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1 What is a real number?

One of the most enduring memories of my undergraduate education is also the
very first. I was enrolled in Math 147, the advanced section of the standard first-
year calculus course at the University of Waterloo, taught by Ken Davidson. On
that first day, the classroom was bursting at the seams, with a hundred or so
cocky young frosh crowded into a space meant for eighty. We had all been the
brightest kids in our respective high schools, if not in everything, then certainly
insofar as math was concerned, and we had not yet been hit with the healthy
dose of humility that university-level mathematics courses would provide.

Over the course of the next four months, Professor Davidson would do a
rather thorough job of cutting us down to size, and teaching us a thing or two
about how mathematics is done in the process. It began with his opening salvo
on that first day; as we sat there, confident in our ability to handle anything
he could throw at us (after all, most of us had already seen some calculus in
high school), he stepped to the front of the room, turned to face us, and asked
a deceptively simple question: “What is a real number?”

After half an hour of fishing around and putting forward various suggestions,
none of which really held water, we had come up with quite a few examples of
how not to define a mathematical object, but still hadn’t answered the question
to his satisfaction. Professor Davidson was leading us towards the idea that
before we can use anything in mathematics, we must first give it a proper
definition, that the real numbers in fact need to be constructed from the building
blocks of the integers.

As anyone who has gone through a course covering the foundations of the
real line knows, this is a significant undertaking, particularly for students fresh
out of high school, who have yet to see real mathematics. In the end, the best
we could come up with was the idea of a decimal expansion; a real number is
simply something which can be written as a (possibly infinite) decimal number.

That concept was sufficient for a working definition, and to get us out of
that first class, but there are enough problems with the idea of representing
real numbers by decimals that over the course of the term, we were introduced
to the two usual methods of constructing the real numbers— namely, Cauchy
sequences and Dedekind cuts. Both of these begin by constructing the rationals
from the integers (which, as Kronecker would have it, are God-given); it is not
the purpose of these brief notes to discuss either construction in detail,1 but
rather to examine a fourth way of thinking about real numbers. The concept is
that of continued fractions, which describe each real number in terms of a series
of positive integers. First, of course, we must answer the question of why we
would bother to do this, when we already have three other perfectly valid ways
of defining R.

1If you have not seen these constructions before, or if you have no idea what I’m talking
about in these first two sections, feel free to skip directly to section 3. Everything up to
that point is simply motivation. If you really want to read more about them, have a look at
Rudin [6] or Conway [2].
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2 Why continued fractions?

Each of the usual three methods of constructing the real numbers—decimal
expansions, Cauchy sequences, and Dedekind cuts—has its own particular id-
iosyncrasies, its own strengths and weaknesses.

To most of us, decimal expansions are the most familiar, and indeed, are
the only one of the three which any non-mathematician is likely to have any
contact with. We proclaim, as if by edict, “A real number is a sequence, possibly
infinite, of digits from 0 to 9, with a decimal point placed somewhere,” and
then define rules for working with them. If we are feeling particularly inspired,
we might draw part of a number line, divide it into intervals of unit length,
divide each of these into ten equal subintervals, and indicate that this is to
be continued ad infinitum, thus suggesting a connection between the intuitive
concept of points on a line and the real numbers which are to be represented.
However, we cannot avoid the fact that if we had twelve fingers instead of ten, the
construction would probably look somewhat different, and that the algorithms
for adding and multiplying decimals work right-to-left, a difficulty when the
expansion continues to the right indefinitely. Further, there is no particularly
deep mathematics in a number’s decimal expansion; the expansion will tell us if
the number is rational, but nothing more, and the arithmetic properties of the
number are almost completely divorced from its decimal expansion.

Cauchy sequences, on the other hand, are very natural; further, the process
by which the rationals are completed to obtain the reals can be easily generalised
to any metric space,2 and hence is a very powerful procedure. For this reason, it
could be argued that Cauchy sequences provide the best construction of the real
line; however, they have the disadvantage of being highly non-unique. Given any
real number α, not only are there multiple sequences of rationals which converge
to α, there are uncountably many such sequences. This makes it impossible to
talk meaningfully about the Cauchy sequence which represents a particular real
number, and we would like something a little more concrete and specific.

Dedekind cuts3 do not suffer from the arbitrariness or non-uniqueness of the
previous two approaches, but there is generally no good way to represent them.
While the set of rational numbers less than

√
2 can be written as {x ∈ Q :

x ≤ 0 or x2 < 2}, it would be difficult to conceive of a similar criterion for the
relation x < π.

In contrast with these three constructions, continued fractions are quite nat-
ural, provide (very nearly) unique representations of real numbers, and can be
quite easily written down, as they are simply sequences of integers. However,
the one difficulty inherent in dealing with continued fractions is that they are
nearly impossible to do calculations with. The task of adding or multiplying
two continued fractions is so intractable as to make dividing Roman numerals
look positively enjoyable.

2See exercises 24-25 in chapter 3 of [6] for details.
3See the appendix to chapter 1 of [6] for details of this construction; also, Conway [2] dis-

cusses a generalisation of Dedekind cuts, which also incorporates von Neumann’s construction
of the ordinals into a unified system which he refers to as the surreal numbers.
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Nevertheless, since we will be concerned here only with the continued frac-
tion representation of single real numbers, this difficulty will not trouble us at
the present time. As we will see, the great utility of continued fractions in
finding rational approximations to real numbers makes them important math-
ematical objects in their own right. Further, as a fringe benefit, they allow
certain constants, such as e and π, to be written in particularly nice forms.

In the interests of completeness (no pun intended), it ought to pointed out
that both decimal expansions and continued fractions are a specialisation of
the method of Cauchy sequences, in which one particular Cauchy sequence is
singled out as “the” representative sequence for a real number α. For decimal
expansions, it is the sequence which has the form(a0

1
,
a1

10
,

a2

100
, . . . ,

an

10n
, . . .

)
where an ∈ Z, and each term is the largest rational number with that form which
is still less than or equal to α. In the case of continued fraction expansions, we
will see in due course which particular sequence we choose; the point here is
that the underlying construction is still the idea of Cauchy sequences, so that in
the end, all of the constructions discussed fall into the rubric of either Cauchy
sequences or Dedekind cuts.

It is also worth noting that the image given above for decimal expansions, in
which each unit interval is subdivided into ten equal subintervals, also applies
to continued fractions. However, in this case each interval will be divided into
infinitely many subintervals, which must necessarily have different lengths. It
will be a worthwhile exercise to draw or visualise the geometry of the situation
as the exposition proceeds.

3 What are continued fractions?

We know what fractions are: “two-level” numbers of a sort, with a numerator
and a denominator. Now if the denominator itself contains another fraction, we
have something like the following:

1 +
1

2 + 1
2

This sort of behaviour could continue (hence the name); we could insert another
fraction into the innermost denominator:

1 +
1

2 + 1
2+ 1

2

These numbers can be simplified, of course, and written in the usual manner;
the former is equal to 7

5 , the latter to 17
12 . For the time being, though, let us

agree to leave them in this somewhat awkward form, for reasons which will
become apparent later.
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We can extend the process further, to as many levels as we like. Because the
expressions quickly become very cumbersome to write down in full, and a sheet
of paper is only so big, we require some new notation.

Taking the structure of the continued fraction as a given,4 we note that
the only feature distinguishing different continued fractions is the sequence of
coefficients, the numerators and denominators appearing in each of the nested
fractions. So the first expression above could be more succinctly written5 as

1 +
1

2+
1
2

and similarly, the second would be written as

1 +
1

2+
1

2+
1
2

We can streamline this notation still further by restricting our attention to
simple continued fractions,6 for which all the numerators are equal to 1. Then
all the relevant information is carried by the initial term (which we allow to be
any integer) and the sequence of denominators (which we assume to be positive
integers), and we write

a0 +
1

a1+
1

a2+
· · · 1

an
= [a0; a1, a2, . . . , an]

Provided we do eventually stop after some finite number of steps, the re-
sulting continued fraction can be simplified and written as a rational number
in the usual way. Thus far, we have not really done anything new, but have
simply replaced the usual method of writing rational numbers with another,
rather more cumbersome, technique.

But what if we don’t stop? What happens if we consider the expression

[a0; a1, a2, . . .]

where the sequence never terminates? Does this expression have any meaning?
How does it relate to the finite continued fractions [a0; a1, . . . , an]? As we shall
see, the answers to these questions lead us into deeper waters.

4 To infinity, and... well, to infinity.

Perhaps the simplest example of an infinite continued fraction is the following:

[1; 1, 1, . . .] = 1 +
1

1 + 1
1+ 1

1+···

4We can define this structure recursively, as “a continued fraction X has the form X =
a + b

Y
, where a, b are integers and Y is again a continued fraction.”

5Again, resist the urge to simplify it to 7
5
; it is not only the value of the fraction which is

of interest, but also the structure, and so both must be preserved.
6Also called standard continued fractions, or continued fractions in canonical form.
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Suppose this is to stand for some real number α. Then it must be the case that

α = 1 +
1
α

from which we can quickly deduce that α = 1+
√

5
2 , the golden ratio. But in what

sense is this equal to the infinite continued fraction represented above? We will
address this question in the next section after looking at one more example,
which deals with the problem of computing a continued fraction which is to
represent a specific α.

Suppose the continued fraction [a0; a1, . . .] is to stand for7 the real number√
2. The requirement that an be a positive integer for each n ≥ 1 implies that

a0 must be the greatest integer less than or equal to
√

2, so a0 = b
√

2c = 1, and
we have √

2 = b
√

2c+ {
√

2} = 1 + (
√

2− 1)

where {x} denotes the fractional part of x. Now to compute a1, we note that

1
a1+

1
a2+

· · · =
√

2− 1

and hence
a1 +

1
a2+

· · · = 1√
2− 1

=
√

2 + 1

Thus as above, a1 = b
√

2 + 1c = 2, and we again have

1
a2+

1
a3+

· · · = {
√

2 + 1} =
√

2− 1

At this point it is clear that the pattern will continue to repeat, and so an = 2
for every n ≥ 1. Indeed, if we write

α = [1; 2, 2, 2, . . .] = 1 +
1

2 + 1
2+ 1

2+···

= 1 +
1

α + 1

we immediately find the positive solution α =
√

2.
This example illustrates the general algorithm for finding the continued frac-

tion representation of a given number, rational or irrational. The integer part of
the number gives the first coefficient, while the inverse of the fractional part is
fed back into the algorithm to compute the second coefficient, and the process
is repeated.8

However, we must now work out in what sense these expressions are equal
to the numbers we claim they represent. Since we are dealing with infinite
sequences of coefficients, there is bound to be a question of convergence lurking
in the shadows, and it is to this matter which we now turn our attention.

7Whatever “stand for” means. At the moment, we have not proved anything rigorously,
and these infinite sequences are to be dealt with simply as formal symbols.

8Prove that if our original number α is rational, then this process will terminate.
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5 A matter of convergence

The trick used in the previous section to go from the continued fraction [1; 1, . . .]
to the number α = 1+

√
5

2 relies on the fact that the sequence of coefficients is
periodic. To deal with the general case, we must look at the sequence {xn} of
convergents given by

xn = [a0; a1, . . . , an] =
pn

qn

This is just a finite continued fraction of the form we have already dealt with;
it is apparent that the convergents xn are all rational, and the next step is to
find formulae for pn and qn in terms of the coefficients an.

For α =
√

2, we found the continued fraction expansion [1; 2, 2, 2, . . .]. A
little computation, which the reader is encouraged to work through, shows that
the sequence of convergents is given by

(x0, x1, x2, x3, x4, . . .) =
(

1
1
,
3
2
,
7
5
,
17
12

,
41
29

, . . .

)
Note that squaring each of these terms gives

(x2
0, x

2
1, x

2
2, x

2
3, x

2
4, . . .) =

(
1
1
,
9
4
,
49
25

,
289
144

,
1681
841

, . . .

)
which makes it plausible, at least, that xn →

√
2 as n goes to infinity.9

In the case of α = 1+
√

5
2 , we have the expansion [1; 1, 1, . . .], and the reader

is again encouraged to verify that

(x0, x1, x2, x3, x4, . . .) =
(

1
1
,
2
1
,
3
2
,
5
3
,
8
5
, . . .

)
We immediately recognise our old friend the Fibonacci sequence in both the
numerators and the denominators, suggesting that for this particular continued
fraction, the value of pn is given by the recursion pn = pn−1+pn−2, and similarly
for qn, with initial conditions p−1 = 1, q−1 = 0, p0 = q0 = 1.

In general, of course, we must modify this formula so that pn and qn de-
pend on an; upon examining the sequence of convergents for

√
2, we are led to

conjecture the following rules, which we will then prove to be correct:

pn = anpn−1 + pn−2 p−1 = 1 p0 = a0

qn = anqn−1 + qn−2 q−1 = 0 q0 = 1

Taking this as our definition of pn and qn, we consider the function

fn(t) =
pnt + pn−1

qnt + qn−1

9In fact, each of these convergents p
q

satisfies Pell’s equation p2 − 2q2 = ±1, and it can be

shown that these are the only integral solutions.
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where t ∈ R+, and show by induction that fn(t) = [a0; a1, . . . , an, t].
The case n = 0 reduces to the statement that

a0 +
1
t

=
p0t + p−1

q0t + q−1

which is immediate, given the specified initial values. Now whenever the result
holds for n− 1, we have

[a0; a1, . . . , an, t] =
[
a0; a1, . . . , an−1, an +

1
t

]
= fn−1

(
an +

1
t

)
=

pn−1(an + 1
t ) + pn−2

qn−1(an + 1
t ) + qn−2

=
pn + 1

t pn−1

qn + 1
t qn−1

=
pnt + pn−1

qnt + qn−1

= fn(t)

Taking the limit of both sides as t →∞ proves that xn = pn

qn
, so this recursion

gives us the sequence of convergents, as claimed.
Now consider the 2× 2 matrices An defined by

An =
(

pn pn−1

qn qn−1

)
Using the recursive definition of pn and qn given above, we have

An =
(

anpn−1 + pn−2 pn−1

anqn−1 + qn−2 qn−1

)
=

(
pn−1 pn−2

qn−1 qn−2

) (
an 1
1 0

)
=

(
p0 p−1

q0 q−1

) (
a1 1
1 0

)
· · ·

(
an 1
1 0

)
=

(
a0 1
1 0

)
· · ·

(
an 1
1 0

)
This fact in and of itself does not make the computations significantly easier,

but since each of the matrices in the product has determinant −1, it is now
transparent that

pnqn−1 − pn−1qn = (−1)n+1

Hence the difference between two consecutive convergents is

xn − xn−1 =
pn

qn
− pn−1

qn−1
=

pnqn−1 − pn−1qn

qnqn−1
=

(−1)n+1

qnqn−1
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Now we can write xn without any reference to pn at all:

xn = x0 +
n∑

k=1

xk − xk−1 = a0 +
n∑

k=1

(−1)k+1

qkqk−1

From the definition of qn and the fact that an ≥ 1 for all n ≥ 1, it follows that
(qn) is a strictly increasing sequence, hence the alternating series in the above
sum converges. This proves that α = limn→∞ xn does in fact exist, and further
establishes that

x0 < x2 < · · · < x2n < · · · < α < · · · < x2n+1 < · · · < x3 < x1

where the even convergents approach α monotonically from below; the odd
convergents from above.

6 Rational approximations

Based on the nature of the convergence described in the previous section, we
have the following error estimate:

|α− xn| < |xn+1 − xn| =
1

qn+1qn

In particular, since qn+1 > qn, every convergent xn = pn

qn
satisfies∣∣∣∣α− pn

qn

∣∣∣∣ <
1
q2
n

We can obtain a tighter result by considering two successive convergents xn and
xn+1. Using the inequality 2xy ≤ x2 + y2, we see that

1
qn+1qn

<
1

2q2
n+1

+
1

2q2
n

where the inequality is strict since qn+1 6= qn, and hence∣∣∣∣α− pn+1

qn+1

∣∣∣∣ +
∣∣∣∣α− pn

qn

∣∣∣∣ = |xn+1 − xn| <
1

2q2
n+1

+
1

2q2
n

It follows that for one of the two convergents p
q , we have∣∣∣∣α− p

q

∣∣∣∣ <
1

2q2

Although we shall not prove this fact here,10 it is worth noting that any ratio-
nal number p

q which satisfies this inequality must be found in the sequence of

10See Theorem 19 in Khinchin’s book [4].
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convergents to α. Not only does this sequence give us good rational approxi-
mations, there is a very definite sense in which it gives us all the good rational
approximations!

For some particular values of n, it may happen that the convergent xn is
especially close to α. When does this happen? Using the recursive definition of
qn+1, we have

1
qn+1qn

=
1

qn(an+1qn + qn−1)
<

1
an+1

1
q2
n

Thus the best approximations will be those convergents xn for which an+1 takes
a large value; in particular, if the continued fraction expansion of α has un-
bounded coefficients, then for any constant C > 0, there exists a rational ap-
proximation satisfying ∣∣∣∣α− p

q

∣∣∣∣ <
C

q2

A little grunt work11 shows that given a fixed N , the set of real numbers whose
continued fraction expansions have coefficients bounded by N is a Cantor set
of measure zero. It follows that for almost every real number α and for every
C > 0, we can find an rational number satisfying the above approximation.

This stands in stark contrast to the situation concerning the set of Diophan-
tine numbers, that is, those real numbers α such that for some C > 0, δ > 0,
any rational number p

q 6= α satisfies∣∣∣∣α− p

q

∣∣∣∣ ≥ C

q2+δ

This set can be shown to have full Lebesgue measure on R; in other words, for
almost every real number α, we can find rational approximations to the order
of the inverse square of the denominator, but no better.

One particular approximation is worth noting. The best-known rational
approximation to π is the fraction 22

7 , which first differs from the true value
of the constant in the third decimal place. The first few coefficients of the
continued fraction expansion for π are given by

π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, . . .]

So 22
7 is, in fact, x1 = [3; 7], and has a2 = 15, which results in a reasonable

approximation to π. Given the startling magnitude of a4 = 292, an even better
approximation is x3 = [3; 7, 15, 1] = 355

113 . Indeed, if we write out the first few
digits of the decimal expansions, we see that

22
7

= 3.14285714 . . .

355
113

= 3.14159292 . . .

π = 3.14159265 . . .

11In customary fashion, this is omitted here and left for the reader to carry out.
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This approximation gives us π correct to more than twice as many digits as
our previous one! No other approximation to π with any sort of reasonable
denominator is anywhere near this accurate, and we would have been hard
pressed to stumble across this one by random chance, without the theory of
continued fractions to guide us.

7 Patterns

When we represent real numbers by their decimal expansions, we can separate
them into three categories, according to whether the decimal expansion termi-
nates, becomes eventually periodic, or does neither. If we adopt the convention
that every decimal expansion is infinite (adding an infinite string of zeroes if nec-
essary), then the first category becomes part of the second; in either case, these
two categories represent rational numbers, while the third category encompasses
the irrationals.

As a general rule, the decimal expansion of an irrational number does not
exhibit any noticeable patterns; this is not true of continued fraction expansions.
We have already seen that the rationals are precisely those real numbers whose
continued fraction expansion is finite. The natural question to ask next is, what
happens if the expansion is periodic or eventually periodic? In this case, we
have the following:

α = [a0; a1, . . . , an, an+1, . . . , an+k]
β = [an+1; an+2, . . . , an+k]

α = fn(β) =
pnβ + pn−1

qnβ + qn−1

= fn+k(β) =
pn+kβ + pn+k−1

qn+kβ + qn+k−1

It follows that β is the root of a quadratic equation with integer coefficients, so
β = p + q

√
r for some p, q, r ∈ Q, and hence α has the same form.

It is not too hard to show that the converse of this statement is true as
well; any real number which can be written in the form given above will have a
continued fraction expansion which is eventually periodic.

This is not the whole story, though—even certain transcendental numbers
have highly regular continued fraction expansions. For example, we have

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .]
tan(1) = [1; 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, . . .]

and similar (though more complicated) patterns hold for el/m, tan(1/n), etc.
Earlier, we saw the expansion for π, which does not exhibit any noticeable
pattern. However, if we broaden our horizons beyond simple continued fractions,
and allow numerators of different values, then we have such equations as

4
π

= 1 +
1

2+
9

2+
25
2+

49
2+

· · ·
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and many more besides, which we will not investigate further here. Rather, the
interested reader is directed to the references12 for proofs of these remarkable
representations, and for further explorations in this area.

One final comment is in order. There are many unexpected statistical and
ergodic properties of continued fractions which we have not mentioned here;
for example, almost every real number α has the property that the geometric
mean of the first n coefficients in its continued fraction expansion converges to
a number, independent of α, known as Khinchin’s constant. This and other
magical-seeming results are discussed in section 4.8 of [1].
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