

Figure 1. Lissajous figures

Example 21.3. The parametric curve x = cos t, y = sin 2t has the appearance shown
in the ‘figure-eight’ picture at left in Figure 1. Above and to the right of this curve are
drawn the graphs of x and y with respect to the parameter t for 0 ≤ t ≤ 2π, which
covers the entire curve by periodicity. (Actually the t-axis in both graphs is compressed
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to save space.) Note that in the graph of x(t), we plot t along the vertical axis and x
along the horizontal axis.

This is an example of a Lissajous figure, a family of curves given by parametrizations
x = cos(at), y = sin(bt) where a, b ∈ N. (One can also add a phase shift by replacing at
with at + c.) The pictures at right in Figure 1 show Lissajous figures for a = 3, b = 2
(top) and a = 3, b = 4 (bottom).

Example 21.4. Here is a physical example that is easier to describe via a parametric
curve. Consider a circle rolling along the ground; the curve traced out by a point on the
circle is called a cycloid.

x

y

s

r
θ

(x, y)

α

For simplicity, assume that when we start, the point we are interested in is on the
ground, and take this as the origin. Now start rolling the circle to the right, and let
(x, y) be the location of the point we marked. To write a parametric equation for the
cycloid, we let r be the radius of the circle, and write θ for the angle through which it
has rotated so far. Then the total horizontal distance s that the circle has rolled is equal
to the arc length from the bottom of the circle to (x, y), so we have s = rθ, and we see
that the center of the circle is currently at (rθ, r). The displacement of (x, y) from the
center can be given in terms of θ:

(1) if α denotes the angle from the positive horizontal to (x, y) as we move around
the circle (see the picture), then x = rθ + r cosα and y = r + r sinα;

(2) α + θ = 3π
2

, so cosα = cos(3π
2
− θ) = cos 3π

2
cos θ + sin 3π

2
sin θ = − sin θ, and

sinα = sin(3π
2
− θ) = sin 3π

2
cos θ − cos 3π

2
sin θ = − cos θ.

We obtain the following parametrization for the cycloid in terms of θ:

(21.2) x = rθ − r sin θ = r(θ − sin θ), y = r − r cos θ = r(1− cos θ).

Remark 21.5. It turns out that the cycloid arises in the solution of two questions of
historical interest. One of these is the brachistochrone problem, which asks to find the
curve connecting two points A and B in the plane along which an object will slide from
A to B the fastest under the influence of gravity, without friction. It turns out that the
answer is not a straight line, as one might initially expect; rather, it is an (upside-down)
cycloid.

The tautochrone problem asks for a curve with the property that the time it takes an
object to slide down to the lowest point of the curve is independent of the initial height.
It turns out that once again, the solution is an inverted cycloid. The proofs of these
facts, however, require tools from the calculus of variations, which is well beyond the
scope of this course.
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Lecture 22 Calculus with parametrizations
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22.1. Slopes

Suppose we want to find the slope of a parametric curve (x, y) = (f(t), g(t)) at a given
point. We can only do this if near this point, there is a differentiable function F such
that y = F (x) describes the curve. When is this possible? The following diagram is
useful.

t

x y
f

g

F=g◦f−1

f−1

The parametrization lets us write y as a function of t, so we can write y as a function
of x whenever we can write t as a function of x. This happens whenever the function f
is invertible near the value of t that we are interested in; moreover, the chain rule gives
the slope F ′(x) as (f−1)′(x)g′(t).

Recall from last semester that the inverse function f−1 is defined and differentiable
near x = f(t) as long as f ′(t) 6= 0, and that in this case we have (f−1)′(f(t)) = 1/f ′(t).
Thus we have proved the following.

Proposition 22.1. If (x, y) = (f(t), g(t)) is a parametric curve, where f, g are differ-
entiable, and t0 ∈ R is such that f ′(t0) 6= 0, then near t0 we can write y = F (x) for
some differentiable function F , and the slope of the curve at (f(t0), g(t0)) is given by

(22.1)
dy

dx

∣∣∣
x=f(t0)

= F ′(f(t0)) =
g′(t0)

f ′(t0)
=
dy/dt|t=t0
dx/dt|t=t0

.

If f and g are differentiable and g′(t0) = 0 while f ′(t0) 6= 0, then at this point the
curve has a horizontal tangent line; in other words, a horizontal tangent line occurs when
dy
dt

= 0 6= dx
dt

. A vertical tangent line occurs when f ′(t0) = 0 and g′(t0) 6= 0; equivalently,

when dx
dt

= 0 6= dy
dt

.
When testing for horizontal or vertical tangent lines, the condition that the other

derivative not vanish at t0 is very important, as the following example shows.

Example 22.2. Let x = t3 and y = t3; then both dx
dt

and dy
dt

vanish when t = 0, but
the tangent line is neither horizontal nor vertical here since the curve is just the graph
of y = x.

22.2. Convexity

What about the second derivative? If we want to determine whether the curve is
convex or concave, it is useful to compute F ′′(x). To do this we use (22.1) to write

F ′(x) = f ′(t)
g′(t)

, and differentiating gives

(22.2) F ′′(x) =
d

dx
F ′(x) =

d

dx

g′(t)

f ′(t)
=
dt

dx

d

dt

g′(t)

f ′(t)
=

1

dx/dt

d

dt

g′(t)

f ′(t)
=

1

f ′(t)

d

dt

g′(t)

f ′(t)
,
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where the third equality uses the chain rule, and the fourth uses the rule for derivatives
of inverse functions. We can use the quotient rule to expand this as

F ′′(x) =
f ′(t)g′′(t)− g′(t)f ′′(t)

f ′(t)3
,

but it is often easier to just work with the formula in (22.2), which can also be rewritten
as

(22.3)
d2y

dx2
=

d

dx

dy

dx
=

d
dt
dy
dx
dx
dt

.

Remark 22.3. Naive analogy with (22.1) might lead us to expect that the second deriv-

ative is given by d2y/dt2

d2x/dt2
, since we may feel like we could “cancel the two appearances of

dt2”, but we see from the above that this is not the case. This illustrates the dangers of
treating higher derivatives as if they are fractions.

Example 22.4. Recall the parametric curve x = t3 − 3t, y = t2 from (21.1). This has
vertical tangent lines when 0 = dx

dt
= 3t2 − 3, so t = ±1; this corresponds to the points

(∓2, 1). Everywhere else we have dx
dt
6= 0 so we can use (22.1) to write

dy

dx
=

2t

3t2 − 3
.

We see that the only point with a horizontal tangent line occurs when t = 0, when the
curve passes through the origin.

Note that the curve intersects itself where it crosses the y-axis; writing x = 0 gives
t = 0 (at the origin) or t2 − 3 = 0, so t = ±

√
3, and both parameter values correspond

to the point (0, 3). Using t =
√

3, the slope is 2
√

3/6 =
√

3/3; using t = −
√

3, the slope
is −
√

3/3. These correspond to the tangent lines to the two different ‘branches’ of the
curve passing through this point.

To determine concavity and convexity, we use (22.3) to write

d2y

dx2
=

d
dt

( 2t
3t2−3

)
d
dt

(t3 − 3t)
=

1

3t2 − 3
· (3t2 − 3) · 2− 2t(6t)

(3t2 − 3)2
=
−6t2 − 6

(3t2 − 3)3
= −2

9

( t2 + 1

(t2 − 1)3

)
.

This never vanishes, so the graph has no inflection points. The second derivative is
undefined at t = ±1, which makes sense because the first derivative is also undefined

there. For |t| < 1 we have d2y
dx2

> 0 and the graph is convex; for |t| > 1 we have d2y
dx2

< 0
and the graph is concave.

Example 22.5. Consider the cycloid given by the parametrization x = r(θ − sin θ),
y = r(1 − cos θ), where r > 0 is the radius of the circle, and θ ∈ R is the parameter.
Then at a point (x, y) on the cycloid, the slope of the tangent line is given by

dy

dx
=
dy/dθ

dx/dθ
=

r sin θ

r(1− cos θ)
=

sin θ

1− cos θ
.

It is tempting to immediately say “the tangent line is horizontal if and only if sin θ = 0”.
However, the full picture is a little more subtle, because when θ = 2nπ for some n ∈ Z, we
have sin θ = 0 = 1−cos θ, so both numerator and denominator vanish. This corresponds
to the ‘cusp’ at the bottom of the cycloid, where the curve is not differentiable, although
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we can observe that limθ→2nπ±
sin θ

1−cos θ
= ±∞, which reflects the fact that the tangent

line approaches vertical as (x, y) approaches a cusp.
The remaining values of θ for which sin θ = 0 are θ = (2n+ 1)π for some n ∈ Z, and

in this case we have 1− cos θ = 2, so the slope is indeed horizontal; this corresponds to
the highest point on each loop of the cycloid.

The only values of θ for which the denominator vanishes are θ = 2nπ, when cos θ = 1,
and as we saw above we have dy

dθ
= dx

dθ
= 0 at these points.

Lecture 23 Geometry of parametric curves

Stewart §10.2, Spivak Chapter 12 appendix

23.1. Area

Consider the parametric curve (x, y) = (f(t), g(t)), where α ≤ t ≤ β and f, g are
differentiable. Suppose that g ≥ 0 everywhere and that f is increasing, so that writing
a = f(α) and b = f(β), the function f : [α, β] → [a, b] is invertible. Then F = g ◦ f−1

gives y as a function of x:

y = g(t) = g(f−1(x)) = (g ◦ f−1)(x) = F (x).

We know that the area under the curve y = F (x), where a ≤ x ≤ b, is given by

A =
∫ b
a
F (x) dx. Using the substitution rule to write this integral in terms of t, which is

related to x by x = f(t), we have

(23.1) A =

∫ b

a

F (x) dx =

∫ b

a

y dx =

∫ β

α

y
dx

dt
dt =

∫ β

α

g(t)f ′(t) dt.

Example 23.1. The area under one loop of the cycloid is

A =

∫ 2πr

0

y dx =

∫ 2π

0

r(1− cos θ)
(
r(1− cos θ)

)
dθ = r2

∫ 2π

0

(1− 2 cos θ + cos2 θ) dθ

= r2

∫ 2π

0

(
1− 2 cos θ +

1

2
(1 + cos 2θ)

)
dθ = r2

[3

2
θ − 2 sin θ +

1

4
sin 2θ

]2π

0

= r2 · 3

2
· 2π = 3πr2.

23.2. Arc length

As above, consider the parametric curve (x, y) = (f(t), g(t)) on the interval t ∈ [α, β],
where f, g are differentiable. If f ′ > 0 everywhere, then we can find the arc length of this
curve by following the procedure above and writing it as y = F (x) where F = g ◦ f−1;
then the substitution rule gives the arc length as

L =

∫ b

a

√
1 + F ′(x)2 dx =

∫ b

a

√
1 +

(dy
dx

)2

dx =

∫ β

α

√
1 +

(dy/dt
dx/dt

)2

· dx
dt
dt,
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and simplifying gives

(23.2) L =

∫ β

α

√(dx
dt

)2

+
(dy
dt

)2

dt.

The integrand in this final expression can be viewed as an infinitesimal version of the
Pythagorean formula.

What if f ′ is not always positive? What if the curve fails to satisfy the vertical line
test and cannot be written as y = F (x)? In this case we can still follow the procedure
from Lecture 11.1 and consider polygonal approximations to the curve. Partitioning
the interval [α, β] into n subintervals [ti−1, ti] of equal length ∆t = (β − α)/n, where
ti = α+ i∆t for 0 ≤ i ≤ n, and writing Pi = (f(ti), g(ti)), we can once again declare the
length of the curve to be given by (11.1), so that

L = lim
n→∞

n∑
i=1

distance(Pi−1, Pi) = lim
n→∞

n∑
i=1

√
(f(ti)− f(ti−1))2 + (g(ti)− g(ti−1))2

Applying the mean value theorem to f and g on [ti−1, ti] gives t∗i and t∗∗i in this subinterval
such that

f(ti)− f(ti−1) = f ′(t∗i )(ti − ti−1) = f ′(t∗i )∆t and g(ti)− g(ti−1) = g′(t∗∗i )∆t.

Thus we can compute the arc length as

L = lim
n→∞

n∑
i=1

√
(f ′(t∗i )∆t)

2 + (g′(t∗∗i )∆t)2 = lim
n→∞

n∑
i=1

√
(f ′(t∗i ))

2 + (g′(t∗∗i ))2 ·∆t

=

∫ β

α

√
f ′(t)2 + g′(t)2 dt,

where as in Remark 12.2 we observe that the expression on the first line is not quite
a Riemann sum because f ′ and g′ are evaluated at different values of t, but the sum
nevertheless converges to the integral. Observe that the formula we obtained here is the
same as the formula in (23.2). Thus we have the following.

Definition 23.2. If a curve C admits a parametrization (x, y) = (f(t), g(t)), α ≤ t ≤ β,
where f, g are differentiable and the curve C is traversed exactly once as t ranges from
α to β, then the arc length of C is given by

(23.3) L =

∫ β

α

√
f ′(t)2 + g′(t)2 dt =

∫ β

α

√(dx
dt

)2

+
(dy
dt

)2

dt.

Exercise 23.3. Show that the arc length does not depend on the choice of parametriza-
tion; that is, show that if (f1(t), g1(t)) and (f2(t), g2(t)) are two parametrizations of the
same curve, then they give the same value of L in (23.3).

Example 23.4. For the circle x = cos t, y = sin t, t ∈ [0, 2π], we have dx
dt

= − sin t and
dy
dt

= cos t, so (23.3) gives the arc length∫ 2π

0

√
sin2 t+ cos2 t dt =

∫ 2π

0

1 dt = 2π,
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as expected. If we reparametrize the circle as x = cos(t2), y = sin(t2), then dx
dt

=

−2t sin(t2) and dy
dt

= 2t cos(t2), and we return to the starting point (1, 0) when t =
√

2π,
so (23.3) gives the arc length∫ √2π

0

√
4t2 sin2 t2 + 4t2 cos2 t2 dt =

∫ √2π

0

2t dt =
[
t2
]√2π

0
= 2π,

which agrees with the earlier answer.

Example 23.5. The arc length of one loop of the cycloid, which has dx
dθ

= r(1− cos θ)

and dy
dθ

= r sin θ, is given by

L =

∫ 2π

0

√
r2(1− cos θ)2 + r2 sin2 θ dθ =

∫ 2π

0

r
√

1− 2 cos θ + cos2 θ + sin2 θ dθ

= r

∫ 2π

0

√
2− 2 cos θ dθ = r

∫ 2π

0

√
4 sin2 θ

2
dθ = r

∫ 2π

0

2 sin
θ

2
dθ

= r
[
− 4 cos

θ

2

]2π

0
= r
(
− 4(−1)− (−4)(1)

)
= 8r.

23.3. Surface area

Consider a parametric curve (x, y) = (f(t), g(t)) on the interval t ∈ [α, β], where
f, g are differentiable and g > 0; let S be the surface area of the surface of revolution
obtained by rotating this curve around the x-axis. Then similar arguments to those in
Lecture 12.1 show that

S =

∫ β

α

2πy ds =

∫ β

α

2πy

√(dx
dt

)2

+
(dy
dt

)2

dt.

Example 23.6. The sphere of radius r is the surface of revolution for x = r cos t,
y = r sin t, t ∈ [0, π], so its surface area is

S =

∫ π

0

2πr sin t
√
r2 sin2 t+ r2 cos2 t dt =

∫ π

0

2πr2 sin t dt =
[
− 2πr2 cos t

]π
0

= 4πr2.

This is a little simpler than the computation we did in Example 12.6.

23.4. Bezier curves

P0

P1

P2

P3

One useful application of parametric curves is given
by Bézier curves, which are widely used in graphics, de-
sign, animation, and other related fields. A cubic Bézier
curve is given by four control points P0, P1, P2, P3, as
shown in the picture. Intuitively, the curve starts at
P0 and ends at P3, with P1 used to determine the tan-
gent direction at P0, and P2 to determine the tangent
direction at P3.

A nice animation illustrating how to construct
these curves can be found online at https://www.

jasondavies.com/animated-bezier/, and an interactive applet that lets you see how
the curve responds to changes in the locations of the four control points can be found
at https://www.desmos.com/calculator/cahqdxeshd.

https://www.jasondavies.com/animated-bezier/
https://www.jasondavies.com/animated-bezier/
https://www.desmos.com/calculator/cahqdxeshd
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Lecture 24 Polar coordinates
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24.1. Rectangular and polar coordinates

We are accustomed to using a rectangular coordinate system15 to describe points in
the plane: the two real numbers x and y uniquely determine a point P in the plan as the
point that you reach by starting at the origin, moving x units to the right, and moving
y units up. Now we describe a new coordinate system, called polar coordinates.

Start by fixing a reference point, called the pole – usually we choose the origin. Fix an
infinite ray starting at this point, called the polar axis – usually we choose the positive
x-axis. Given real numbers r and θ, the polar coordinates (r, θ) describe a point P in
the plane as follows:

(1) standing at the pole, face in the direction of the polar axis and then rotate θ
radians counterclockwise;

(2) move a distance r in the direction you are now facing.

The point P is the point that you reach at the end of this procedure. To put it another
way, the polar coordinates of P are the real numbers r and θ such that r = |OP | is the
distance from the origin to P , and θ is the angle from the positive x-axis to the line
segment OP .

Remark 24.1. The numbers r and θ uniquely determine P , but (in sharp constrast to
the situation with rectangular coordinates) the other direction requires some choice.

• When r = 0, any value of θ puts P at the origin.
• For r > 0, the angles θ and θ + 2π give the same point P . Thus θ is only

determined up to multiples of 2π. We will often choose θ ∈ (−π, π], but one
could just as easily choose θ ∈ [0, 2π), or any other half-open interval with
length 2π.
• The second procedure described above, for obtaining r and θ from P , always

returns a nonnegative value of r. However, the first procedure, for obtaining
P from r and θ, makes sense even when r is negative, provided we interpret
the second step for a negative value of r as meaning “move backwards by a
distance of |r|”. Then we see that the polar coordinates (−r, θ) and (r, θ + π)
both correspond to the same point.

Exercise 24.2. Plot the points with polar coordinates (1, π
4
), (2, π

2
), (3,−3π

4
), and (4, π).

To compare rectangular and polar coordinates, observe that after rotating by an angle
θ, we are standing at the origin and facing in the direction of the point on the unit circle
with rectangular coordinates (cos θ, sin θ). (Indeed, this is one definition of cos and sin.)
Walking a distance r in this direction moves us to the point (r cos θ, r sin θ). In other
words, rectangular and polar coordinates are related by the equations

(24.1) x = r cos θ, y = r sin θ.

15Also called Cartesian coordinates, after René Descartes.
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These describe the first procedure above; converting polar coordinates to rectangular
coordinates.

Example 24.3. The point with polar coordinates (2, π
3
) has r = 2 and θ = π

3
, so its

rectangular coordinates are

x = 2 cos
π

3
= 2 · 1

2
= 1, y = 2 sin

π

3
= 2 ·

√
3

2
=
√

3.

Remark 24.4. The relationship (24.1) between polar coordinates and rectangular coordi-
nates can be written in a single equation involving complex numbers. Recall that given
a real number θ, the complex exponential function is eiθ = cos θ+ i sin θ, and thus given
r ≥ 0 we have

reiθ = r cos θ + ir sin θ = x+ iy,

where x, y are the real and imaginary parts, respectively, of the complex number reiθ.
If z = reiθ, then the number r is called the modulus of z, and θ is called the argument.
Observe that θ is only defined up to a multiple of 2π.

What about the other direction? If a point has rectangular coordinates (x, y), then
squaring the two equations in (24.1) and adding them together gives

x2 + y2 = r2 cos2 θ + r2 sin2 θ = r2.

If x2 + y2 = 0 then we must have x = y = 0, so the point is the origin and can be
represented as r = 0, θ = any real number. If x2 + y2 6= 0, then we can choose r to be
the positive square root r =

√
x2 + y2 and convert (24.1) to

cos θ =
x

r
, sin θ =

y

r
.

Together these uniquely determine θ in the interval (−π, π], or in any half-open interval
of length 2π. Note that this restriction reflects the ambiguity mentioned in Remark 24.1
above: (r, θ) and (r, θ + 2π) represent the same point, because cos(θ + 2π) = cos θ and
sin(θ + 2π) = sin θ.

Dividing the two halves of (24.1) gives another useful formula,

tan θ =
r sin θ

r cos θ
=
y

x
.

Then θ is determined by any two of the three values cos θ, sin θ, tan θ.
It gets a little messy if we try to explicitly write down a formula for θ in terms of

x, y, r using inverse trigonometric functions. One is tempted to simply write

θ = cos−1 x

r
;

however, in order to invert the cosine function, we must restrict it to an interval on which
it is 1-1. The usual choice is [0, π], but then we would always have sin θ ≥ 0, and so we
would need to choose r < 0 to represent points with y < 0. Thus we should actually
follow a two-step procedure: first look at the sign of y to determine which branch of
cos−1 to use, and then apply cos−1 to find θ. More precisely:

(1) if y < 0, restrict cos to (−π, 0) and then invert, so that θ = cos−1 x
r
∈ (−π, 0);

(2) if y ≥ 0, restrict cos to [0, π] and then invert, so that θ = cos−1 x
r
∈ [0, π].
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Another way of describing this is to take θ = cos−1 x
r
∈ [0, π] and then check the sign of

y: if y ≥ 0, then leave θ as it is, and if θ < 0, then replace θ by −θ.
Exercise 24.5. Describe similar procedures for finding θ using sin−1 y

r
and tan−1 yx; in

both cases the inverse trigonometric function yields a value in [−π
2
, π

2
], and then we must

look at the sign of x to determine whether θ is given by this value or by a related one.

Example 24.6. If P has rectangular coordinates (1,−1), then x = 1 and y = −1, so

r =
√
x2 + y2 =

√
2, and thus

cos−1 x

r
= cos−1 1√

2
=
π

4
.

Since y < 0, the point P lies below the x-axis and we have θ = − cos−1 x
r

= −π
4
.

24.2. Curves in polar coordinates

We know three ways to describe a curve in rectangular coor-
dinates:

(1) explicitly as the graph of y = f(x) or x = g(y);
(2) implicitly as the solution set of F (x, y) = 0;
(3) parametrically as x = f(t), y = g(t).

We can use each of these methods in polar coordinates as well.
First consider the curves r = c and θ = t, where c, t are con-
stants. These curves are shown in the picture at right. Given
c > 0, the equation r = c describes the circle centered at the
origin with radius c. Indeed, since r =

√
x2 + y2 this formula

can be rewritten in rectangular coordinates as the (implicit) for-
mula x2 + y2 = r2 = c2. Given t ∈ R, we either have cos t = 0 (if t is an odd multiple of
π
2
), in which case sin t = ±1 and the curve is the y-axis (x = 0, y = ±r), or cos t 6= 0 in

which case y
x

= tan t, so the curve is the line y = (tan t)x. This shows that the curves of
constant r are concentric circles around the origin, while curves of constant θ are lines
through the origin.

More generally, a curve of the form r = f(θ) can be written parametrically as

(24.2) x = f(θ) cos θ, y = f(θ) sin θ.

The three pictures below illustrate the curves r = θ, r = cos θ, and r = 1 + cos θ, which
we discuss next.

Example 24.7. r = θ gives a spiral curve as shown in the left-hand picture; observe that
increasing θ corresponds to moving around the origin in a counterclockwise direction,
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and that each time we cross the next axis (having increased θ by π
2
) the value of r has

increased and we are further from the origin.

Example 24.8. With the curve r = cos θ, we see that r decreases from 1 to 0 as θ
goes from 0 to π

2
. Then when θ goes over the interval [π

2
, π], where we might expect the

curve to lie in the second quadrant, we have cos θ ≤ 0, so in fact the curve lies in the
fourth quadrant. Moreover, when θ = π we have r = −1 and thus x = 1, y = 0, which
is where the curve starts at θ = 0; thus the entire curve is covered by the parameter
range θ ∈ [0, π]. In fact, the curve is the circle with center at (1

2
, 0) (in rectangular

coordinates) and radius 1
2
; to see this, observe that x = r cos θ = r2 = x2 + y2, so this is

the curve defined in rectangular coordinates by the implicit equation

0 = x2 − x+ y2 =
(
x− 1

2

)2

+ y2 − 1

4
.

Example 24.9. With r = 1 + cos θ, we have r ≥ 0 for all θ, so the curve passes
through all four quadrants. The value of r decreases from 2 to 0 as θ ranges from 0 to
π; this is the top half of the curve shown. The bottom half of the curve corresponds to
θ ∈ [π, 2π], when r increases from 0 back to 2. This curve is called the cardioid because
of its heart-like shape.

Lecture 25 Calculus with polar coordinates

Stewart §10.4.

25.1. Slopes of tangent lines

Consider a curve given in polar coordinates by the formula r = f(θ), where f is dif-
ferentiable. Using the parametric representation of the curve in (24.2), we can compute
the slope of the tangent line at any point by using Proposition 22.1 to write

(25.1)
dy

dx
=
dy/dθ

dx/dθ
=
f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ
=

dr
dθ

sin θ + r cos θ
dr
dθ

cos θ − r sin θ
.

Example 25.1. Consider the curve with polar formula r = cos 2θ. The first picture
below shows the graph of r as a function of θ where these are taken as rectangular
coordinates; this is helpful in order to visualize how r decreases and increases as θ
varies, which in turn lets us picture the graph. The second picture shows the graph of
the curve on the interval θ ∈ [0, π

2
]. Observe how r decreases from 1 to 0 on [0, π

4
], and

then to −1 on [π
4
, π

2
], so that on this second interval the curve actually lies in the third

quadrant. The third picture shows the complete curve, which consists of four copies of
this first piece, each rotated by π

2
from the previous one.

r

θ
2π
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Using (25.1), we see that the slope of the tangent line to the curve r = cos 2θ is

dy

dx
=
−2 sin 2θ sin θ + cos 2θ cos θ

−2 sin 2θ cos θ − cos 2θ sin θ
=
−4 sin2 θ cos θ + (1− 2 sin2 θ) cos θ

−4 sin θ cos2 θ − (2 cos2 θ − 1) sin θ

=
cos θ(1− 6 sin2 θ)

sin θ(1− 6 cos2 θ)
.

Considering θ ∈ [0, 2π) to get one full circuit around the curve, we see that the numerator
vanishes if and only if cos θ = 0 or sin2 θ = 1

6
. The first possibility occurs at the values

θ = π
2

and θ = 3π
2

, while the second occurs for one value of θ in each quadrant. Writing

θ0 = sin−1 1√
6
∈ (0, π

2
) for the value of θ in this interval at which sin2 θ = 1

6
, we see that

the four values at which this occurs are θ = θ0, π − θ0, π + θ0, 2π − θ0. This gives six
points at which the numerator vanishes.

Similarly, the denominator vanishes if and only if sin θ = 0 or cos2 θ = 1
6
. The

first possibility occurs at θ = 0 and θ = π, while the second occurs at one point in
each quadrant. Writing θ1 = cos−1 1√

6
∈ (0, π

2
) for the value of θ in this interval with

cos2 θ = 1
6
, we see that the four values at which this occurs are θ1, π− θ1, π+ θ1, 2π− θ1.

This gives six points at which the denominator vanishes; observe that this does not
include any of the points at which the numerator vanishes.

Since the denominator is nonzero everywhere that the numerator vanishes, we see that
the tangent line is horizontal when θ = π

2
, 3π

2
, which corresponds to the points (0,±1),

and when θ ∈ {θ0, π − θ0, π + θ0, 2π − θ0}. At θ = θ0 we have

x = cos 2θ cos θ = (1− 2 sin2 θ) cos θ =
2

3

√
1− sin2 θ0 =

2

3

√
5

6
,

y = cos 2θ sin θ = (1− 2 sin2 θ) sin θ =
2

3

√
1

6
.

Thus the four points with horizontal tangent lines are (±2
3

√
5
6
,±2

3

√
1
6
).

Similarly, since the numerator is nonzero everywhere that the denominator vanishes,
the tangent line is vertical when θ ∈ {0, π, θ1, π−θ1, π+θ1, 2π−θ1}, and these six points

have coordinates (±1, 0) and (±2
3

√
1
6
,±2

3

√
5
6
).

25.2. Area in polar coordinates

θ = b

θ = a

We know that in rectangular coordinates, the region
bounded by the curves x = a, x = b, y = 0, and y = f(x)

has area
∫ b
a
f(x) dx. What about polar coordinates? What

is the area of the region bounded by the curves θ = a, θ = b,
and r = f(θ)?

As usual, we fix a large n ∈ N and divide the parameter
interval [a, b] into n subintervals of equal length ∆θ = (b−
a)/n, with endpoints θi = a + i∆θ. Then the ith interval
[θi−1, θi] determines a ‘wedge’ such as the one shown in the picture, whose area is ≈
1
2
f(θ∗i )

2∆θ, where θ∗i ∈ [θi−1, θi] and we remember that a sector of a circle with angle
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θ and radius r has area 1
2
θr2. Adding these areas together gives a Riemann sum, and

taking a limit as n→∞ we see that the area of the region is given by

(25.2) A = lim
n→∞

n∑
i=1

1

2
f(θ∗i )∆θ =

∫ b

a

1

2
f(θ)2 dθ.

Example 25.2. The right-most leaf of the “clover” shape from Example 25.1 corre-
sponds to the parameter interval θ ∈ [−π

4
, π

4
], so its area is

A =

∫ π/4

−π/4

1

2
r2 dθ =

∫ π/4

−π/4

1

2
cos2 2θ dθ =

∫ π/4

0

cos2 2θ dθ

=

∫ π/4

0

1

2
(1 + cos 4θ) dθ =

1

2

[
θ +

1

4
sin 4θ

]π/4
0

=
π

8
.

A = −A1 A2

Example 25.3. Consider two circles with radius 1 whose centers are a distance 1 apart.
What is the area of the region that lies outside one circle and inside the other?

Choose polar coordinates in which the first circle is centered at the origin, so its polar
equation is r = 1. Recall that r = cos θ gives a circle centered at (1

2
, 0) with radius 1

2
,

so the second circle has polar equation r = 2 cos θ. Observe that these circles intersect
when 1 = r = 2 cos θ, so cos θ = 1

2
, which occurs when θ = ±π

3
. As shown in the

picture, the region in which we are interested in is given by the inequalities −π
3
≤ θ ≤ π

3
and 1 ≤ r ≤ 2 cos θ. Its area is A = A1 − A2, where A1 is the area of the region
inside r = 2 cos θ and A2 is the area of the region inside r = 1. Our area formula gives

A1 =
∫ π/3
−π/3

1
2
(2 cos θ)2 dθ and A2 =

∫ π/3
−π/3

1
2
· 1 dθ, so we get

A =

∫ π/3

−π/3

1

2
(4 cos2 θ − 1) dθ =

∫ π/3

0

(4 cos2 θ − 1) dθ

=

∫ π/3

0

(2 cos(2θ) + 1) dθ =
[

sin(2θ) + θ
]π/3

0
= sin

2π

3
+
π

3
=

√
3

2
+
π

3
.

Remark 25.4. In the above example we found the intersection points of two curves
r = f(θ) and r = g(θ) by finding the values of θ for which f(θ) = g(θ). There is one
caveat that comes with this process. Suppose we look for intersection points of the four-
leaf clover r = cos 2θ with the circle r = 1

2
. Solving cos 2θ = 1

2
produces 4 solutions in

[0, 2π), but it is clear from the picture following Example 25.1 that the circle intersects
the clover in 8 places. The other 4 intersections come from points where r is negative;
in other words, they correspond to solutions of f(θ + π) = g(θ). When we are dealing
with curves for which r may take negative values, we must be on the alert for this
phenomenon.
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25.3. Arc length in polar coordinates

To find the arc length of a curve r = f(θ) given in polar coordinates, we can once
again proceed by writing it as a parametric curve

x = f(θ) cos θ, y = f(θ) sin θ,

so that
dx

dθ
=
dr

dθ
cos θ − r sin θ,

dy

dθ
=
dr

dθ
sin θ + r cos θ,

and the derivative of the arc length function s has square given by(ds
dθ

)2

=
(dx
dθ

)2

+
(dy
dθ

)2

=
(dr
dθ

)2

cos2 θ − 2r
dr

dθ
cos θ sin θ + r2 sin2 θ

+
(dr
dθ

)2

sin2 θ + 2r
dr

dθ
cos θ sin θ + r2 cos2 θ,

Q

R P

O

∆r

r∆θ

∆θ

∆s

which simplifies to

(25.3)
(ds
dθ

)2

=
(dr
dθ

)2

+ r2.

As a mnemonic aid to remembering (25.3), we can multiply
through by (dθ)2 to get

(25.4) (ds)2 = (dr)2 + r2(dθ)2,

where once again we have the caveat that we have not given these symbols an inde-
pendent meaning. The formula (25.4) can be remembered by considering the diagram
shown, in which P has polar coordinates (r, θ), Q has polar coordinates (r+∆r, θ+∆θ),
and R has polar coordinates (r, θ + ∆θ). Then the circular arc from P to R has length
r∆θ and the line segment RQ has length ∆r. The piece of curve from P to Q is not
quite the hypotenuse of a right triangle with legs r∆θ and ∆r, but it is very close to
being this, and thus a good approximation to its length is given by

(∆s)2 = (r∆θ)2 + (∆r)2.

As P and Q get closer together, this approximation becomes better, and the meaning of
(25.4) is that in the limit it gives exactly the integrand we need to compute arc length.
In particular, using (25.3) we conclude that the arc length over the interval a ≤ θ ≤ b is

(25.5) L =

∫ b

a

√
r2 +

(dr
dθ

)2

dθ.

Example 25.5. The curve r = 2 cos θ for 0 ≤ θ ≤ π has arc length

L =

∫ π

0

√
(2 cos θ)2 + (−2 sin θ)2 dθ =

∫ π

0

2 dθ = 2π,

which is reassuring since this is a circle with radius 1.

Example 25.6. The arc length of the cardioid r = 1 + cos θ (0 ≤ r ≤ 2π) is

L =

∫ 2π

0

√
(1 + cos θ)2 + (− sin θ)2 dθ =

∫ 2π

0

√
1 + 2 cos θ + cos2 θ + sin2 θ dθ
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=

∫ 2π

0

√
2 + 2 cos θ dθ =

√
2

∫ 2π

0

√
1 + cos θ dθ.

Multiplying top and bottom by
√

1− cos θ gives∫ 2π

0

√
1 + cos θ dθ =

∫ 2π

0

√
(1 + cos θ)(1− cos θ)√

1− cos θ
dθ =

∫ 2π

0

√
1− cos2 θ√
1− cos θ

dθ

=

∫ 2π

0

| sin θ|√
1− cos θ

dθ =

∫ π

0

sin θ√
1− cos θ

dθ +

∫ 2π

π

− sin θ√
1− cos θ

dθ.

The substitution u = 1− cos θ has du = sin θ and thus∫
sin θ√

1− cos θ
dθ =

∫
u−1/2 du = 2

√
u+ C = 2

√
1− cos θ + C.

Using this we can evaluate the above integrals and conclude that∫ 2π

0

√
1 + cos θ dθ =

[
2
√

1− cos θ
]π

0
−
[
2
√

1− cos θ
]2π

π
= 2
√

2− 0− (0− 2
√

2) = 4
√

2.

Thus the arc length of the cardioid is L =
√

2 · 4
√

2 = 8.
An alternate method for evaluating

∫ 2π

0

√
1 + cos θ dθ (instead of the algebraic trick

we used) is to use the identity cos θ = 2 cos2 θ
2
− 1 to write

(25.6)

∫ 2π

0

√
1 + cos θ dθ =

∫ 2π

0

√
2 cos2

θ

2
dθ =

√
2

∫ 2π

0

∣∣∣ cos
θ

2

∣∣∣ dθ.
Since cos 2π−θ

2
= cos(π− θ

2
) = − cos θ

2
, we see that the function θ 7→ | cos θ

2
| is symmetric

around the line θ = π, and thus
∫ π

0
| cos θ

2
| dθ =

∫ 2π

π
| cos θ

2
| dθ, so we conclude that∫ 2π

0

∣∣∣ cos
θ

2

∣∣∣ dθ = 2

∫ π

0

∣∣∣ cos
θ

2

∣∣∣ dθ = 2

∫ π

0

cos
θ

2
dθ = 2

[
2 sin

θ

2

]π
0

= 4,

where the second equality uses the fact that cos θ
2
≥ 0 for all θ ∈ [0, π]. Together with

(25.6) this once again gives
∫ 2π

0

√
1 + cos θ dθ = 4

√
2, thus L = 8.
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Part V. Sequences and series

Lecture 26 Sequences

Stewart §11.1, Spivak Ch. 22

26.1. Sequences and limits

A sequence is a list of numbers a1, a2, a3, . . . in a given order (so 1, 2, 3, 4, . . . is a
different sequence from 1, 3, 2, 4, . . . ); equivalently, a sequence is a function from N to
R. We refer to an as the nth term of the sequence. We will often write {an}, {an}∞n=1,
(an), or (an)∞n=1 to refer to the sequence as a whole.

A sequence may or may not be given in terms of a nice formula: for example, an = n
n+1

has a nice explicit formula for each term, while the sequence

b1 = 0, bn+1 = 1 +
√
bn

is defined recursively, and there is no simple formula for its nth term. Or we might
consider the sequence whose nth term cn is the nth digit of the decimal expansion of π,
and then there is neither an explicit nor recursive formula that is readily available. A
similar thing occurs with the sequence 2, 3, 5, 7, 11, 13, 17, . . . , where the nth term pn is
the nth prime number.

We can plot a sequence {an} by drawing a dot at each of the points (n, an); this is
the graph of the function N→ R defined by n 7→ an. The first picture shows the result
for an = n

n+1
(with the horizontal axis compressed to save space).

an

n

0 1

Another option is to draw a number line and put a dot at an for each value of n,
as shown in the second picture. This second method has the advantage of providing a
more compact representation, but the disadvantage that it loses all information about
the order in which the terms of the sequence appear, since permuting these terms would
result in the same picture; moreover, if several terms of the sequence are close together
then it becomes difficult to distinguish them. In the end, we tend not to rely on graphical
representations of sequences nearly as much as we do for functions R → R, and so we
will not use either of these methods that often.

Many of our basic definitions and theorems about limits for functions have analogues
for sequences.
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Definition 26.1. A sequence {an} has a limit L ∈ R if for every ε > 0 there exists
N ∈ N such that for every n ≥ N , we have |an − L| < ε. In this case we write
limn→∞ an = L, or sometimes “an → L as n → ∞”. If the sequence an has a limit, we
say that the sequence converges. If it does not have a limit, we say that the sequence
diverges.

The following simple fact will occasionally be useful.

Exercise 26.2. Prove that limn→∞ an+1 = limn→∞ an whenever the sequence converges.

Definition 26.3. One type of diverging sequence is worth particular mention. We
write limn→∞ an = ∞ (or sometimes “an → ∞ as n → ∞”) if for every M > 0 there
exists N ∈ N such that for every n ≥ N , we have an ≥ M , and limn→∞ an = −∞ (or
an → −∞) if for every M > 0 there exists N ∈ N such that for every n ≥ N we have
an ≤ −M .

Exercise 26.4. Show that the sequence xn = (−1)n is divergent.

All of the limit laws still work, just as they did for functions. Thus we have

lim
n→∞

n

n+ 1
= lim

n→∞
1

1 + 1
n

=
1

limn→∞(1 + 1
n
)

=
1

1 + limn→∞
1
n

=
1

1 + 0
= 1.

Similarly, the squeeze theorem still holds.

Theorem 26.5 (Squeeze theorem). Given three sequences satisfying an ≤ bn ≤ cn for
all n, if we have limn→∞ an = limn→∞ cn = L, then limn→∞ bn = L as well.

Proof. Exercise: recall the proof of the squeeze theorem for functions, and adapt it.
Observe that as part of the proof, you must show that the sequence bn converges. �

Proposition 26.6. A sequence an converges to 0 if and only if |an| also converges to 0.

Proof. We have −|an| ≤ an ≤ |an| for all n, so if |an| → 0 then −|an| → 0 by the limit
laws, and the squeeze theorem implies that an → 0 as well. The other direction is a
short exercise using the definition. �

Theorem 26.7. If a sequence {an} and a function f : R→ R are related by an = f(n),
and if moreover we have limx→∞ f(x) = L, then limn→∞ an = L.

Proof. Exercise. �

Example 26.8. If bn = lnn
n

, then we have bn = f(n) where f(x) = lnx
x

. Since lnx→∞
as x → ∞, we see that limx→∞ f(x) has indeterminate form, and so l’Hospital’s rule
together with Theorem 26.7 gives

lim
n→∞

bn = lim
x→∞

lnx

x
= lim

x→∞
1/x

1
= 0.

Example 26.9. The sequence (−1)n whose terms are −1, 1,−1, 1,−1, 1, . . . diverges,

but the sequence (−1)n

n
whose terms are − 1

n
, 2
n
,− 3

n
, 4
n
, . . . converges to 0 by Proposition

26.6, since 1
n
→ 0.

Theorem 26.10. If f is a function that is continuous at L, and an is a sequence in the
domain of f such that limn→∞ an = L, then limn→∞ f(an) = f(L).
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Proof. Exercise (use the definition of continuity). �

Example 26.11. Since π
n
→ 0 as n → ∞ and since θ 7→ sin θ is continuous at 0, we

have
lim
n→∞

sin
π

n
= sin

(
lim
n→∞

π

n

)
= sin 0 = 0.

Example 26.12. Consider the sequence an = n!
nn

. The numerator and denominator
both diverge to ∞, so this has indeterminate form, but we cannot use l’Hospital’s rule
without first finding some differentiable function f(x) such that f(n) = n!. Since we do
not know any such function,16 we use a different argument, and observe that for every
n we have

0 ≤ an =
1

n
·
( 2

n
· 3

n
· · · n

n

)
≤ 1

n
.

Since 1
n
→ 0, the squeeze theorem implies that n!

nn
→ 0 as n→∞.

Example 26.13. Recall from our study of exponential functions that

lim
x→∞

ax =


0 if 0 ≤ a < 1,

1 if a = 1,

∞ if a > 1.

Using Theorem 26.7, this implies that given r ≥ 0, the sequence rn satisfies

lim
n→∞

rn =


0 if 0 ≤ r < 1,

1 if r = 1,

∞ if r > 1.

In particular, given any r ∈ (−1, 1), we have

|rn| = |r|n → 0 since |r| ∈ [0, 1).

By Proposition 26.6, this implies that rn → 0. We conclude that rn → 0 for every
|r| < 1, and rn → 1 when r = 1. For all other values of r, the sequence rn diverges.

26.2. Monotonic sequences

A sequence an is called increasing if an+1 > an for every n, and decreasing if an+1 < an
for every n. If one of these conditions holds, then the sequence is called monotonic.

Remark 26.14. If we weaken the condition to an+1 ≥ an for all n, then we say that
the sequence is nondecreasing. Similarly if an+1 ≤ an for all n, then the sequence
is nonincreasing. You should be warned that some authors use “increasing” to mean
“nondecreasing”, and say “strictly increasing” when they mean an+1 > an; similarly for
“decreasing” and “strictly decreasing. Thus if you encounter the words “increasing” or
“decreasing” when you read a piece of mathematics, it is worth checking to see in which
sense the author is using them.

Example 26.15.

(1) The sequence 3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . . is increasing.17

16In fact there is such a function, called the gamma function, but we have not studied this yet.
17Actually to make this completely true, we need to add two digits whenever we encounter a 0 in

the decimal expansion of π; as given, the sequence is merely nondecreasing.
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(2) The sequence an = 1
n

is decreasing, since n+ 1 > n implies 1
n+1

< 1
n
.

(3) The sequence bn = n is increasing.
(4) The sequence cn = (−1)n is neither increasing nor decreasing.
(5) The sequence dn = n

n2+1
is decreasing. To prove this we can observe that dn =

f(n) where f(x) = x
x2+1

has derivative

f ′(x) =
(x2 + 1) · 1− x · 2x

(x2 + 1)2
=

1− x2

(x2 + 1)2
< 0 for all x > 1

and thus is decreasing on (1,∞). Alternately we can use the direct computation

dn+1 − dn =
n+ 1

(n+ 1)2 + 1
− n

n2 + 1
=

(n+ 1)(n2 + 1)− n(n2 + 2n+ 2)

(n2 + 2n+ 2)(n2 + 1)

=
(n3 + n2 + n+ 1)− (n3 + 2n2 + 2n)

(n2 + 2n+ 2)(n2 + 1)
=

1− n− n2

(n2 + 2n+ 2)(n2 + 1)
< 0.

Definition 26.16. A sequence {an} is bounded above if there exists M ∈ R such that
an ≤M for all n ∈ N; in this case M is called an upper bound for the sequence.

Similarly, the sequence is bounded below if there exists m ∈ R such that an ≥ m for
all n ∈ N; in this case m is a lower bound for the sequence.

We say that {an} is bounded if it is bounded above and bounded below.

Exercise 26.17. Show that {an} is bounded if and only if {|an|} is bounded above.

Example 26.18.

(1) The sequence 3, 3.1, 3.14, 3.141, 3.1415, . . . is bounded; 3 is a lower bound, and
π is an upper bound.

(2) The sequence an = 1
n

is bounded; 0 is a lower bound, and 1 is an upper bound.
(3) The sequence bn = n is bounded below by 1, but is not bounded above.
(4) The sequence cn = (−1)n is bounded; −1 is a lower bound, and 1 is an upper

bound.
(5) The sequence dn = n

n2+1
is bounded; 0 is a lower bound, and d1 = 1

2
is an upper

bound because the sequence is decreasing.

Observe that in each of these cases, the lower and upper bounds that are quoted are
in fact optimal. For example, −1 is also a lower bound for the sequence an = 1

n
, but

it seems better to use the (larger) lower bound 0, since this carries more information.
Similarly, 2 is an upper bound for this sequence, but the upper bound 1 is in some sense
better. This line of thinking motivates the following definition.

Definition 26.19. A real number M is the least upper bound for a sequence {an} if

• M is an upper bound (an ≤M for all n ∈ N), and
• no number smaller than M is an upper bound (for every L < M , there is n ∈ N

such that an > L).

In this case we also call M the supremum of the sequence, and write M = supn an.
Similarly, m is the greatest lower bound for {an} if

• m is a lower bound (an ≥ m for all n ∈ N), and
• no number larger than m is an upper bound (for every ` > m, there is n ∈ N

such that an < `).
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In this case we also call m the infimum of the sequence, and write m = infn an.

It is easy to identify the supremum or infimum when it occurs as a term in the
sequence; in the example above, this was the case for the infimums of the increasing se-
quences 3, 3.1, 3.141, . . . and bn = n, and for the supremums of the decreasing sequences
an = 1

n
and dn = n

n2+1
. It was also the case for cn = (−1)n, where every term is either

±1.
When the supremum or infimum does not occur as a term in the sequence, we rely on

the following fundamental property of the real numbers.18

Least Upper Bound Property. If {an} is a sequence of real numbers that is bounded
above, then it has a least upper bound in the real numbers. Similarly, if {an} is a
sequence of real numbers that is bounded below, then it has a greatest lower bound in the
real numbers.

Remark 26.20. The Least Upper Bound Property is not a theorem that we are going
to prove; rather, it is a fundamental property of the real numbers, which we assume as
an axiom. Later in your mathematical career, you will learn how to construct the real
numbers in such a way that this property is satisfied. For now we content ourselves
with the observation that this property fails dramatically if we work with the rational
numbers instead of the real numbers. Indeed, the first sequence in Example 26.18 is a
sequence of rational numbers that admits a rational upper bound (4 will work) but does
not have a least upper bound in the rational numbers (because π is irrational).

Theorem 26.21 (Monotone Convergence Theorem). If an is a nondecreasing sequence
that is bounded above, then it converges to its supremum. Similarly, if bn is a nonin-
creasing sequence that is bounded below, then it converges to its infimum.

Proof. Let M be the least upper bound of the sequence an. Then for every ε > 0, the
numbers M − ε is not an upper bound (by the definition of least upper bound), so there
is some N ∈ N such that aN > M − ε. But since the sequence is nondecreasing, this
implies that for every n ≥ N we have M − ε < aN ≤ an ≤ M , which verifies the
definition of a limit and proves the first half of the theorem. The second half follows by
observing that an = −bn is nondecreasing and is bounded above. �

Observe that the first, second, and last sequences in Example 26.18 illustrate the
theorem; the first sequence converges to its supremum π, while the second and last
sequences converge to their infimum 0.

Example 26.22. Define a sequence an recursively by a1 = 1, an+1 = 1
2
(an + 2). We

claim that an ≤ 2 for all n, and that an is nondecreasing. Observe that if an ≤ 2, then
an+1 ≤ 2 as well, so the first claim follows by induction since a1 = 1 < 2. Moreover,
if an ≤ 2, then an+1 = 1

2
(an + 2) ≥ 1

2
(an + an) = an, so an is nondecreasing. By the

Monotone Convergence Theorem, L = limn→∞ an exists. Thus we have

L = lim
n→∞

an+1 = lim
n→∞

1

2
(an + 2) =

1

2

((
lim
n→∞

an

)
+ 2

)
=

1

2
(L+ 2),

and solving for L gives L = 2. Thus an → 2 as n→∞.

18We state the property for sequences, but in fact it, and the definitions of infimum and supremum
above, are valid for any subset of R.
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Lecture 27 Summing an infinite series
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27.1. Convergence and divergence

Suppose we want to add together all of the terms of a sequence a1, a2, a3, . . . . We
refer to this as an infinite series (often just series) and write

a1 + a2 + a3 + · · ·+ an + · · · =
∞∑
n=1

an =
∑

an,

where the last notation is a shorthand that we will usually avoid, preferring to write the
bounds of summation explicitly to avoid confusion.

Does this notion make sense? What does it mean to add infinitely many numbers
together? Certainly we feel as though we run into trouble if we try to compute 1 + 2 +
3+4+· · · . On the other hand, if we are confronted with the sum

∑∞
n=1

1
2n

= 1
2
+ 1

4
+ 1

8
+· · · ,

then we may reasonably observe that the first n terms in the sum admit the explicit
formula

1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
= 1− 1

2n
,

which can easily be proved by induction. The RHS converges to 1 as n → ∞, so it is
reasonable to say that the infinite sum

∑∞
n=1

1
2n

also converges to 1.

Definition 27.1. Given a sequence {an}, the corresponding series is
∑∞

n=1 an. The
partial sums of the series are the numbers Sn =

∑n
k=1 ak. If the sequence of partial sums

converges to a real number S, then we say that the series
∑
an is convergent, and write∑∞

n=1 an = S; we call S the sum of the series. If the sequence of partial sums does not
converge, we say that the series is divergent.

A good way of remembering this is by the notation

∞∑
n=1

an = lim
N→∞

N∑
n=1

an,

which is clearly analogous to the way we dealt with improper integrals:∫ ∞
1

f(x) dx = lim
t→∞

∫ t

1

f(x) dx.

We will develop the relationship between infinite series and improper integrals further
in a little while.

27.2. Geometric series

Example 27.2. A geometric series is a series of the form

a+ ar + ar2 + ar3 + · · · =
∞∑
n=1

arn−1,
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where a, r ∈ R. If r = 1 then clearly this series diverges since the nth partial sum is
Sn = an. When r 6= 1, we can write the nth partial sum explicitly by observing that

Sn = a+ ar + ar2 + · · ·+ arn−1,

rSn = ar + ar2 + ar3 + · · ·+ arn.

Subtracting these two gives

Sn − rSn = a− arn ⇒ Sn =
(1− rn

1− r
)
a.

This diverges if |r| ≥ 1, while if |r| < 1 then we have

lim
n→∞

Sn =
(1− limn→∞ rn

1− r
)
a =

a

1− r .

The result of this example is important enough to be worth stating as a theorem.

Theorem 27.3. The geometric series
∑∞

n=1 ar
n−1 is convergent if and only if |r| < 1,

and in this case the sum is a
1−r .

Example 27.4.
∑∞

n=1 22n31−n =
∑∞

n=1
4n

3n
· 3 diverges because it is a geometric series

with r = 4
3
.

Example 27.5. The repeating decimal 3.241 = 3.2414141414141 . . . can be written
using a geometric series:

3.241 = 3.2 +
41

103
+

41

105
+

41

107
+ · · · = 3.2 +

41

103

∞∑
n=1

(10−2)n−1

=
32

10
+

41

103
· 1

1− 1
100

=
32

10
+

41

10 · 99
=

3209

990
.

It is also worth highlighting the case of a geometric series with a = 1: given any
|x| < 1, we have

∞∑
n=0

xn =
∞∑
n=1

xn−1 =
1

1− x.

This is our first example of a power series representation of a function, which we will
spend more time on later.

27.3. Other examples

Example 27.6. Consider the series

∞∑
n=1

1

n(n+ 1)
=

1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · · .

To compute the partial sums and determine convergence or divergence, we can use the
observation that

1

n(n+ 1)
=

1

n
− 1

n+ 1
,
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and thus

Sn =
n∑
k=1

1

k(k + 1)
=

n∑
k=1

(1

k
− 1

k + 1

)
=
(

1− 1

2

)
+
(1

2
− 1

3

)
+
(1

3
− 1

4

)
+ · · ·+

( 1

n
− 1

n+ 1

)
= 1− 1

n+ 1
.

The sum
∑n

k=1( 1
k
− 1

k+1
) is called a telescoping sum because it collapses into the short

easy-to-handle expression 1− 1
n+1

. We now see that Sn → 1 as n→∞, so the series is
convergent and the infinite sum is 1.

Example 27.7. The series
∑∞

n=1
1
n

is called the harmonic series. We claim that it is
divergent. To prove this, observe that

S1 = 1, S2 = 1 +
1

2
, S4 = 1 +

1

2
+

1

3
+

1

4︸ ︷︷ ︸
>2· 1

4
= 1

2

> 1 + 2 · 1

2
,

and that similar estimates are available for S8, S16, etc.:

S8 = S4 +
1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸
>4· 1

8
= 1

2

> S4 +
1

2
> 1 + 3 · 1

2
,

S16 = S8 +
16∑
n=9

1

n
> S8 +

16∑
n=9

1

16
= S8 +

1

2
> 1 + 4 · 1

2
.

In general, we have

S2n+1 = S2n +
2n+1∑

k=2n+1

1

k
> S2n +

2n+1∑
k=2n+1

1

2n+1
= S2n + 2n · 1

2n+1
= S2n +

1

2
,

and it follows by induction that for every n we have S2n > 1 + n
2
. Since the RHS goes

to ∞ as n → ∞, we conclude that the partial sums diverge, hence the harmonic series
diverges.

Remark 27.8. Writing N = 2n, the lower bound above gives
∑N

k=1
1
k
> n

2
= 1

2
log2N . In

fact a better estimate is
∑N

k=1
1
k
≈ lnN , but this takes a little more work.

27.4. Basic theorems

Theorem 27.9. If the series
∑∞

n=1 an is convergent, then the sequence of terms an
converges to 0.

Proof. As usual, let Sn =
∑n

k=1 ak, and observe that an = Sn − Sn−1. If the series is
convergent then L = limn→∞ Sn exists, and by Exercise 26.2 and the limit laws we have

lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = lim
n→∞

Sn − lim
n→∞

Sn−1 = L− L = 0. �

Remark 27.10. It is worth reiterating that every series has two sequences associated to
it: the sequence of terms, which we often denote an, and the sequence of partial sums
which we often denote Sn. Theorem 27.9 says that if Sn converges, then an converges
to 0.
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Remark 27.11. The converse of this theorem is not true; an → 0 does not guarantee that
the series converges, as the example of the harmonic series illustrates.

Corollary 27.12. If an is a divergent sequence, or a convergent sequence whose limit
is not equal to 0, then the corresponding series

∑∞
n=1 an is divergent.

Example 27.13.
∑∞

n=1
2n2

n2+1
diverges because 2n2

n2+1
→ 2.

Theorem 27.14. If the series
∑∞

n=1 an and
∑∞

n=1 bn both converge, then so do the series∑∞
n=1(an + bn),

∑∞
n=1(an − bn), and

∑∞
n=1 can, where c ∈ R. Moreover, we have

∞∑
n=1

(an ± bn) =
( ∞∑
n=1

an

)
±
( ∞∑
n=1

bn

)
,

∞∑
n=1

(can) = c
( ∞∑
n=1

an

)
.

Proof. We prove the result for addition and leave the others as exercises. Observe that
the partial sums Sn =

∑n
k=1(ak + bk) satisfy

Sn =
( n∑
k=1

ak

)
+
( n∑
k=1

bk

)
,

and the two sequences of partial sums on the RHS converge by assumption, so the limit
law for addition gives

lim
n→∞

Sn = lim
n→∞

( n∑
k=1

ak

)
+ lim

n→∞

( n∑
k=1

bk

)
=
∞∑
n=1

an +
∞∑
n=1

bn.

The other two results are similar, using the corresponding limit laws. �

Example 27.15.
∞∑
n=1

( 2

n(n+ 1)
+

3

2n

)
= 2

∞∑
n=1

1

n(n+ 1)
+

3

2

∞∑
n=1

(1

2

)n−1

= 2 · 1 +
3/2

1− 1
2

= 2 + 3 = 5.

We conclude with one more general observation: convergence only depends on the
‘tail’ of the series, and is not affected if we change finitely many terms. The following
exercise makes this precise.

Exercise 27.16. Let
∑
an and

∑
bn be two series with the property that there exists

N ∈ N such that an = bn for all n ≥ N ; in other words, we can obtain (bn) from (an) by
changing finitely many terms. Show that

∑
an converges if and only if

∑
bn converges.

For example, if an = 1
n

for n < 1000 and an = 2−n for n ≥ 1000, then
∑
an converges

even though the first part (the first 1000 terms) looks like the (divergent) harmonic series,
because we can obtain an from the (convergent) geometric series

∑
2−n by changing

finitely many terms.

Lecture 28 The integral test

Stewart §11.3, Spivak Ch. 23



102

28.1. Some examples and a theorem

In Example 27.6 we showed that the series
∑

1
n(n+1)

=
∑

1
n2+n

converges. What about

the series
∑∞

n=1
1
n2 ? In this case we have no nice formula for Sn = 1 + 1

22
+ 1

32
+ · · ·+ 1

n2 ,
so it is not clear how to check whether the partial sums converge.

y = 1
x2

(1, a1)

a1

(2, a2)

a2

(3, a3)

a3

(4, a4)

a4

One approach is to observe that an = 1
n2 = f(n),

where f(x) = 1
x2

, and the integral of f(x) is easy

to compute; then we need to compare
∑n

k=1
1
k2

and∫ n
1

1
x2
dx. The picture at right shows how to do

this. The rectangles shown have areas a1, a2, . . . ,
and they all lie underneath the graph of 1

x2
. In

particular, we see that for any n ≥ 2, the region
covered by the rectangles with areas a2, a3, . . . , an
lies inside the region underneath the graph between x = 1 and x = n, so we have

a2 + a3 + · · ·+ an ≤
∫ n

1

1

x2
dx =

[
− 1

x

]n
1

= 1− 1

n
.

We conclude that the partial sums of the series satisfy

Sn = a1 + a2 + a3 + · · ·+ an ≤ 2− 1

n
≤ 2

for all n, so the sequence of partial sums is bounded above. Since all the terms an
are positive, the sequence Sn is also increasing, and thus by the monotone convergence
theorem it converges.

Remark 28.1. Note that the above argument gives us no information about the actual
value of the infinite sum

∑∞
n=1

1
n2 , merely that it converges. In fact one can prove that

the value is π2

6
, but this takes significantly more work than we will enter into here.

y = 1√
x

(1, a1)

a1

(2, a2)

a2

(3, a3)

a3

Now consider another example, the series∑∞
n=1

1√
n
. In this case the above argument does

not yield an upper bound for the partial sums, be-
cause

∫ n
1

1√
x
dx = [2

√
x]n1 = 2(

√
n− 1)→∞. This

suggests that perhaps we should try to prove that
this series is divergent. And indeed, by modifying
the above picture slightly, sliding each rectangle
one unit to the right so that their tops lie above
the graph of the function, we obtain the bound

Sn = a1 + a2 + a3 + · · ·+ an ≥
∫ n+1

1

1√
x
dx = 2(

√
n+ 1− 1).

The RHS diverges to ∞ as n→∞, so we conclude that the series
∑∞

n=1
1√
n

diverges.

The arguments used in these two examples lead to the following result.

Theorem 28.2 (Integral test for series). Consider the series
∑
an. Suppose that

f : [1,∞) → [0,∞) is a continuous, nonnegative, nonincreasing function such that
f(n) = an for all n ∈ N. Then

∑
an converges if and only if the improper integral∫∞

1
f(x) dx converges.
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We will prove this theorem, together with some more detailed estimates, in Proposition
28.6 below. First we point out a couple applications.

Example 28.3. Given p ∈ R, the p-series
∑∞

n=1
1
np

converges if and only if p > 1. To
see this, observe that for all p ≤ 0, the terms do not converge to 0, so the series diverges
by Corollary 27.12. For p > 0, the function f(x) = x−p is continuous, positive, and
decreasing on [1,∞), so by the integral test the series converges if and only if

∫∞
1
x−p dx

converges, which occurs if and only if p > 1.

Example 28.4. To check convergence of
∑

lnn
n2 , we attempt to use the integral test with

f(x) = lnx
x2

. Differentiating to check whether the function is decreasing, we see that

f ′(x) =
x2 · 1

x
− (lnx)2x

x4
=

1− 2 lnx

x3
,

which is < 0 for all x >
√
e. Thus the function is decreasing on (

√
e,∞); this is not

quite what Theorem 28.2 asked for, but as we will see below, it turns out to be enough,
and the integral test still works. We can compute the integral by parts:∫ t

1

lnx

x2
dx =

[
− lnx

x

]t
1

+

∫ t

1

1

x2
dx =

[
− lnx

x
− 1

x

]t
1

= −1 + ln t

t
− (−1) = 1− 1 + ln t

t
.

This converges to 1 as t→∞, so the series is convergent as well.

The hypothesis that f is nonincreasing is vital, as the following exercise shows.

Exercise 28.5. Define a function f by setting f(n) = 0 and f(n+ 1
2
) = 1 for all integers

n, and then connecting these points on the graph with straight lines, so that f(n+ t) =
f(n − t) = 2t for t ∈ [0, 1

2
]. Sketch the graph of f and show that

∫∞
1
f(x) dx diverges

but
∑∞

n=1 f(n) converges.

28.2. Estimating the remainder

It is often important to understand how quickly a series converges to its limit S, by
estimating the remainder

Rn := S − Sn =
∞∑
k=1

ak −
n∑
k=1

ak = lim
N→∞

N∑
k=1

ak −
n∑
k=1

ak = lim
N→∞

N∑
k=n+1

ak =
∞∑

k=n+1

ak.

Proposition 28.6. Given a series
∑
an and a natural number n ∈ N, suppose that

f : [n,∞) → [0,∞) is a continuous, nonnegative, nonincreasing function such that
f(k) = ak for all k ∈ N. Then for every N > n, we have

(28.1)

∫ N+1

n+1

f(x) dx ≤
N∑

k=n+1

ak ≤
∫ N

n

f(x) dx.

In particular,
∑∞

k=1 ak converges if and only if the improper integral
∫∞
n
f(x) dx con-

verges, and in this case we have

(28.2)

∫ ∞
n+1

f(x) dx ≤
∞∑

k=n+1

ak ≤
∫ ∞
n

f(x) dx.
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Proof. For the lower bound in both cases, we let g(x) = f(bxc), so that g(x) = ak for
all x ∈ [k, k + 1). Then g(x) ≥ f(x) for all x because x is nondecreasing, and thus

N∑
k=n+1

ak =

∫ N+1

n+1

g(x) dx ≥
∫ N+1

n+1

f(x) dx.

Since f ≥ 0, the only way for the improper integral to diverge is if it goes to ∞, and
thus a divergent improper integral leads to a divergent sequence of partial sums, which
proves one half of the claim following (28.1). For the other inequality, and the other half
of the claim, let g(x) = f(dxe), so that g(x) = ak for all x ∈ (k− 1, k], and observe that
g(x) ≤ f(x) for all x because x is nondecreasing. Thus

N∑
k=n+1

ak =

∫ N

n

g(x) dx ≤
∫ N

n

f(x) dx.

If the improper integral converges, then since f ≥ 0 we have
∫ N
n
f(x) dx <

∫∞
n
f(x) dx

for all N , and thus the partial sums
∑N

k=n+1 ak form a nondecreasing sequence that is
bounded above, which implies convergence. In this case the estimates in (28.2) follow
from (28.1) by taking a limit as N →∞. �

Observe that the integral test as formulated in Theorem 28.2 is a specific case of this
proposition.

Example 28.7. Consider the series
∑

1
n2 , and suppose we wish to find how many terms

it takes for the partial sum to get within 1
100

of the limit. Using (28.2) we see that

Rn ≤
∫ ∞
n

1

x2
dx = lim

t→∞

[
− 1

x

]t
n

= lim
t→∞

( 1

n
− 1

t

)
=

1

n
.

Thus we get the desired error estimate when 1
n
≤ 1

100
, so we need to take n = 100 terms.

Note that we could get a better approximation to the limit in Example 28.7 by adding
one of the integrals from (28.2) to the partial sum. Indeed, under the assumptions of
Proposition 28.6, the quantity

(∑n
k=1 ak

)
+
∫∞
n
f(x) dx is generally a better approxima-

tion to
∑∞

k=1 ak than the partial sum is on its own, and we can bound the error between
the approximation and the true value as follows:∣∣∣∣ ∞∑

k=1

ak −
( n∑
k=1

ak +

∫ ∞
n

f(x) dx
)∣∣∣∣ =

∣∣∣∣ ∞∑
k=n+1

ak −
∫ ∞
n

f(x) dx

∣∣∣∣
≤
∣∣∣∣ ∫ ∞

n+1

f(x) dx−
∫ ∞
n

f(x) dx

∣∣∣∣ =

∫ n+1

n

f(x) dx.

In Example 28.7, we see that this error bound is equal to∫ n+1

n

f(x) dx =

∫ n+1

n

1

x2
dx = −1

x

∣∣∣n+1

n
=

1

n
− 1

n+ 1
=

1

n(n+ 1)
<

1

n2
,

and so to get within 1
100

of the limit we could use n = 10 and then add the improper
integral (which we can calculate explicitly in this case).
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Lecture 29 Comparison tests and alternating series

Stewart §11.4 and §11.5, Spivak Ch. 23

29.1. Comparison tests

We know that the geometric series
∑∞

n=1
1

2n
converges. What about

∑∞
n=1

1
2n+1

? This
is not a geometric series but looks similar enough that we might expect similar conver-
gence behavior. And indeed, if we compare the partial sums Sn =

∑n
k=1

1
2k+1

to the

partial sums Tn =
∑n

k=1
1
2k

, we can observe that the inequality 1
2k+1

≤ 1
2k

immediately
implies that

Sn =
n∑
k=1

1

2k + 1
≤

n∑
k=1

1

2k
= Tn ≤ T := lim

n→∞
Tn,

where the inequality Tn ≤ T uses the fact that the terms 1
2n

are nonnegative so the
sequence of partial sums Tn is nondecreasing. The partial sums Sn are nondecreasing
for the same reason, and they are bounded above by T , so the monotone convergence
theorem implies that

∑
1

2n+1
is convergent.

This argument is worth codifying. Note the analogy between the following result and
Theorem 10.14 for improper integrals.

Theorem 29.1 (Comparison test). Consider two series
∑
an and

∑
bn whose terms

are all nonnegative: an, bn ≥ 0.

(1) If
∑
bn is convergent and an ≤ bn for all n, then

∑
an is convergent.

(2) If
∑
bn is divergent and an ≥ bn for all n, then

∑
an is divergent.

Proof. Consider the partial sums Sn =
∑n

k=1 ak and Tn =
∑n

k=1 bk. For the first claim,
we have T = limn→∞ Tn, so Sn ≤ Tn ≤ T for all n, and thus Sn is a bounded monotonic
sequence, which therefore converges. The second half of the theorem follows from the
first half by taking a contrapositive and reversing the roles of an and bn. �

Exercise 29.2. Prove that the theorem remains true if the inequalities are only assumed
to hold for all sufficiently large n. That is, in part (1) we can replace the assumption
that an ≤ bn for all n with the assumption that there exists N ∈ N such that an ≤ bn
for all n ≥ N , and similarly in part (2).

Example 29.3. The series
∑

lnn
n

has lnn
n
≥ 1

n
for all n ≥ 3; since the harmonic series∑

1
n

diverges, the series
∑

lnn
n

diverges as well.

Example 29.4. Consider the series
∑

lnn
n2 . We saw in Example 28.4 that this converges

by the integral test. We can also prove this using the comparison test. Recall that
limn→∞

lnn√
n

= 0, and thus lnn ≤ √n for all sufficiently large n. For all such n we have

lnn

n2
≤
√
n

n2
= n

1
2
−2 = n−3/2 =

1

n3/2
.

The p-series
∑

1/n3/2 is convergent (since 3
2
> 1), so the comparison test shows that∑

lnn
n2 is convergent as well.
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As these examples show, it is often the case that a series can be compared to either
a p-series or a geometric series, and so these are usually the first candidates that you
should consider.

Remark 29.5. As in Proposition 28.6 and (28.2), one can use the comparison test to
estimate the remainder in a convergent sum: if an ≤ bn for all n ≥ N , then the remainder
term for

∑
an is bounded above the the remainder term for

∑
bn.

Sometimes it is easier to compare two sequences asymptotically than it is to go term-
by-term. The following result shows that this is enough to study convergence.

Theorem 29.6 (Limit comparison test). Consider two series
∑
an and

∑
bn whose

terms are all positive: an, bn > 0. Suppose that there is a real number c > 0 such that
limn→∞

an
bn

= c. Then
∑
an is convergent if and only if

∑
bn is convergent.

Proof. By the assumption that an
bn
→ c > 0, there exists N ∈ N such that for all n ≥ N

we have c
2
< an

bn
< 2c, or equivalently, c

2
bn < an < 2cbn. By Theorem 27.14,

∑
c
2
bn

and
∑

2cbn converge if and only if
∑
bn converges. Thus convergence of

∑
bn implies

convergence of
∑

2cbn, and hence convergence of
∑
an by the comparison test. Similarly,

convergence of
∑
an implies convergence of

∑
c
2
bn by the comparison test, and hence

convergence of
∑
bn. �

Example 29.7. The series
∑

1
2n−1

converges by applying the limit comparison test with

the reference series
∑

1
2n

, which is a convergent geometric series: observe that

lim
n→∞

1/(2n − 1)

1/2n
= lim

n→∞
1

1− 2−n
= 1.

Example 29.8. Consider the series

∞∑
n=1

2n2 + 3n√
5 + n5

.

To determine what series to compare this to, observe that for large n we have

2n2 + 3n√
5 + n5

≈ 2n2

n5/2
=

2

n1/2
.

Since the p-series
∑
n−1/2 is divergent, we can prove that

∑
2n2+3n√

5+n5 is divergent by

observing that

lim
n→∞

(2n2 + 3n)/(
√

5 + n5)

n−1/2
= lim

n→∞
2n2 + 3n

n−1/2
√

5 + n5
· n
−2

n−2
= lim

n→∞
2 + 3n−1

√
5n−5 + 1

= 2,

and then applying the limit comparison test.

29.2. Alternating series

The integral test and comparison tests only apply to series with nonnegative entries.
It is also sometimes important to understand series with both positive and negative
entries. The simplest class of series like this is the following.
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Definition 29.9. A series
∑
an is alternating if its terms alternate between positive

and negative, so that writing bn = |an|, we have an = (−1)nbn for every n. We also call
the series alternating if we have an = (−1)n−1bn for every n.

The following theorem says that for alternating series, the condition in Theorem 27.9
is actually sufficient for convergence of the series, in sharp distinction to what happens
for more general series.

Theorem 29.10. If
∑
an is an alternating series for which bn = |an| is a nonincreasing

sequence (bn+1 ≤ bn for all n) that converges to 0 (limn→∞ bn = 0), then
∑
an converges.

Proof. Suppose that an = (−1)n−1bn (the case with (−1)n is similar), so that the series
is

b1 − b2 + b3 − b4 + b5 − b6 + · · · .
Then the even partial sums satisfy

S2n+2 = S2n + a2n+1 + a2n+2 = S2n + b2n+1 − b2n+2 ≥ S2n,

where the last inequality uses the fact that b2n+2 ≤ b2n. This shows that the sequence
of even partial sums is nondecreasing. Moreover, for every n we have

(29.1)
S2n = b1 − b2 + b3 − b4 + b5 − · · ·+ b2n−1 − b2n

= b1 − (b2 − b3)− (b4 − b5)− · · · − (b2n−2 − b2n−1)− b2n ≤ b1,

where the last inequality uses the fact that each term in brackets is nonnegative (since bk
is nonincreasing). By the monotone convergence theorem, the sequence of even partial
sums S2n converges to some limit S. Since bk → 0, we also have

lim
n→∞

S2n+1 = lim
n→∞

(S2n + b2n+1) = lim
n→∞

S2n + lim
n→∞

b2n+1 = S + 0 = S.

We leave it as an exercise to show that the two results limn→∞ S2n = S and limn→∞ S2n+1 =
S together imply limn→∞ Sn = S, which completes the proof. �

Example 29.11. Although the harmonic series
∑

1
n

diverges, the alternating harmonic

series
∑ (−1)n−1

n
= 1− 1

2
+ 1

3
− 1

4
+ 1

5
− · · · converges.

Theorem 29.12. Under the conditions of Theorem 29.10, if S =
∑∞

n=1 an, then the
remainder term Rn = S − Sn satisfies |Rn| ≤ |an+1| for all n.

Proof. Observe that the odd partial sums and the even partial sums converge to S from
different sides, so S is always between Sn and Sn+1. In particular,

|S − Sn| ≤ |Sn+1 − Sn| = |an+1|. �

Lecture 30 Absolute convergence, ratio and root tests

Stewart §11.6, Spivak Ch. 23
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30.1. Absolute convergence

Now that we are discussing series with both positive and negative terms, the following
definition becomes important.

Definition 30.1. A series
∑
an is absolutely convergent if

∑ |an| is convergent.

Theorem 30.2. If
∑
an is absolutely convergent, then it is convergent.

Proof. For every n, we have 0 ≤ an + |an| ≤ 2|an|, so
∑

(an + |an|) is convergent by the
comparison test. Then

∑
an =

∑
((an + |an|)− |an|) is convergent by Theorem 27.14 as

the difference of two convergent series. �

Definition 30.3. A series is conditionally convergent if it is convergent, but not abso-
lutely convergent.

Example 30.4. The alternating series
∑ (−1)n−1

n2 is absolutely convergent, while
∑ (−1)n−1

n
is only conditionally convergent.

Example 30.5.
∑

cosn
n2 is absolutely convergent by the comparison test, since | cosn

n2 | ≤
1
n2 and the series

∑
1
n2 is convergent.

The crucial difference between absolute and conditional convergence is the way in
which rearrangements of a series behave. We are used to the idea that rearranging the
terms in a sum does not change its value. The following two exercises ask you to prove
that this continues to be true for an absolutely convergent infinite series.

Exercise 30.6. Let
∑
an be a series whose terms are all nonnegative (an ≥ 0). Prove

that the value of the infinite sum is the supremum of all the partial sums, and use this
fact to deduce that

∑
an remains the same no matter what order the terms of the series

are written in.

Exercise 30.7. Show that given any series
∑
an, there are sequences bn, cn ≥ 0 such that

the an = bn − cn for all n. (Hint: one of bn, cn should be |an|, and the other should be
0.) Then show that

∑
an is absolutely convergent if and only if

∑
bn and

∑
cn are both

convergent, and use the previous exercise to deduce that for an absolutely convergent
series, the value of the infinite sum is unchanged by rearranging the terms of the series.

When a series is only conditionally convergent, the story changes dramatically, as the
following example illustrates: let S be the sum of the alternating harmonic series, so

S = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− 1

10
+ · · · .

Multiplying every term by 1
2
, Theorem 27.14 gives

1

2
S = 0 +

1

2
+ 0− 1

4
+ 0 +

1

6
+ 0− 1

8
+ 0 +

1

10
+ · · · .

Adding these two sequences and using Theorem 27.14 again gives

3

2
S = 1 + 0 +

1

3
− 1

2
+

1

5
+ 0 +

1

7
− 1

4
+

1

9
+ 0 + · · · .
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Observe that every odd-numbered term in this last series is the same as the corresponding
term in the first series, so all of the terms 1

2n+1
appear exactly once. Every term − 1

2n

appears exactly once in the last series also, but they are ‘stretched out’ further by placing
0’s in between. Thus this last series is a rearrangement of the first one, and both series
are convergent, but their sums are different!

In fact, the story is even stranger; it is possible to show that if
∑
an is a conditionally

convergent series, then for any r ∈ R there is a conditionally convergent series
∑
bn

with sum r that is a rearrangement of
∑
an. Thus conditionally convergent series must

be treated with a certain amount of caution.

30.2. Ratio test

In light of the previous discussion, it is useful to be able to determine when a series
is absolutely convergent.

Theorem 30.8 (Ratio test). Consider a series
∑
an with nonzero terms, and let L =

limn→∞ |an+1

an
| if the limit exists.

(1) If L < 1, then
∑
an is absolutely convergent.

(2) If L > 1, or if the limit is ∞, then
∑
an is divergent.

(3) If L = 1, or if the limit does not exist, then the ratio test is inconclusive and
gives no information.

Proof. For the first part, choose r ∈ (L, 1); then there is N ∈ N such that |an+1

an
| < r for

all n ≥ N . This gives |an+1| < r|an|, and iterating gives |aN+k| < |aN |rk for all k ≥ 1.
Since

∑∞
k=1 |aN |rk is convergent (a geometric series with |r| < 1), the comparison test

implies that
∑ |an| is convergent as well.

For the second part, L > 1 implies that there is N such that |an+1| > |an| for all
n ≥ N , so lim an 6= 0, and by Corollary 27.12 the series is divergent. �

Example 30.9. Consider the series
∑

(−1)n n
3

2n
. The limit in the ratio test is

L = lim
n→∞

(n+ 1)3/2n+1

n3/2n
= lim

n→∞

(
1 +

1

n

)3

· 1

2
=

1

2
< 1,

so the series is absolutely convergent.

Example 30.10. The series
∑

2n

n!
is absolutely convergent because

lim
n→∞

2n+1/(n+ 1)!

2n/n!
= lim

n→∞
2

n+ 1
= 0.

Observe that the ratio test does not catch all convergent series. Indeed, although∑
1
n2 is convergent, the ratio test gives

L = lim
n→∞

1/(n+ 1)2

1/n2
= lim

n→∞
n2

(n+ 1)2
= lim

n→∞
1

(1 + 1
n
)2

= 1,

and thus is inconclusive.
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30.3. Root test

Theorem 30.11 (Root test). Consider a series
∑
an, and let L = limn→∞

n
√
|an| if the

limit exists.

(1) If L < 1, then
∑
an is absolutely convergent.

(2) If L > 1, or if the limit is ∞, then
∑
an is divergent.

(3) If L = 1, or if the limit does not exist, then the ratio test is inconclusive and
gives no information.

Proof. In the first case, once again choose r ∈ (L, 1), so there is N ∈ N such that for

all n ≥ N , we have n
√
|an| = |an|1/n < r. Raising both sides to the nth power gives

|an| < rn, and since
∑
rn converges, the comparison test implies that

∑ |an| converges as
well. In the second case, a similar argument shows that |an| → ∞, so

∑
an diverges. �

Example 30.12. The series
∑

( n
2n+1

)n is absolutely convergent, because

lim
n→∞

n

√( n

2n+ 1

)n
= lim

n→∞
n

2n+ 1
=

1

2
< 1.

Although the ratio test would work in this example, it would be rather messier to
carry out the computations. (Try it!) In some other cases, the root test may work
where the ratio test fails.

Exercise 30.13. Let an = 1
3n

when n is odd, and an = 2
3n

when n is even. Use the root
test to prove that

∑
an converges. Show that the limit in the ratio test does not exist.

On the other hand, if the ratio test fails because the limit is equal to 1, then the root
test will not work either.

Exercise 30.14. Prove that if the limit in the ratio test exists, then the limit in the root
test exists as well, and the two limits are the same.

This last exercise implies that whenever the ratio test works, the root test would
also work, although the computations might be harder (they could also be easier). If
L = 1 in either the ratio test or the root test, then neither of the tests will determine
convergence.19

Lecture 31 Power series

Stewart §11.8, Spivak Ch. 24

Definition 31.1. A power series is a series of the form
∑∞

n=0 cnx
n, where cn ∈ R are

constants, called the coefficients of the power series, and x ∈ R is a variable. For a given
value of x, a power series becomes a series in the sense we have been studying so far,

19If you read the preceding passage carefully, though, you will see that it is possible to have L = 1
in the root test while the limit in the ratio test does not exist.
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and can be either convergent or divergent. The domain of the power series is the set of
all x for which the power series converges. When x lies in this domain, we write

f(x) =
∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + · · ·

for the function determined by the power series.

Example 31.2. We already saw from the formula for the sum of a geometric series that
the function 1

1−x can be represented by the power series

1

1− x =
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · ,

where the coefficients are cn = 1, and the series converges iff |x| < 1.

It is possible for the domain to be all of R.

Example 31.3. Let f(x) =
∑∞

n=0
xn

n!
. Then for all x ∈ R, the terms an = xn

n!
satisfy∣∣∣an+1

an

∣∣∣ =
∣∣∣xn+1/(n+ 1)!

xn/n!

∣∣∣ =
∣∣∣ x

n+ 1

∣∣∣→ 0 as n→∞

and thus the series is convergent by the ratio test.20

It is also possible for the domain to be a single point.

Example 31.4. Let f(x) =
∑∞

n=0 n!xn. Then the series converges for x = 0 because all
terms are 0, but for x 6= 0 the terms an = n!xn satisfy∣∣∣an+1

an

∣∣∣ =
∣∣∣(n+ 1)!xn+1

n!xn

∣∣∣ = |(n+ 1)x| → ∞ as n→∞

and thus the series is divergent by the ratio test.

One can also center the series at a point a 6= 0 by replacing xn with (x− a)n.

Example 31.5. Consider the series
∞∑
n=1

(x− 2)n

n
.

For a given x ∈ R, the ratio of successive terms (in absolute value) is∣∣∣(x− 2)n+1/(n+ 1)

(x− 2)n/n

∣∣∣ =
∣∣∣(x− 2)n

n+ 1

∣∣∣→ |x− 2|.

Thus by the root test the series converges when |x − 2| < 1 (that is, when 1 < x < 3),
and diverges when |x− 2| > 1. At x = 1 it converges (alternating harmonic series) and
at x = 3 it diverges (harmonic series).

Theorem 31.6. Given a power series
∑∞

n=0 cn(x−a)n, one of the following three things
happens.

(1) The series converges when x = a and diverges for all x 6= a.

20Compare this to Example 30.10, which did this same calculation in the case x = 2.
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(2) The series converges absolutely for all x ∈ R.
(3) There exists R > 0 such that the series converges absolutely when |x − a| < R

and diverges when |x− a| > R.

Definition 31.7. The number R from Theorem 31.6 is called the radius of convergence
of the power series.

Before proving Theorem 31.6, we observe that while this result gives absolute conver-
gence in the interior of the interval, it is silent on what happens at the endpoints, where
we can have either convergence or divergence.

Example 31.8. Fixing any p ∈ R, we see that the power series
∑∞

n=0 n
−pxn has the

property that ∣∣∣(n+ 1)−pxn+1

n−pxn

∣∣∣ =
∣∣∣(1 +

1

n

)−p
x
∣∣∣→ |x| as n→∞,

and thus by the ratio test its radius of convergence is R = 1. The behavior at the
endpoints x = ±1 depends on p.

(1) For p = 0,
∑
xn diverges at both endpoints.

(2) For p = 1,
∑

xn

n
converges conditionally when x = −1, and diverges when x = 1.

(3) For p = 2,
∑

xn

n2 converges absolutely at both endpoints.

The following exercises illustrate the remaining possible behaviors at the endpoints.

Exercise 31.9. Prove that
∑

(−2x)n/n has radius of convergence 1/2, converges condi-
tionally at x = 1/2, and diverges at x = −1/2.

Exercise 31.10. Prove that the power series

x− x3

3
+
x5

5
− x7

7
+
x9

9
− · · ·

has radius of convergence 1 and converges conditionally at both endpoints.

Exercise 31.11. Prove that if a power series converges absolutely at one endpoint of its
interval of convergence, then it converges absolutely at the other endpoint as well.

Now we prove Theorem 31.6, starting with a lemma.

Lemma 31.12. Let cn be a sequence of coefficients and r ∈ R a real number such that∑
cnr

n converges. Then given any a, x ∈ R with |x − a| < |r|, the series
∑
cn(x − a)n

converges absolutely.

Proof. Convergence of
∑
cnr

n implies that cnr
n → 0, so there is N ∈ N such that

|cnrn| < 1 for all n ≥ N . For such n we then have

|cn(x− a)n| = |cnrn| ·
∣∣∣(x− a)n

rn

∣∣∣ < ∣∣∣x− a
r

∣∣∣n,
and thus

∑ |cn(x − a)n| converges by the comparison test, using the geometric series∑ |x−a
r
|n, which is convergent because |x− a| < |r|. �

Proof of Theorem 31.6. Consider the set A = {r ≥ 0 :
∑
cnr

n converges}. This is non-
empty because 0 ∈ A. If it is unbounded then for every x ∈ R there exists r ∈ A such
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that r > |x−a|, and thus by Lemma 31.12, the series
∑
cn(x−a)n converges at x. This

puts us in case (2).
Now suppose that A is bounded, and let R = supA be its least upper bound. Then

for every x ∈ R with |x− a| > R, we see that
∑
cn(x− a)n diverges, otherwise Lemma

31.12 would imply that
∑
cnr

n converges for some r ∈ (R, |x − a|), contradicting the
claim that R is an upper bound for A. If R = 0, then we are in case (1); the series
diverges for all x 6= a. If R > 0, then for every x with |x− a| < R we can choose r ∈ A
with |x−a| < r (since R is the least upper bound) and use Lemma 31.12 to deduce that∑
cn(x− a)n converges absolutely. This puts us in case (3). �

Theorem 31.6 tells us that every power series converges on an interval (which could be
a single point, or all of R), and diverges on its complement. The radius of convergence
can often – but not always – be determined by using either the ratio test or the root
text.

Theorem 31.13 (Ratio test for radius of convergence). Suppose
∑
cn(x−a)n is a power

series for which the limit L = limn→∞ |cn+1/cn| exists. Then the radius of convergence
is R = 1/L. If L = 0 then the radius of convergence is ∞; if L =∞ then the radius of
convergence is 0.

Proof. We apply the ratio test. Given x ∈ R, we have

lim
n→∞

∣∣∣cn+1(x− a)n+1

cn(x− a)n

∣∣∣ = L|x− a|.

This is < 1 when |x − a| < 1/L, implying absolute convergence, and > 1 when |x −
a| > 1/L, implying divergence. If L = 0 then the limit is always 0, giving absolute
convergence, and if L =∞ then the limit is ∞ for all x 6= a, giving divergence. �

Theorem 31.14 (Root test for radius of convergence). Suppose
∑
cn(x−a)n is a power

series for which the limit L = limn→∞ |cn|1/n exists. Then the radius of convergence is
R = 1/L. If L = 0 then the radius of convergence is ∞; if L = ∞ then the radius of
convergence is 0.

Proof. This is exactly the same as the previous proof except we use the following com-
putation:

lim
n→∞

|cn(x− a)n|1/n = |x− a| lim
n→∞

|cn|1/n = L|x− a|. �

Lecture 32 Calculus with power series

Stewart §11.9, Spivak Ch. 24

Of the various elementary functions that we have encountered so far, polynomials are
among the easiest to work with; they can be added, subtracted, and multiplied relatively
easily, and differentiation and integration are also straightforward using the rules

d

dx
xn = nxn−1 and

∫
xn dx =

xn+1

n+ 1
+ C.
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Since polynomials are finite sums of expressions like these, they can be manipulated
without incident. For power series, which are infinite sums, more care is needed, as
indicated by the results about rearrangements of conditionally convergent series. The
following theorem says that differentation and integration work as expected.

Theorem 32.1. Let
∑∞

n=0 cn(x−a)n be a power series with radius of convergence R > 0,
and let f : (a−R, a+R)→ R be the function defined by f(x) =

∑∞
n=0 cn(x− a)n. Then

f is continuously differentiable on this interval, and therefore also integrable; moreover,
we can represent f ′ and

∫
f by the following power series:

f ′(x) =
∞∑
n=1

ncn(x− a)n−1,

∫
f(x) dx = C +

∞∑
n=0

cn
(x− a)n+1

n+ 1
.

Both of these power series also have radius of convergence R.

Proof. The proof that these power series have the same radius of convergence R can be
given by a mild modification of Lemma 31.12, which we leave as an exercise.

The proof that they actually give the derivative and integral of f is more difficult and
was omitted in the lecture.21 For simplicity we prove the result for the derivative, with
a = 0. The result for the integral is a corollary, and the proof for other values of a is
the same; one simply needs to replace x with x − a everywhere that it appears. Thus
we need to show that if we define two functions f, g : (−R,R)→ R by the power series

f(x) =
∞∑
n=0

cnx
n and g(x) =

∞∑
n=1

ncnx
n−1,

then f ′(x) = g(x) for all x ∈ (−R,R). By definition of the derivative, we have

f ′(x) = lim
y→x

1

y − x
∞∑
n=1

cn(yn−xn) = lim
y→x

∞∑
n=1

cn(yn−1+xyn−2+x2yn−3+· · ·+xn−2y+xn−1),

where we used the factorization yn − xn = (y − x)(yn−1 + xyn−2 + · · · + xn−1). The
expression in brackets can be written as

∑n−1
j=0 y

jxn−1−j, and we can write nxn−1 as∑n−1
j=0 x

n−1, so we conclude that

(32.1) f ′(x)− g(x) = lim
y→x

∞∑
n=1

cn

( n−1∑
j=0

(yjxn−1−j − xn−1)
)
.

We must show that this quantity vanishes. It is tempting to move the limit inside the
sums and observe that limy→x yjxn−1−j−xn−1 = 0; however, while this would be allowed

21I learned the proof here from a blog post by Tim Gowers at https://gowers.wordpress.com/

2014/02/22/differentiating-power-series/ – the “more common” proof of this theorem uses the
concept of uniform convergence of a sequence of functions, which is beyond the scope of this course.

https://gowers.wordpress.com/2014/02/22/differentiating-power-series/
https://gowers.wordpress.com/2014/02/22/differentiating-power-series/
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if the sums were both finite, it is not always allowed for infinite sums. Indeed, the infinite
sum is itself a limit, and we could more properly write the above equation as

f ′(x)− g(x) = lim
y→x

lim
N→∞

N∑
n=1

cn

( n−1∑
j=0

(yjxn−1−j − xn−1)
)
.

Thus before we can pass limy→x inside the sums, we would need to interchange the order
of the limits. This is an issue that has not arisen for us so far, and that we will not treat
in any detail, save by issuing this warning: be very, very careful if anyone tries to sell
you a computation in which the order of two limits are interchanged. Sometimes it is
valid, and sometimes it is not; in this course we have not developed the tools to tell the
difference.

Instead, we will estimate the magnitude of the inner sum as follows:∣∣∣ n−1∑
j=0

(yjxn−1−j − xn−1)
∣∣∣ ≤ n−1∑

j=0

|x|n−1−j|yj − xj| =
n−1∑
j=0

|x|n−1−j|y − x|
∣∣∣ j−1∑
i=0

yixj−1−i
∣∣∣.

Here the last equality once again uses the factorization for yj − xj that we used before.
Recalling that R is the radius of convergence of the power series and |x| < R, fix r
such that |x| < r < R, and choose y close enough to x that |y| < r. Then we have

|∑j−1
i=0 y

ixj−1−i| ≤∑j−1
i=0 r

j−1 = jrj−1, and the above estimate gives∣∣∣ n−1∑
j=0

(yjxn−1−j−xn−1)
∣∣∣ ≤ n−1∑

j=0

rn−1−j|y−x|·jrj−1 =
n−1∑
j=0

jrn−2|y−x| = n(n− 1)

2
rn−2|y−x|.

Returning to the expressions in (32.1), we see that∣∣∣ ∞∑
n=1

cn

( n−1∑
j=0

(yjxn−1−j − xn−1)
)∣∣∣ ≤ ∞∑

n=1

cn ·
n(n− 1)

2
rn−2|y − x|

and thus

|f ′(x)− g(x)| ≤ lim
y→x
|y − x|

∞∑
n=1

n(n− 1)

2
cnr

n−2 = 0,

provided the last sum converges. The fact that it converges for r ∈ (0, R) is a con-
sequence of the exercise at the beginning of this proof, since this is the power series
that “should” represent f ′′(r), and you were asked to prove in that exercise that formal
term-by-term differentiation does not change the radius of convergence. �

Example 32.2. We have seen that on (−1, 1), the function f(x) = 1
1−x is represented

by the power series

(32.2)
1

1− x =
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · .

Differentiating and integrating term-by-term, as in Theorem 32.1, we see that

f ′(x) =
∞∑
n=1

nxn−1 and

∫
f(x) dx = C +

∞∑
n=0

xn+1

n+ 1
.
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Since f ′(x) = 1
(1−x)2

, we obtain the new power series representation

(32.3)
1

(1− x)2
=
∞∑
n=1

nxn−1 = 1 + 2x+ 3x2 + 4x3 + 5x4 + · · · .

Similarly, since
∫
f(x) dx = − ln(1− x) + C, we obtain

ln(1− x) = C −
∞∑
n=0

xn+1

n+ 1
.

When x = 0 the LHS vanishes, so the constant of integration is C = 0, and we have the
power series representation

(32.4) ln(1− x) = −
∞∑
n=1

xn

n
= −x− x2

2
− x3

3
− x4

4
− · · · .

Remark 32.3. It is possible to show that (32.4) remains valid not just on the interval
(−1, 1), but also at the endpoint x = −1; see the extra credit problems on the homework
for an outline of the proof of Abel’s theorem, which establishes this fact22 Observe that
then this series gives

ln 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · ,

so that ln 2 is the value of the sum of the alternating harmonic series.

Example 32.4. Replacing x in (32.2) by (−x2), we obtain the power series representa-
tion

1

1 + x2
=

1

1− (−x2)
=
∞∑
n=0

(−x2)n =
∞∑
n=0

(−1)nx2n = 1− x2 + x4 − x6 + x8 − · · · ,

which is valid on the interval (−1, 1). Integrating gives

tan−1(x) = x− x3

3
+
x5

5
− x7

7
+ · · · ,

where the constant of integration is 0 because tan−1(0) = 0. This is valid on the interval
(−1, 1) (though we observe that the function tan−1(x) is defined on all of R). Once
again, Abel’s theorem can be used to extend its validity to include x = 1, and we obtain
the following formula:

π

4
= tan−1(1) = 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · .

Example 32.5. The Bessel function of order 0 is given by the power series

J0(x) =
∞∑
n=0

(−1)nx2n

4n(n!)2
.

22At x = 1, the series diverges, which is consistent with the fact that ln 0 is undefined.
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Using the root test one can check that it converges for all x ∈ R. Using Theorem 32.1
one can compute its derivative:

J ′0(x) =
∞∑
n=1

(−1)n2nx2n−1

4n(n!)2

Similarly one can compute J ′′0 , and verify that J0 is a solution of the differential equation

(32.5) x2f ′′(x) + xf ′(x) + x2f(x) = 0,

which arises (among other places) when one studies the shape of a vibrating drumhead.

The DE in (32.5) does not admit a closed form solution in terms of functions we have
studied earlier, so this last example illustrates the utility of power series as a tool. Even
in situations where a problem can be solved using other methods, the power series is
often easier to compute: for example, we could compute

∫
1

1+x4
dx using partial fractions,

but it is fairly long and tedious to do so, while using power series we quickly get∫
1

1 + x4
dx =

∫
(1− x4 + x8 − x12 + x16 − · · · ) dx

= C + x− x5

5
+
x9

9
− x13

13
+ · · · .

Of course it may then be difficult or impossible to translate this power series back into a
closed form for the integral, but in many cases the power series is just as useful, especially
if what we are after is a numerical approximation.

Lecture 33 Taylor and Maclaurin series

Stewart §11.10, Spivak Ch. 24

33.1. Obtaining coefficients from higher derivatives

It is natural to ask whether a given function can be represented by a power series,
and if so, how the coefficients of that series can be found. In light of Theorem 32.1, we
see that any function represented by a power series needs to be at least differentiable on
the interior of the interval of convergence; thus we cannot expect to represent f(x) = |x|
by a power series around 0.

Moreover, since a power series representation for f gives a power series for f ′ with the
same radius of convergence, we see that f ′ must be differentiable as well. Continuing
this line of reasoning, every derivative f (n) must exist. Is this enough? It turns out that
the answer is no.

Exercise 33.1. Prove that the function

f(x) =

{
e−1/x2 x > 0,

0 x ≤ 0

has derivatives of all orders at 0, but is not given by a power series in any open interval
containing 0.
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A function that has derivatives of all orders is called smooth. A function that is given
by a convergent power series is called analytic. Analytic functions are smooth, but not
every smooth function is analytic. For the moment, we address the question of how to
find the coefficients of the power series, assuming that f is indeed represented by a power
series. To this end, suppose that near a ∈ R, a function f is given by a power series

f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + (terms containing (x− a)4).

Then its derivative is given by

f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + (terms containing (x− a)3),

its second derivative is given by

f ′′(x) = 2c2 + 2 · 3 · c3(x− a) + (terms containing (x− a)2),

and in general, its nth derivative is given by

f (n)(x) = n!cn + (terms containing (x− a)).

Since any term containing (x− a) vanishes when we put x = a, we conclude that

f(a) = c0, f ′(a) = c1, f ′′(a) = 2c2, . . . f (n)(a) = n!cn.

Thus we can recover the coefficients cn from the values of the higher derivatives of f at
a. We have proved the following theorem.

Theorem 33.2. If f has a power series representation
∑∞

n=0 cn(x− a)n, with radius of
convergence R > 0, then we have

cn =
f (n)(a)

n!
for all n = 0, 1, 2, . . . .

Thus for every x ∈ (a−R, a+R), we have

(33.1) f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n.

The power series in (33.1) is called the Taylor series for f . In the case when a = 0,
it is also called the Maclaurin series :

f(x) =
∞∑
n=0

f (n)(0)

n!
xn.

Example 33.3. For the exponential function f(x) = ex, we have f (n)(x) = ex for every

n = 0, 1, 2, . . . , and thus cn = f (n)(0)
n!

= 1
n!

. Thus the Maclaurin series for ex (the Taylor
series around 0) is

(33.2)
∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

3!
+
x4

4!
+ · · · .

Observe that for every x ∈ R, we have

xn+1/(n+ 1)!

xn/(n!)
=

x

n+ 1
→ 0 as n→∞,

so the series converges absolutely by the ratio test. Thus the radius of convergence is
R =∞.
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What the above example does not immediately tell us is whether or not the power
series in (33.2) actually converges to ex. Could it converge to something else instead?
We will investigate this question in the next section.

33.2. Approximation by polynomials

Definition 33.4. Given n ∈ N, the nth Taylor polynomial for f(x) around a is the nth
partial sum of the Taylor series:

(33.3) Tn(x) :=
n∑
k=0

f (k)(a)

k!
(x− a)k.

Thus the Taylor series converges to f(x) at x if and only if Tn(x)→ f(x) as n→∞.
Equivalently, writing Rn(x) = f(x) − Tn(x) for the nth remainder term at x, we have
convergence if and only if Rn(x) → 0. Exercise 33.1 gives an example where this does
not occur. Can we give conditions under which it does occur?

Theorem 33.5 (Taylor’s inequality). Let f : (a− d, a+ d) be n+ 1 times differentiable,
and suppose that |f (n+1)(x)| ≤ M for all x ∈ (a − d, a + d). Then for every x in this
interval, the nth remainder term Rn(x) = f(x)− Tn(x) satisfies

|Rn(x)| ≤ M

(n+ 1)!
|x− a|n+1.

Proof. We prove this by induction in n when x ∈ (a, a+ d); the proof for x ∈ (a− d, a)
is similar. First consider the case n = 0. In this case we have T0(x) = f(a) for all x, so
R0(x) = f(x)− f(a), and by assumption |f ′(x)| ≤M for all x ∈ (a, a+ d), so

|R0(x)| = |f(x)− f(a)| =
∣∣∣ ∫ x

a

f ′(t) dt
∣∣∣ ≤ ∫ x

a

|f ′(t)| dt ≤
∫ x

a

M dt = M(x− a).

Now suppose that n ≥ 1 and that the result holds for n − 1. Then observe that since
Rn(x) = f(x)− Tn(x) by definition, we have R′n(x) = f ′(x)− T ′n(x). We claim that T ′n
is the degree (n− 1) Taylor polynomial for f ′: indeed, differentiating (9.1) gives

T ′n(x) =
n∑
k=1

f (k)(a)

(k − 1)!
(x− a)k−1 =

n−1∑
j=0

f (j+1)(a)

j!
(x− a)j,

and since f (j+1)(a) = (f ′)(j)(a), this proves the claim. Moreover, we have |(f ′)(n)(x)| =
|f (n+1)(x)| ≤M for all x ∈ (a, a+ d), so by the inductive hypothesis we obtain

|R′n(x)| ≤ M

n!
|x− a|n.

Integrating this gives

|Rn(x)| =
∣∣∣ ∫ x

a

R′n(t) dt
∣∣∣ ≤ ∫ x

a

|R′n(t)| dt ≤
∫ x

a

M

n!
(t− a)n dt =

[M(t− a)n+1

(n+ 1)!

]x
a

This last expression is equal to M(x− a)n+1/(n+ 1)!, which proves the theorem. �
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Remark 33.6. In fact, one can prove the following more explicit formulas for the remain-
der term:

Rn(x) =
1

n!

∫ x

a

(x− t)nf (n+1)(t) dt,

Rn(x) =
f (n+1)(t)

(n+ 1)!
(x− a)n+1 for some t between x and a.

Observe that each of these implies Taylor’s inequality. Note also that the second of these
reduces to the Mean Value Theorem in the case n = 0.

Returning to the case of f(x) = ex, we see from Taylor’s inequality that for every
|x| ≤ d and every n ∈ N, we have

|ex − Tn(x)| ≤ ed

(n+ 1)!
|x|n+1 → 0 as n→∞,

where the convergence to 0 follows because
∑

xn

n!
converges. This proves that the Maclau-

rin series
∑

xn

n!
does indeed converge to ex, so that we can write

(33.4) ex =
∞∑
n=0

xn

n!
for all x ∈ R.

In particular, putting x = 1 gives the following infinite series for e:

e =
∞∑
n=0

1

n!
= 1 + 1 +

1

2
+

1

3!
+

1

4!
+ · · · .

Observe also that if we differentiate (33.4) term-by-term, we get the same power series,
consistent with the fact that d

dx
ex = ex.

Example 33.7. We could also take the Taylor series of ex around another point; for
example, with a = 1 we see that f (n)(a) = ea = e1 = e for all n, and thus

ex =
∞∑
n=0

e

n!
(x− 1)n,

where the argument that the remainder terms go to 0 is similar to the one given above.

Example 33.8. For f(x) = sinx, we have

f ′(x) = cos x, f ′′(x) = − sinx, f ′′′(x) = − cosx,

and in general,

f (n)(x) =


sinx if n ≡ 0 (mod 4),

cosx if n ≡ 1 (mod 4),

− sinx if n ≡ 2 (mod 4),

− cosx if n ≡ 3 (mod 4).

Thus the nth derivatives at 0 are 0, 1, 0,−1, 0, 1, 0,−1, . . . , and the Maclaurin series is

x− x3

3!
+
x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.
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Since all derivatives have absolute value ≤ 1 for every x, we can take M = 1 in Taylor’s
inequality and obtain

|Rn(x)| ≤ |x|n+1

(n+ 1)!
→ 0,

which proves that the Maclaurin series converges to sin x for every x ∈ R, and thus

(33.5) sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

By making a similar argument for f(x) = cos x, or by differentiating (33.5) term-by-term
and applying Theorem 32.1, we get

(33.6) cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · · .

Remark 33.9. Using (33.4), (33.5), and (33.6), we see that writing i for a (complex)
square root of −1, we have

eix = 1 + (ix) +
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+

(ix)6

6!
+

(ix)7

7!
+

(ix)8

8!
+ · · ·

= 1 + ix− x2

2!
− ix

3

3!
+
x4

4!
+ i

x5

5!
− x6

6!
− ix

7

7!
+
x8

8!
+ · · ·

=
(

1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
+ · · ·

)
+ i
(
x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

)
= cosx+ i sinx,

where the equality in the third line uses the fact that Taylor series converge absolutely on
the interior of the interval of convergence, and thus we can rearrange the series without
changing the sum.

33.3. Binomial series

Recall from the Binomial Theorem that given a positive integer n and any real number
x, we can write

(33.7) (1 + x)n = 1 + nx+

(
n

2

)
x2 + · · ·+

(
n

n− 2

)
xn−2 + nxn−1 + xn =

n∑
k=0

(
n

k

)
xk.

Writing f(x) = (1 + x)n, we see that for 0 ≤ k ≤ n, we have

f (k)(x) =
dk

dxk
(1 + x)n = n(n− 1) · · · (n− k + 1)(1 + x)n−k,

and so f (k)(0) = n(n− 1) · · · (n−k+ 1) = n!/(n−k)!. When k > n we have f (k)(0) = 0,
and so the Maclaurin series for (1 + x)n is

∞∑
k=0

1

k!
f (k)(0)xk =

n∑
k=0

1

k!

n!

(n− k)!
xk =

n∑
k=0

(
n

k

)
xk,
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which recovers the formula in (33.7). But we can compute the Maclaurin series even if
n is not an integer; consider the function f(x) = (1 + x)α for an arbitrary real number
α. Then for any k ≥ 0, we have

f (k)(x) =
dk

dxk
(1 + x)α = α(α− 1) · · · (α− k)(1 + x)α−k.

Note that if α happens to be a positive integer, then this expression vanishes whenever
k ≥ α. Evaluating at x = 0 gives

f (k)(0) = α(α− 1) · · · (α− k),

and so the Maclaurin series for (1 + x)α is

(33.8)
∞∑
k=0

α(α− 1) · · · (α− k + 1)

k!
xk.

Extending the notation from the integer case, we write

(33.9)

(
α

k

)
:=

α(α− 1) · · · (α− k + 1)

k!

and refer to these numbers as binomial coefficients. Once again we see that if α is a
positive integer, then

(
α
k

)
= 0 for all k > α, while for 0 ≤ k ≤ α the formula in (33.9)

reduces to our usual definition of binomial coefficients α!
k!(α−k)!

.

When α is not a positive integer, we can determine the radius of convergence of the
power series in (33.8) by applying the ratio test (Theorem 31.13):∣∣∣( α

k+1

)(
α
k

) ∣∣∣ =
∣∣∣α(α− 1) · · · (α− k)

(k + 1)!

k!

α(α− 1) · · · (α− k + 1)

∣∣∣ =
∣∣∣α− k
k + 1

∣∣∣→ 1

as k → ∞, and thus the radius of convergence is 1. (Can you determine when it does
and does not converge at the endpoints ±1?)

Theorem 33.10. For every α ∈ R and |x| < 1, we have (1 + x)α =
∑∞

k=0

(
α
k

)
xk.

Proof. (This proof was omitted in the lecture.) Let g(x) =
∑∞

k=0

(
α
k

)
xk. Our goal is to

write a differential equation involving g′ and g that we can solve to find a closed-form
expression for g, which will turn out to be (1 + x)α.

Differentiating g term-by-term and using Theorem 32.1, we see that

g′(x) =
∞∑
k=1

(
α

k

)
kxk−1 =

∞∑
k=1

α(α− 1) · · · (α− k + 1)

k!
kxk−1

=
∞∑
k=1

α(α− 1) · · · (α− k + 1)

(k − 1)!
xk−1 =

∞∑
j=0

α(α− 1) · · · (α− j)
j!

xj,

where in the last step we reindexed the sum by putting j = k − 1. Multiplying the
second-to-last series by x gives

xg′(x) =
∞∑
k=1

α(α− 1) · · · (α− k + 1)

(k − 1)!
xk,
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and adding these two formulas (renaming both indices to i for consistency) gives

g′(x) + xg′(x) = α +
∞∑
i=1

(α(α− 1) · · · (α− i)
i!

+
α(α− 1) · · · (α− i+ 1)

(i− 1)!

)
xi

= α +
∞∑
i=1

α(α− 1) · · · (α− i+ 1)

(i− 1)!

(α− i
i

+ 1
)
xi

= α + α

∞∑
i=1

α(α− 1) · · · (α− i+ 1)

i!
xi = αg(x).

Thus we have proved that

g′(x) =
αg(x)

1 + x
,

and we conclude that
d

dx
ln g(x) =

g′(x)

g(x)
=

α

1 + x
.

Using the fact that g(0) = 1, we obtain

ln g(x) = ln g(0) +

∫ x

0

α

1 + t
dt = α ln(1 + t)

∣∣∣x
0

= α ln(1 + x).

Taking exponentials gives g(x) = (1 + x)α and completes the proof. �

33.4. Power series arithmetic

If we want to find the Maclaurin series for f(x) = ex sinx, we could proceed by
computing all of its derivatives and using Theorem 33.2. However, if we want to avoid
using the product rule over and over again, there is another way. We already know the
power series representations of ex and sinx, and it turns out (though we will not prove
it) that multiplying these series as though they were polynomials gives the power series
representation of their product:

ex sinx =
(

1 + x+
1

2
x2 +

1

6
x3 + · · ·

)(
x− 1

6
x3 + · · ·

)
=
(
x+ x2 +

1

2
x3 +

1

6
x4 + · · ·

)
+
(
− 1

6
x3 − 1

6
x4 − 1

12
x5 − 1

36
x6 − · · ·

)
+ · · ·

= x+ x2 +
1

3
x3 + · · · ,

where each instance of · · · indicates terms of degree 4 or higher. A similar computation
can be done when we divide power series, using a long-division-type procedure analogous
to polynomial long division; this can be used, for example, to find the Maclaurin series
for tanx = sinx

cosx
.

Review of convergence for series

Stewart §11.7, Spivak Ch. 23

This review is not included in a numbered lecture, but will appear in a
separate online video.
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When determining convergence or divergence of a given series, the first fundamental
fact to keep in mind is Corollary 27.12: if the sequence of terms an does not converge
to 0, then the series

∑
an diverges.

If the sequence of terms does go to 0 – that is, if limn→∞ an = 0 – then the series∑
an might converge and might diverge. If all the terms are ≥ 0, then it is reasonable

to think of this convergence/divergence as being determined by whether the terms an
go to 0 “quickly enough”.

Keep in mind the harmonic series
∑

1
n

as a reminder that convergence to 0 of the
sequence of terms does not imply convergence of the series (which requires convergence
of the sequence of partial sums); this is an example where the terms go to 0 slowly
enough that the series diverges.

Two classes of series are especially important to keep in mind.

• Given a real number p, the corresponding p-series is
∑

1
np

. The series converges
if p > 1 and diverges if p ≤ 1. (Note that the terms go to 0 for every p > 0.)
• Given real numbers a, r, the corresponding geometric series is

∑
arn−1. Assum-

ing a 6= 0, the series converges if |r| < 1 and diverges if |r| ≥ 1. (Note that the
terms go to 0 if and only if |r| < 1.)

For a more general series with terms an ≥ 0 that go to 0, the question of “do the terms
go to 0 quickly enough for the series to converge” can often be answered by comparing to
one of these two kinds of series and using the Comparison Test or the Limit Comparison
Test. Intuitively, one can think of arn−1 as going to 0 exponentially quickly, and 1

np
as

going to 0 polynomially quickly with degree p. Then one way to verify that the terms an
go to 0 “quickly enough for the series to converge” is to relate them to a sequence that
goes to 0 either exponentially quickly, or polynomially quickly with degree > 1.23

For series with some negative terms, the situation is a little more subtle and there are
two ways that convergence can happen.

• Absolute convergence: The terms an go to 0 quickly enough that
∑ |an| converges.

• Conditional convergence: The terms go to 0 slowly enough that
∑ |an| diverges,

but there is enough cancellation between positive and negative terms that the
series

∑
an still converges.

For examples of conditional convergence, we can look to alternating series of the form∑
(−1)nbn, where bn ≥ 0. The Alternating Series Test says that such a series converges

if and only if bn → 0 (so the naive divergence test is actually a necessary and sufficient
condition in this case), and so if we choose bn → 0 with

∑
bn divergent, then

∑
(−1)nbn

is conditionally convergent. This includes the alternating harmonic series
∑

(−1)n 1
n
.

Three other convergence tests are worth keeping in mind.

(1) If the terms an can be written as an = f(n) where f is a continuous nonnegative
nonincreasing function and we can determine the convergence or divergence of
the improper integral

∫∞
1
f(x) dx, then the integral test can be applied.

(2) If the terms an contain factorials or other products, it is often useful to use the
ratio test.

(3) If the terms an contain an nth power, it is often useful to use the root test.

23This is not an exhaustive list of the different rates with which a sequence can go to 0, but exponential
and polynomial rates are the most important.
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Example 33.11.
∑

n−1
2n+1

diverges by Corollary 27.12 because

lim
n→∞

n− 1

2n+ 1
= lim

n→∞

1− 1
n

2 + 1
n

=
1

2
6= 0.

Example 33.12.
∑ √

n3+1
3n3+4n2+2

has terms on the same order of magnitude as n3/2/n3 =

n−3/2, so we use the limit comparison test and observe that

lim
n→∞

√
n3 + 1

3n3 + 4n2 + 2
÷ n−3/2 = lim

n→∞
n−3/2

√
n3 + 1

n−3(3n3 + 4n2 + 2)
= lim

n→∞

√
1 + n−3

3 + 4n−1 + 2n−3
=

1

3
.

Since
∑
n−3/2 is a convergent p-series, the limit comparison test implies that the original

series converges as well.

Example 33.13. Consider
∑
ne−n

2
. The function xe−x

2
can be integrated by the

substitution u = −x2 and is decreasing as soon as d
dx

(xe−x
2
) = e−x

2 − 2x2e−x
2
< 0,

which is true for all x > 1; since
∫ t

1
xe−x

2
dx = [−1

2
e−x

2
]t1 = 1

2
(e−1− e−t)→ 1

2e
as t→∞,

the integral test tells us that
∑
ne−n

2
is convergent. This fact can also be proved using

the ratio test, the root test, or the comparison test (using a geometric series as reference);
try it!

For power series of the form
∑∞

n=0 cn(x−a)n, there is always a radius of convergence R
such that the series converges absolutely on (a−R, a+R) and diverges when |x−a| > R.
It is possible to have R = 0 or R =∞; the power series

∑
xn

n!
is an important example

with R =∞.
When x ∈ (a−R, a+R) so that |x− a| < R, the proof of absolute convergence goes

by comparing the series to a geometric series (exponential behavior). At the endpoints
x = a± R, we typically have to compare to a p-series (polynomial behavior) and there
are multiple possibilities (each of the following examples has R = 1):

(1) absolute convergence at both endpoints (
∑

1
n2x

n);

(2) conditional convergence at both endpoints (
∑ (−1)n

2n+1
x2n+1);

(3) conditional convergence at one endpoint and divergence at the other (
∑

1
n
xn);

(4) divergence at both endpoints (
∑
xn).

The radius of convergence can often be determined using a version of the Ratio or
Root Tests. On the interval (a − R, a + R), the power series defines a function f
whose derivative and integral can be written as power series (with the same radius of
convergence) using analogues of the familiar formulas for polynomials. Writing down
the power series representations of the higher-order derivatives f (n)(x) and evaluating
them at a reveals that when f admits a power series representation, it must be given

by its Taylor series
∑∞

n=0
f (n)(a)
n!

(x− a)n. The partial sums of this series are the Taylor
polynomials, and the difference between a function and its Taylor polynomial can be
controlled by Taylor’s inequality provided we have a good upper bound on |f (n+1)(x)|.

We saw power series representations of ex, sinx, cosx, 1
1−x , ln(1 − x), 1

1+x2
, tan−1 x,

and (1+x)α for α ∈ R; these were obtained with Taylor series, with the geometric series
formula, and using differentiation and integration from known formulas.
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Part VI. Conic sections, planetary motion

Lecture 34 Parabolas

Stewart §10.5, Spivak Chapter 4 appendix 2

34.1. Different descriptions

You may have encountered various ways to describe parabolas, or various properties
that these curves have. Let us start our discussion of conic sections by recalling some
(five!) of these descriptions; see Figure 2 below.

(1) Analytic geometry – equation. A parabola is the graph of the function y = x2,
or more generally y = ax2 + bx + c, where a, b, c ∈ R are arbitrary parameters
with a 6= 0. This gives a parabola that opens up (if a > 0) or down (if a < 0).
For parabolas opening left and write we write x = ay2 + by + c.

(2) Physics – dynamics. A projectile moving without air resistance in a uniform
gravitational field flies along a parabola. Thus if we throw a ball, a parabola
describes its flight path.

(3) Physics – optics, acoustics. A parabola has a distinguished point called the focus
with the property that if a light bulb is placed at the focus and emits beams of
light in all directions, then when these beams are reflected off of the parabola,
they all become parallel to each other; see the first picture below. This is used
in building headlights for cars. If the direction of the arrows is reversed this
principle means that parallel incoming lines are all reflected to a single point
(the focus), which is useful in building satellite dishes, radio telescopes, and
parabolic microphones.

(4) Two-dimensional geometry – focus and directrix. A parabola has a point F ,
called the focus, and a line `, called the directrix, with the property that given
any point Q on the parabola, if R is the closest point to Q on the directrix `,
then |QF | = |QR|; see the second picture below. Notice that the point lying
halfway between F and ` is on the parabola; this point is called the vertex.

(5) Three-dimensional geometry – cross-section of cone. Given a plane P and a cone
C in three-dimensional space, if P is parallel to one of the lines containing the
vertex of C, then the cross-section P ∩ C is a parabola, as shown in the third
picture below.

At first glance, it is not at all clear why the five different descriptions in the list above
should all determine the same curve. Why should they be equivalent?



127

`

F

Q

R

picture to be added

Figure 2. Different representations of a parabola.

34.2. Analytic geometry and projectile dynamics

We have already seen one equivalence: the first two descriptions are equivalent because
if a projectile has constant horizontal velocity v 6= 0, initial vertical velocity w, and is
subject to constant downward acceleration g, then its position (x, y) as a function of
time t satisfies

ẋ = v, ẏ(0) = w, ÿ = −g.
Integrating gives

ẏ(t) = ẏ(0) +

∫ t

0

ÿ(τ) dτ = w − gt.

If the initial position is (x0, y0), then we have

x(t) = x0 + vt, y(t) = y0 +

∫ t

0

ẏ(τ) dτ = y0 +

∫ t

0

(w − gτ) dτ = y0 + wt− g

2
t2.

This gives the trajectory as a parametric curve. To write y as a function of x we solve
the first equation and get t = (x−x0)/v (recall that we assumed v 6= 0, so the projectile
is not simply moving straight up and down), and deduce that

y = y0 + w · x− x0

v
− g

2
· (x− x0)2

v2
.

Thus y is a quadratic function of x, so the projectile follows a parabola.

34.3. Analytic geometry and plane Euclidean geometry

Now we show that the first and fourth descriptions from the list above are equivalent;
that is, a curve with the focus-directrix property described there is in fact given as the
graph of a quadratic polynomial.

`

F (0, b)
P (x, y)

R(x,−b)

Suppose C is a curve in the plane that has the
focus-directrix property; that is, there is a point F
and a line ` (not containing F ) such that a point
P in the plane lies on the curve C if and only if
the distance |PF | is equal to the distance from P
to `. We choose a coordinate system in which F
lies on the positive y-axis and the origin is halfway
between F and `; thus F = (0, b) and ` is given
by the equation y = −b. Consider a point P with
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coordinates (x, y). Then the closest point on ` to P is the point R that lies directly
beneath P , which has coordinates (x,−b). The focus-directrix property says that P lies
on C if and only if |PF | = |PR|, or equivalently, |PF |2 = |PR|2. Observe that

|PF |2 = (x− 0)2 + (y − b)2 = x2 + y2 − 2by + b2,

|PR|2 = (y − (−b))2 = (y + b)2 = y2 + 2by + b2.

Thus P lies on C if and only if

x2 + y2 − 2by + b2 = y2 + 2by + b2 ⇔ x2 = 4by ⇔ y =
1

4b
x2.

In other words, C is the graph of the quadratic y = ax2, where a = 1
4b

.
More generally, if C is a parabola with focus F = (p, q) and directrix y = r for some

p, q, r ∈ R with r 6= q, then writing k = (q+r)/2, we can do a horizontal translation by p
and a vertical translation by k to move F to (0, b) and ` to y = −b, where b = (q− r)/2.
The argument above gives the formula for the translated curve, so the original curve is
the graph of

y − k =
1

4b
(x− p)2 ⇔ y =

q + r

2
+

1

2(q − r)(x− p)2.

Remark 34.1. If we consider a parabola with a vertical directrix, then we interchange the
roles of x and y in the above computations. If we consider a parabola with a directrix
that is neither horizontal nor vertical, then the coordinates become more complicated,
at least as long as we use a rectangular coordinate system, and we will not pursue this
any further here.

34.4. Focus-directrix property and reflection property

`

F
P

R
S

Q T

C

Now we prove that the focus-directrix property
implies the property that lines emanating from the
focus are reflected to parallel lines, or equivalently,
that an incoming line perpendicular to the directrix
is reflected to the focus.

Consider such a line QP , and imagine a beam of
light traveling along this line. When it reaches the
point P on the parabola, what does it do? The law
of reflection says that its outgoing angle is equal to
its incoming angle. But angle with what? When-
ever we discuss the angle that a line makes with a
curve (or that two curves make with each other),
what we mean is the angle that is made with the tangent line to the curve. In other
words, if TS is the tangent line to the parabola at P , then the incoming beam is reflected
towards the focus if and only if ]FPS = ]QPT . Since ]QPT = ]RPS, we conclude
that

in order to prove that the incoming beam along QP is reflected towards
the point F , it suffices to prove that the line bisecting the angle ∠FPR is
the tangent line to the parabola at P .
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At this point one might expect that we should introduce some coordinates and use
the description of the parabola in terms of the graph of a quadratic polynomial, since
describing a tangent line involves computing a derivative. But in fact, we can get a little
more mileage out of a purely geometric approach.

Let `′ be the line bisecting ∠FPR, and let S be the point where `′ intersects the
vertical line through F (in the picture, T also lies on `′). Then ]RPC = ]FPC
and |PF | = |PR| by the focus-directrix property, so the triangles FPC and RPC are
congruent. In particular, C is the midpoint of FR, and `′ and FR are perpendicular.

Recall a fundamental property of perpendicular bisectors: `′ is the set of points in the
plane that are the same distance from both F and R. If a point is on the same side of
`′ as F is, then it is closer to F than it is to R, and vice versa. In particular, if X is any
point on the parabola, then we have

|XF | = distance from X to ` ≤ |XR|.
Moreover, the latter inequality is strict unless X lies directly above R; that is, unless
X = P . This means that P is the only point where the parabola intersects `′, and that
every other point on the parabola lies above `′. Then the proof that `′ is the tangent line
to the parabola at P , and thus that the focus-directrix property implies the reflection
property, is completed by the following exercise.

Exercise 34.2. Let I ⊂ R be an open interval and suppose that f : I → R is differentiable
at a point a ∈ I. Suppose moreover that y = mx + b is a line in the plane with the
property that f(a) = ma + b, and f(x) > mx + b for all x 6= a. Prove that f ′(a) = m,
so that in particular this line is the tangent line to the graph of f at a.

Remark 34.3. Without the assumption that f is differentiable at a, the conclusion of
the exercise could fail; consider the absolute value function f(x) = |x| and a = 0.

34.5. Dandelin spheres

The only remaining property to consider is the one that gives conic sections their
names: a parabola is the cross-section obtained by intersecting a cone with a plane
that is parallel to one of the lines that makes up the edge of the cone. For this we
use a beautiful and elegant geometric argument discovered by the 19th century Belgian
mathematician Germinal Dandelin.

In the following it is useful to keep Figure 3 in mind; we orient the cone so that it
opens straight up, and consider the curve formed by intersecting the cone with a plane
P. Now imagine that we drop a tiny sphere – like a small scoop of ice cream – into the
cone. When it comes to rest near the bottom of the sphere, it will be tangent to it along
a horizontal circle. If we increase the size of the sphere – changing our analogy, we may
imagine that the sphere is a balloon that we inflate – then the sphere, and its circle of
tangency, will rise higher on the cone. When the sphere is very small, it will lie entirely
beneath the plane P. When it is sufficiently large, some points of it will lie above P.
By the Intermediate Value Theorem, for some size of the sphere, it intersects the plane
P in exactly one point.24 Then one can deduce from Exercise 34.2 that P is tangent to

24It is a good exercise to make this statement a little more formal by writing down a continuous
function that vanishes precisely when there is exactly one point of intersection.
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Figure 3. The Dandelin sphere for a parabola.

the sphere. The sphere obtained by this process is the Dandelin sphere associated to
the cone and to the plane P; we denote it by S.

Let F = S ∩ P; this point will be the focus. Let C1 be the circle of points where S
intersects (and is tangent to) the cone. Since the picture is symmetric under rotation
around a vertical axis, this lies in a horizontal plane H. Let ` = P ∩H; this line will
be the directrix. Given a point Q on the intersection of P and the cone, we must show
that |QF | = |Q`|.

Start by drawing the line QO, where we recall that O is the vertex of the cone, and let
T be the point where this line intersects H. This line is tangent to S, as is the line QF ;
thus if we write C for the center of S (not pictured), we see that ∠QFC and ∠QTC are
both right angles, since a tangent line to a sphere is perpendicular to the radius at that
point. Now Pythagoras gives

(34.1) |QF |2 = |QC|2 − |CF |2 = |QC|2 − |CT |2 = |QT |2,
where the second equality uses the fact that CF and CT are radii of the sphere. In fact
the computation in (34.1) proves the following general lemma, which is useful to record
here for future reference.

Lemma 34.4. Given a sphere S and a point X outside of the sphere, if XY and XZ
are tangent to the sphere at Y and Z, respectively, then |XY | = |XZ|.
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So far we have not actually assumed that P is parallel to a line generating the sphere;
this will come in useful in the next lecture when we consider more general conic sections.
Now we add this assumption, and consider the line generating the sphere that is parallel
to P; this is OA in the picture, where A is chosen to lie on C1. Let C2 be the horizontal
circle containing Q, and let B denote the point where C2 intersects the line OA. Then
the line segment AB is obtained from QT by rotating around the vertical axis, so

|QT | = |AB| = |QR| = |Q`|
where R is the point on ` that is closest to Q, and the second equality follows because
QR and BA are parallel line segments running between the same two horizontal planes
(the planes containing C1 and C2). Combining this with (34.1) shows that |QF | =
|QT | = |Q`|, and thus the point F and the line ` satisfy the focus-directrix property for
the intersection of P with the cone.

Lecture 35 Ellipses (and hyperbolas)

Stewart §10.6

35.1. Focus-directrix description of conics, and polar coordinates

Now suppose we take a cross-section of a cone with an arbitrary plane P, which is not
assumed to be parallel to any of the sides of the cone; see Figure 4. As before, take the
axis of revolution of the cone to be vertical, and consider the Dandelin sphere S that is
tangent to both the cone and the plane P, and lies below the plane. Let F be the point
where S intersects P. As long as P is not horizontal (and in this case P intersects the
cone in a circle, which we understand), P intersects H in a line `.

Figure 4. A Dandelin sphere for a general conic section.
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We want to describe the curve in which P intersects the cone. Consider an arbitrary
point Q on this curve. As before, Lemma 34.4 gives |QF | = |QT |, where T is the point
in which the line QO intersects H. And once again, we can choose a point R on the line
` such that |Q`| = |QR|. However, since P is not assumed to be parallel to any of the
sides of the cone, we can no longer deduce that |QT | and |QR| are the same. Instead, we
can compare both of these lengths to |QD|, where D is the point in H that lies directly
below Q, so that in particular QD is vertical and ∠QDR, ∠QDT are right angles. Then
elementary trigonometry gives

sin]QTD =
|QD|
|QT | and sin]QRD =

|QD|
|QR| .

Observe that α = ]QTD is the angle that measures how wide or narrow the cone is,
and does not depend on the specific choice of Q. Similarly, β = ]QRD is the angle in
which the planes P and H intersect, and once again is independent of Q. Thus we have

|QF |
|Q`| =

|QT |
|QR| =

|QD|/ sinα

|QD|/ sin β
=

sin β

sinα
.

We have proved the following result.

Theorem 35.1. Consider a cone obtained as follows: take a line through the origin that
makes an angle α with the horizontal plane, and rotate it around the vertical axis. Let C
be a curve obtained by intersecting this cone with a plane P that makes a nonzero angle
β with the horizontal. Let S be the Dandelin sphere for this cone and plane, and let H
be the horizontal plane through the circle in which S intersects the cone. Let ` = H∩P
and F = S ∩ P. Then the curve C can be described via the following focus-directrix
property: a point Q ∈ P lies on the curve C if and only if

(35.1) |QF | = e|Q`|, where e =
sin β

sinα
.

The number e > 0 is called the eccentricity of the conic section C. When β < α, we
have 0 < e < 1 and the curve C is an ellipse. When β = α, we have e = 1 and the curve
C is a parabola. When β > α, we have e > 1 and the curve C is a hyperbola.25

We can use (35.1) to write a formula for C in polar coor-
dinates. Put the focus F at the origin and let the directrix
` be the line x = d. Then given a point P at polar coordi-
nates (r, θ), we have |PF | = r, while the x-coordinate of P
is r cos θ, so |P`| = d−r cos θ. Thus P satisfies |PF | = e|P`|
if and only if r = ed− er cos θ. Solving for r, we see that in
polar coordinates, this conic section is the graph of

(35.2) r =
ed

1 + e cos θ
.

Remark 35.2. Choosing a directrix x = −d gives the related
equation r = ed/(1− e cos θ), and choosing a horizontal directrix y = ±d has the effect
of replacing cos with sin.

25In fact, in this case C is one branch of a hyperbola; one typically considers also the reflection of
the cone below the origin, so that the hyperbola has a corresponding branch in the lower half-space.



133

Another way of writing (35.2) is r = R/(1 + e cos θ), where we no longer specify the
distance to the directrix explicitly. Then putting e = 0 gives r = R, which is the polar
equation of a circle, so we see that a circle is a conic section with eccentricity 0. (Note
that this has no focus-directrix characterization, since the directrix would need to be
“at infinity”.)

35.2. Focus-focus description of ellipses, and rectangular coordinates

The ellipse also has a description
not in terms of a focus and directrix,
but in terms of two foci (plural of fo-
cus). This is illustrated in the picture
at right, which for the moment is bor-
rowed from Apostol’s textbook (until
I manage to produce one of my own).
When the plane is not parallel to the
generator of the cone, it actually has
two Dandelin spheres, one below and
one above. Writing F1 and F2 for the
two points in which these spheres in-
tersect the plane, we see that a point
P on the ellipse has the property (by
Lemma 34.4) that |PF1| = |PA1| and
|PF2| = |PA2|, where A1 and A2 are
the points in which the line PO in-
tersects the horizontal circles corre-
sponding to the two spheres. But
then |PF1|+|PF2| = |PA1|+|PA2| =
|A1A2|, and this last quantity does not
depend on P (by another application
of Lemma 34.4, as in the proof for the
parabola). Summarizing the result of
this argument, we have proved the fol-
lowing.

Theorem 35.3. If C is an ellipse (a
conic section with eccentricity e < 1), then there are two points F1, F2, called foci, and
a real number r > 0, such that a point P lies on C if and only if |PF1|+ |PF2| = r.

Note that if F1 = F2, so that the two foci coincide, then this condition reduces to the
statement that the distance from P to the (single) focus is constant, which gives a circle.

Theorem 35.3 can be used to write an equation for an ellipse with a given eccentricity
in rectangular coordinates. Instead of putting the origin at a focus, as we did with polar
coordinates, we put the two foci on the x-axis with the origin at their midpoint, so
that the foci F1 and F2 have coordinates (±c, 0). Let (a, 0) be the right-most point of
the ellipse; by symmetry the left-most point is (−a, 0). These two points are called the
vertices of the ellipse. The line segment between the two vertices is called the major
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axis, and the line segment from the origin to one of the vertices is the semimajor axis.
Similarly, the line between the top and bottom points (0,±b) is the minor axis.

O

F1(−c, 0) F2(c, 0)
(a, 0)(−a, 0)

(0, b)

(0,−b)

P (x, y)

Observe that the vertex Q = (a, 0) has
|QF1| = a+ c and |QF2| = a− c, so the sum of
the distances to the foci is |QF1|+ |QF2| = 2a.
Since the sum of the distances to the foci is
constant for all points on the ellipse, we see
that the ellipse is the set of point P such that
|PF1| + |PF2| = 2a; in other words, the sum
of the distances to the foci must always be
equal to the length of the major axis. We
also observe that when P = (0, b), we have
|PF1| = |PF2| =

√
b2 + c2, so each of these is

equal to a, and in particular, a, b, c are related by

(35.3) a2 = b2 + c2.

Now suppose P has coordinates (x, y). Using the Pythagorean formula to write |PF1| =√
(x+ c)2 + y2 and |PF2| =

√
(x− c)2 + y2, we see that the ellipse is the set of points

(x, y) such that √
(x+ c)2 + y2 +

√
(x− c)2 + y2 = 2a.

Isolating the first square root and then squaring both sides, this is equivalent to

(x+ c)2 + y2 = (
√

(x− c)2 + y2 + 2a)2

= (x− c)2 + y2 + 4a
√

(x− c)2 + y2 + 4a2.

Expanding both sides gives

x2 + 2cx+ c2 + y2 = x2 − 2cx+ c2 + y2 + 4a
√

(x− c)2 + y2 + 4a2,

and after simplifying and isolating the square root we obtain

4cx− 4a2 = 4a
√

(x− c)2 + y2.

Dividing by 4 and squaring both sides gives

(cx− a2)2 = a2
(
(x− c)2 + y2

)
,

c2x2 − 2a2cx+ a4 = a2(x2 − 2cx+ c2 + y2)

= a2x2 − 2a2cx+ a2c2 + a2y2,

a4 − a2c2 = (a2 − c2)x2 + a2y2.

Recalling from (35.3) that a2 − c2 = b2, this is equivalent to

a2b2 = b2x2 + a2y2,

and dividing through by a2b2 gives the equation for the ellipse as

(35.4)
x2

a2
+
y2

b2
= 1.

Observe that when a = b = r this becomes the familiar equation x2 +y2 = r2 for a circle
with radius r.
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As with the parabola, we can shift this equation to describe an ellipse at other locations
in the plane. If the ellipse has foci which lie on the same horizontal or vertical line, with
midpoint (h, k), and if the lengths of the horizontal and vertical axes of the ellipse are
2a and 2b, respectively, then the equation of the ellipse is

(35.5)
(x− h)2

a2
+

(y − k)2

b2
= 1.

35.3. Hyperbolas

The results for ellipses in the previous section have analogues for hyperbolas. We omit
the details here, and merely mention the conclusions: the hyperbola corresponding to
two foci F1 and F2 and a real number r > 0 is the set of all points P in the plane such
that

(35.6)
∣∣|PF1| − |PF2|

∣∣ = r.

If r ≥ |F1F2|, then the only way to satisfy (35.6) is if P is on the line ` through F1

and F2 but does not lie between them. This is a degenerate case that we ignore, so we
assume that 0 < r < |F1F2|. In this case the hyperbola contains two points on `, which
lie between F1 and F2.

If we work in rectangular coordinates where the foci are at (±c, 0), and the points
(±a, 0) are on the hyperbola (as before, we call these the vertices), then a < c by the
previous paragraph. Writing b2 = c2 − a2 for convenience, a similar computation to the
one in the previous section gives the equation for the hyperbola as

(35.7)
x2

a2
− y2

b2
= 1.

If the foci lie on the y-axis then the roles of x, y are reversed. As in (35.5), this can be
shifted to put the hyperbola elsewhere in the plane.

One feature specific to hyperbolas is worth mentioning. As x2 gets large, y2 must
also get large, and the right-hand side of (35.7) becomes insignificant in comparison.
Without this RHS, the equation would be y = ± b

a
x. These lines are the asymptotes of

the hyperbola.

Exercise 35.4. Prove that as x → ∞, the corresponding positive value of y (such that
(x, y) lies on the hyperbola) has the property that the distance from (x, y) to the line
y = b

a
x approaches 0.

35.4. List of characterizations

Our discussion of conic sections can be summarized by the following list, which gives
equivalent ways of characterizing these curves.

(1) Cross-section of a cone and a plane. If α and β are the angles that the cone
and plane, respectively, make with the horizontal, then e = sin β/ sinα is the
eccentricity of the resulting conic. e = 0 gives a circle, 0 < e < 1 gives an ellipse,
e = 1 gives a parabola, and e > 1 gives a hyperbola.

(2) Focus-directrix. If the plane is not horizontal (the conic is not a circle), then the
conic is described by a focus (point) F and a directrix (line) ` as the set of points
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Q in the plane such that |QF | = e|Q`|. The focus and directrix can be found
using a Dandelin sphere.

(3) Polar coordinates. If we choose a polar coordinate system with origin at the
focus and such that the directrix is vertical, then the curve is given in polar
coordinates as the graph of r = R/(1 + e cos θ), where R > 0 is a constant and
e is the eccentricity. When e > 0 we have R = ed, where d is the distance from
the focus to the directrix.

(4) Focus-focus. If the curve is an ellipse then there are two foci F1 and F2 such that
the conic is the set of points Q in the plane such that |QF1| + |QF2| is equal to
the length of the major axis. These two foci can be found using two Dandelin
spheres. A similar characterization is available for hyperbolas (replacing sum
with difference), but not for parabolas.

(5) Rectangular coordinates. Choosing a rectangular coordinate system with origin
at the midpoint of the foci (for ellipses and hyperbolas) or at the midpoint of
the focus and the directrix (for parabolas), the curve takes the familiar form
x2

a2
+ y2

b2
= 1 (ellipse), x2

a2
− y2

b2
= 1 (hyperbola), or y = ax2 (parabola), or possibly

with x and y reversed depending on which orientation we choose.

(6) Reflection property. For a parabola, the lines emanating from the focus in all di-
rections are reflected off of the parabola into a family of parallel lines. We proved
this, and we leave the following laws for ellipses and hyperbolas as exercises.
• For an ellipse, lines from one focus are reflected towards the other focus.
• For a hyperbola, lines directed towards one focus, but with the hyperbola

in the way, are reflected towards the other focus.

(7) Motion in a gravitational field. We proved that in a gravitational field that
points uniformly downwards, an object moving without air resistance follows a
parabola. Next we will turn our attention to movement in a gravitation field
directed towards a single fixed point (the sun) that obeys an inverse square law,
and show that the resulting trajectories are always conic sections.

Lecture 36 Kepler and Newton

Spivak Ch. 17

In the early 1600’s, the German astronomer Johannes Kepler formulated the following
three laws of planetary motion.

(1) Elliptical motion: Planets move in ellipses, with the sun at one focus.
(2) Equal areas in equal times : For a given planet, the area swept out by the line

from the planet to the sun depends only on the amount of time elapsed, and not
on when we start recording.

(3) Harmonic law : The ratio (major axis)3/(period)2 is the same for all planets.

Kepler’s work was based on extensive observations and computations, and did not offer
an explanation for why these laws should be true. An explanation of the mechanism
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behind the laws would have to wait for the work of Isaac Newton, who began developing
the ideas of calculus in the 1660’s, both at Cambridge and during a period of isolation
in 1665-1666 when the university was closed due to an epidemic of the bubonic plague.
Eventually Newton developed a theory of physics that he used to derive Kepler’s laws
in his Principia, published in 1687. The two crucial laws are the following.

• Newton’s second law : The force F acting on an object, and its resulting acceler-
ation a, are related by F = ma, where m is the mass of the object.
• Law of universal gravitation: Given two objects with masses M and m, each

object attracts the other with force GMm/r2, where r is the distance between
the objects and G is a universal constant.

In the setting we are interested in, M denotes the mass of the sun, and m denotes the
mass of the planet that we study. Although the planet moves in 3-dimensional space,
its orbit is contained in a single 2-dimensional plane, so we will describe its position
using both polar coordinates (r, θ) and rectangular coordinates (x, y). We will write c(t)
for the its position at time t. We will also write ċ(t) = d

dt
c(t) for its velocity at time

t and c̈(t) = d2

dt2
c(t) for its acceleration. Observe that because the object moves in a

2-dimensional plane, its velocity and acceleration are given by not just a magnitude, but
also a direction; that is, they are vectors in this plane, as is the force F . You will study
these further in a later calculus course. For the time being we merely observe that we
can use rectangular coordinates to write

ċ = (ẋ, ẏ) and c̈ = (ẍ, ÿ),

where x and y are the coordinate functions describing the position c; both x and y are
functions of time t, and the notation above represents their first and second derivatives
with respect to t. We will similarly write ṙ, θ̇, r̈, θ̈ for the first and second derivatives of
the polar coordinates of c(t) with respect to t.

With our notation established, let us begin our analysis. For simplicity we assume
that m � M and ignore the motion of the sun, assuming instead that the location
of the sun is fixed; we will use this as the origin of our coordinate system.26 We also
ignore the effect of any other planets, asteroids, comets, etc., that may be lurking in
the vicinity.27 Under these assumptions, Newton’s laws imply that a planet at position
(r, θ) (in polar coordinates) has acceleration a = GM/r2, directed along the line from the
planet towards the sun. We prove the following three theorems, which demonstrate that
this implies Kepler’s laws. All three theorems use Newton’s second law F = ma, but the
first two theorems do not require the full strength of the law of universal gravitation.

Theorem 36.1. Suppose that an object moves according to Newton’s second law F =
ma, and that F depends only on the object’s current position (r, θ). (We do not yet

26For a completely precise treatment, this assumption should be removed, and we should put the
origin at the center of mass of the sun-planet system.

27This seems reasonable since the gravity exerted by these objects is extremely small relative to the
gravity exerted by the sun. However, the cumulative effect of these perturbations over long (long!)
periods of time can be substantial, and the question of asymptotic stability of the solar system remains
extremely difficult; this was one of the questions that led to the development of the part of the theory
of dynamical systems that is popularly known as chaos theory.
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assume the law of universal gravitation.) Then the object’s orbit satisfies Kepler’s sec-
ond law (equal areas in equal times) if and only if F (r, θ) always points along the line

connecting the object to the origin. In this case, there is a constant K such that r2θ̇ = K
for all times t, and writing a(t) := r̈ − r(θ̇)2 = r̈ −K2/r3, we have

(36.1) c̈ = (a(t) cos θ, a(t) sin θ).

Informally, this says that an object moving in a force field has the property of “equal
areas in equal times” if and only if the force field is central (always points along the line
to the origin). Thus Newton’s laws imply Kepler’s second law.

Theorem 36.2. Suppose an object moves in a central force field following an inverse
square law, meaning that c̈ has magnitude Q/r2 for some constant Q, and always points
towards the origin. Then the object moves along a conic section. In particular, if the
object’s orbit is periodic, then it moves along an ellipse (or a circle).

In fact, Theorem 36.2 is also an ‘if and only if’ – if every object moving in a central
force field moves along a conic section, then the force satisfies an inverse square law.
We will not prove this direction, however, and will content ourselves with the direction
stated, which shows that Newton’s laws imply Kepler’s first law.

Theorem 36.3. Under the conditions of Theorem 36.2, Kepler’s third law is satisfied
if and only if the constant Q is the same for all planets.

This theorem shows that Kepler’s third law holds if and only if the gravitational
constant G is truly universal.

Proof of Theorem 36.1. First we determine how to write Kepler’s second law in terms of

r and θ. By (25.2), the area swept out by the curve c from time t1 to t2 is
∫ θ(t2)

θ(t1)
1
2
r2 dθ,

where in the integral we consider r as a function of θ. Using the substitution rule to
write the integral in terms of t, we see that the area is

(36.2)

∫ t2

t1

1

2
r(t)2θ̇(t) dt.

Thus Kepler’s second law – equal areas in equal times – is true if and only if r2θ̇ is
constant.

Now we look at the acceleration c̈, since this points in the same direction as the force.
Writing c = (x, y) = (r cos θ, r sin θ) and differentiating coordinate-wise gives

(36.3)
ẋ = ṙ cos θ − rθ̇ sin θ,

ẏ = ṙ sin θ + rθ̇ cos θ.

Differentiating a second time gives
(36.4)

ẍ = r̈ cos θ − 2ṙθ̇ sin θ − rθ̈ sin θ − r(θ̇)2 cos θ = (r̈ − r(θ̇)2) cos θ − (2ṙθ̇ + rθ̈) sin θ,

ÿ = r̈ sin θ + 2ṙθ̇ cos θ + rθ̈ cos θ − r(θ̇)2 sin θ = (r̈ − r(θ̇)2) sin θ + (2ṙθ̇ + rθ̈) cos θ.

Thus if we plot c̈ = (ẍ, ÿ) in the plane, we can reach it by first moving a distance

(r̈ − r(θ̇)2) in the direction of (cos θ, sin θ), which is the direction of the line between

the origin and the object, and then moving a distance of (2ṙθ̇ + rθ̈) in the direction of



139

(− sin θ, cos θ). Observe that this second motion is at right angles to the direction of the

first motion, and thus c̈ points along the line to the origin if and only if 2ṙθ̇ + rθ̈ = 0
(that is, if and only if our second motion had no distance).

Compare this to the criterion for Kepler’s second law, that r2θ̇ is constant. Differen-
tiating r2θ̇ w.r.t. t gives

d

dt
(r2θ̇) = 2rṙθ̇ + r2θ̈ = r(2ṙθ̇ + rθ̈).

This shows that r2θ̇ is constant if and only if 2ṙθ̇ + rθ̈ = 0 at all times when the object
is not at the origin, which shows that Kepler’s second law holds if and only if the force
always points along the line connecting the object to the origin. We saw already that
r2θ̇ is constant in this case, and then (36.1) follows immediately from (36.4). �

Proof of Theorem 36.2. If acceleration always has magnitude Q/r2 and points towards
the origin, then from (36.1) we have

(36.5) r̈ − K2

r3
= −Q

r2
⇒ d2r

dt2
=
K2

r3
− Q

r2
.

A first this looks like a separable equation – the RHS depends only on r, which is what
we want to find – so we might try dividing both sides by the RHS and then integrating.
But the LHS is a second derivative, not a first derivative! So this is not actually a
first-order separable DE like the ones we encountered earlier, and our techniques from
before do not work.

Instead we need to reformulate things a little bit. Instead of writing r as a function
of t, we consider r as a function of θ, and write (36.5) to obtain a DE in terms of d

dθ
,

not d
dt

. We can do this using the chain rule, but we need to be careful because a second

derivative is involved. Recall from Theorem 36.1 that dθ
dt

= θ̇ = K
r2

, and thus

d2r

dt2
=

d

dt

(dr
dt

)
=
dθ

dt

d

dθ

(dr
dθ

dθ

dt

)
=
K

r2

d

dθ

(K
r2

dr

dθ

)
,

where the first equality is the definition of second derivative, the second equality is two
applications of the chain rule, and the third equality uses the formula for θ̇. Comparing
this to (36.5) gives

K2

r2

d

dθ

( 1

r2

dr

dθ

)
=
K2

r3
− Q

r2
⇒ d

dθ

( 1

r2

dr

dθ

)
=

1

r
− Q

K2
.

We could expand the left-hand side using the product rule, but the resulting DE would
not fit into any of the categories that we have a good procedure for solving at this point.
Instead, the way forward is to make the observation that

d

dθ

1

r
= − 1

r2

dr

dθ
,

and so the DE can be rewritten as

d

dθ

(
− d

dθ

1

r

)
=

1

r
− Q

K2
⇒ d2

dθ2

1

r
= −1

r
+

Q

K2
.
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Let f(θ) = 1
r
− Q

K2 , and observe that d2

dθ2
f(θ) = d2

dθ2
1
r
; thus

d2

dθ2
f(θ) = −f(θ).

This is a DE that we can solve; the general solution is

f(θ) = B cos(θ + α),

where B,α are constants of integration determined by the initial values of f and df
dθ

.
Thus

1

r
− Q

K2
= B cos(θ + α),

and solving for r gives

(36.6) r =
1

Q
K2 +B cos(θ + α)

=
K2/Q

1 + BK2

Q
cos(θ + α)

.

This is the polar equation for a conic section with eccentricity e = BK2/Q, which proves
the theorem. Observe that Q represents the strength of the central force divided by the
mass of the object, while the parameters B,K, α are determined by the initial position
and velocity. If these are such that the eccentricity is < 1, then the orbit is periodic and
thus is an ellipse.

Observe that when the orbit is an ellipse, we can compare (36.6) to (35.2) and deduce
that the eccentricity e and focus-directrix distance d satisfy de = K2/Q. �

O

F1 F2

A

B
P

`

cc

Before proving Theorem 36.3 we deduce a little
more information about the shape of the ellipse in
the case when e < 1. Referring to the picture at
right, let ` be the length of the line segment F2P ,
which goes through one of the foci and is perpendic-
ular to the major axis (hence parallel to the minor
axis). Observe that the distance from P to the di-
rectrix is the same as the distance d from F2 to the
directrix, and thus ` = de by definition. (Compare
this with (35.2) and observe that P corresponds to
θ = π

2
.) Moreover, recalling that the lengths a, b of the semi-major and semi-minor axes

satisfy b2 + c2 = a2, and that |PF1|+ |PF2| = 2a, we have

2a = `+
√

(2c)2 + `2 ⇒ (2c)2 + `2 = (2a− `)2 = 4a2 − 4a`+ `2.

Subtracting `2 from both sides gives 4c2 = 4a2 − 4a`, and simplifying gives

a` = a2 − c2 = b2.

Thus we have proved the following.

Lemma 36.4. Let a, b be the lengths of the semimajor and semiminor axes of an ellipse
with eccentricity e and focus-directrix distance d. Then b2 = dea = `a, where ` is the
length of the line segment from one focus to the edge of the ellipse, running perpendicular
to the major axis.
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Proof of Theorem 36.3. Given a planet in an elliptical orbit as in Theorem 36.2, we need
to relate the period of the orbit to the length of the major axis and to the constant Q.
First observe that by (36.2) and the conclusion of Theorem 36.1, if we write T for the
amount of time it takes the planet to complete one revolution (its period), then the area
of the ellipse is

(36.7) A =

∫ T

0

1

2
r2θ̇ dt =

∫ T

0

1

2
K dt =

KT

2
,

where K is a constant (that may be different for different planets). On the other hand,
we have A = πab, where a, b are the lengths of the semimajor and semiminor axes, so

(36.8) KT = 2πab.

Using Lemma 36.4, we observe that b2 = `a = K2

Q
a, and now we can complete the proof

of Theorem 36.3 by squaring (36.8) and writing

K2T 2 = 4π2a2b2 = 4π2a2K
2

Q
a.

Solving for Q gives

(36.9) Q = 4π2 a
3

T 2
,

which proves the theorem and establishes Kepler’s third law as a consequence of the law
of universal gravitation. �


	I Integration
	Review of integration and the substitution rule
	Integration by parts
	Trigonometric integrals
	More trigonometric integrals
	Trigonometric substitutions
	Complicated quadratics
	Rational functions
	General partial fraction decompositions
	Numerical integration
	Improper integrals

	II Applications of integration
	Arc length and the catenary
	Surface area
	Physical applications
	Two- and three-dimensional objects
	*Probability

	III Differential equations
	Ideas and examples
	*Separable differential equations
	*Other population models
	*Linear differential equations
	Coupled differential equations

	IV Parametric curves and polar coordinates
	Parametric curves
	Calculus with parametrizations
	Geometry of parametric curves
	Polar coordinates
	Calculus with polar coordinates

	V Sequences and series
	Sequences
	Summing an infinite series
	The integral test
	Comparison tests and alternating series
	Absolute convergence, ratio and root tests
	Power series
	Calculus with power series
	Taylor and Maclaurin series

	VI Conic sections, planetary motion
	Parabolas
	Ellipses (and hyperbolas)
	Kepler and Newton


