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Definition of SRB measure

Physically meaningful invariant measures

M a compact Riemannian manifold

f : M → M a C 1+ε diffeomorphism

M the space of Borel measures on M

M(f ) = {µ ∈ M | µ is f -invariant}

Birkhoff ergodic theorem. If µ ∈ M(f ) is ergodic then it describes
the statistics of µ-a.e. trajectory of f : for every integrable ϕ,

lim
n→∞

1

n

n−1
∑

k=0

ϕ(f k(x)) =

∫

ϕ dµ
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Definition of SRB measure

Physically meaningful invariant measures

M a compact Riemannian manifold

f : M → M a C 1+ε diffeomorphism

M the space of Borel measures on M

M(f ) = {µ ∈ M | µ is f -invariant}

Birkhoff ergodic theorem. If µ ∈ M(f ) is ergodic then it describes
the statistics of µ-a.e. trajectory of f : for every integrable ϕ,

lim
n→∞

1

n

n−1
∑

k=0

ϕ(f k(x)) =

∫

ϕ dµ

To be “physically meaningful”, a measure should describe the
statistics of Lebesgue-a.e. trajectory.
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Smooth/absolutely continuous invariant measures are
physically meaningful, but. . .
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SRB measures

Smooth/absolutely continuous invariant measures are
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. . . many systems are not conservative.

Interesting dynamics often happen on a set of Lebesgue
measure zero.



Introduction General method Recurrence to Sn(K) Applications

Definition of SRB measure

SRB measures

Smooth/absolutely continuous invariant measures are
physically meaningful, but. . .

. . . many systems are not conservative.

Interesting dynamics often happen on a set of Lebesgue
measure zero.

“absolutely continuous”  “a.c. on unstable manifolds”

µ ∈ M(f ) is an SRB measure if

1 all Lyapunov exponents non-zero;

2 µ has a.c. conditional measures on unstable manifolds.

Ergodic SRB measures are physically meaningful.

Goal: Prove existence of an SRB measure.
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Examples, known and otherwise

Uniform geometric structure

SRB measures are known to exist in the following settings.

Uniformly hyperbolic f (Sinai, Ruelle, Bowen)

Partially hyperbolic f with positive/negative central exponents
(Alves–Bonatti–Viana, Burns–Dolgopyat–Pesin–Pollicott)

Key tool is a dominated splitting TxM = E s(x) ⊕ Eu(x).

1 E s , Eu depend continuously on x .

2 ∡(E s ,Eu) is bounded away from 0.

Both conditions fail for non-uniformly hyperbolic f .
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Examples, known and otherwise

Non-uniformly hyperbolic maps

The Hénon maps fa,b(x , y) = (a− x2 − by , x) are a perturbation of
the family of logistic maps ga(x) = a − x2.

1 ga has an absolutely continuous invariant measure for “many”
values of a. (Jakobson)

2 For b small, fa,b has an SRB measure for “many” values of a.
(Benedicks–Carleson, Benedicks–Young)

3 Similar results for “rank one attractors” – small perturbations
of one-dimensional maps with non-recurrent critical points.
(Wang–Young)

Genuine non-uniform hyperbolicity, but only one unstable direction,
and stable direction must be strongly contracting.
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Examples, known and otherwise

Other non-uniformly hyperbolic maps

Other examples:

1 Hénon fa,b(x , y) = (a − x2 − by , x) for b ≫ 0.

2 Generalised Hénon fa,b(x , y , z) = (a − y2 − bz , x , y): expect
to have two unstable directions, so not rank one.

3 Large perturbations of Axiom A maps: Katok construction
(slowdown near hyperbolic fixed point), no dominated
splitting; slowdown + shear, no continuous splitting.

4 Small perturbations of maps with SRB measures: either local
or global.

Goal: Develop a method for establishing the existence of an SRB
measure that can be applied to these and other examples.
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Decomposing the space of invariant measures

Constructing invariant measures

f acts on M by f∗ : m 7→ m ◦ f −1.

Fixed points of f∗ are invariant measures.

Césaro averages + weak* compactness ⇒ invariant measures:

µn = 1
n

∑n−1
k=0 f k

∗
m µnj

→ µ ∈ M(f )
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Decomposing the space of invariant measures

Constructing invariant measures

f acts on M by f∗ : m 7→ m ◦ f −1.

Fixed points of f∗ are invariant measures.

Césaro averages + weak* compactness ⇒ invariant measures:

µn = 1
n

∑n−1
k=0 f k

∗
m µnj

→ µ ∈ M(f )

Idea: m = volume ⇒ µ is an SRB measure.

H = {x ∈ M | all Lyapunov exponents non-zero at x}

S = {ν ∈ M | ν(H) = 1, ν a.c. on unstable manifolds}

S ∩M(f ) = {SRB measures}

S is f∗-invariant, so m ∈ S ⇒ µn ∈ S for all n.

S is not compact. So why should µ be in S?
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Decomposing the space of invariant measures

Non-uniform hyperbolicity in M

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V .

d(f −k(x), f −k(y)) ≤ Ce−λkd(x , y) for all 0 ≤ k ≤ n and x , y ∈ V

Sn = {ν supp. on and a.c. on n-admissible manifolds, ν(H) = 1}
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d(f −k(x), f −k(y)) ≤ Ce−λkd(x , y) for all 0 ≤ k ≤ n and x , y ∈ V

Sn = {ν supp. on and a.c. on n-admissible manifolds, ν(H) = 1}

This set of measures has various non-uniformities.
1 Value of C , λ in definition of n-admissibility.
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2 Size and curvature of admissible manifolds.
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3 ‖ρ‖, where ρ is density wrt. leaf volume.
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Decomposing the space of invariant measures

Non-uniform hyperbolicity in M

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V .

d(f −k(x), f −k(y)) ≤ Ce−λkd(x , y) for all 0 ≤ k ≤ n and x , y ∈ V

Sn = {ν supp. on and a.c. on n-admissible manifolds, ν(H) = 1}

This set of measures has various non-uniformities.
1 Value of C , λ in definition of n-admissibility.
2 Size and curvature of admissible manifolds.
3 ‖ρ‖, where ρ is density wrt. leaf volume.

Given K > 0, let Sn(K ) be the set of measures for which these
non-uniformities are all controlled by K .

large K ⇒ worse non-uniformity

Sn(K ) is compact, but not f∗-invariant.
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Decomposing the space of invariant measures

Non-uniformities controlled by K

Admissible manifold V near x defined by

decomposition TxM = G ⊕ F with α = ∡(G ,F ),

C 1+ε function ψ : G ∩ B(0, r) → F with ‖Dψ‖ ≤ γ and
|Dψ|ε ≤ κ such that V = expx(graphψ).

Density ρ ∈ C ε(V ) and backwards dynamics satisfy

L−1 ≤ ρ(x) ≤ L and ‖ρ‖Cε ≤ L,

d(f −k(x), f −k(y)) ≤ Ce−λkd(x , y).

K controls all the quantities α, r , γ, κ (geometry of the admissible
manifold), L (density function), and C , λ (dynamics).
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Recurrence to compact sets

Conditions for existence of an SRB measure

M be a compact Riemannian manifold, U ⊂ M open,
f : U → M a local diffeomorphism with f (U) ⊂ U.

Let µn be a sequence of measures whose limit measures are all
invariant. (In applications, µn = 1

n

∑n−1
k=0 f k

∗
Leb.)

Fix K > 0, write µn = νn + ζn, where νn ∈ Sn(K ).

Theorem (C.–Dolgopyat–Pesin 2011)

If µnk
→ µ and limnk→∞ ‖νnk

‖ > 0 and , then some ergodic

component of µ is an SRB measure for f .
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Recurrence to compact sets

Conditions for existence of an SRB measure

M be a compact Riemannian manifold, U ⊂ M open,
f : U → M a local diffeomorphism with f (U) ⊂ U.

Let µn be a sequence of measures whose limit measures are all
invariant. (In applications, µn = 1

n

∑n−1
k=0 f k

∗
Leb.)

Fix K > 0, write µn = νn + ζn, where νn ∈ Sn(K ).

Theorem (C.–Dolgopyat–Pesin 2011)

If µnk
→ µ and limnk→∞ ‖νnk

‖ > 0 and , then some ergodic

component of µ is an SRB measure for f .

The question now becomes: How do we obtain recurrence to the
set Sn(K )?
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Sequences of local diffeomorphisms

Coordinates in TM

We use local coordinates to write the map f along a trajectory as a
sequence of local diffeomorphisms.

{f n(x) | n ≥ 0} is a trajectory of f

Un ⊂ Tf n(x)M is a small neighbourhood of 0

fn : Un → R
d = Tf n+1(x)M is the map f in local coordinates
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Sequences of local diffeomorphisms

Coordinates in TM

We use local coordinates to write the map f along a trajectory as a
sequence of local diffeomorphisms.

{f n(x) | n ≥ 0} is a trajectory of f

Un ⊂ Tf n(x)M is a small neighbourhood of 0

fn : Un → R
d = Tf n+1(x)M is the map f in local coordinates

Decompose R
d = TxM = Eu

0 ⊕ E s
0 , let E

u,s
n+1 = Dfn(E

u,s
n ).

Want Eu
n and E s

n asymptotically expanding and contracting.

Want limn ∡(Eu
n ,E

s
n ) > 0.

(limn ∡(Eu
n ,E

s
n ) > 0 is probably unavoidable.)
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Sequences of local diffeomorphisms

Controlling hyperbolicity and regularity

R
d = Tf n(x)M = Eu

n ⊕ E s
n fn = (An ⊕ Bn) + sn

Start with an admissible manifold V0 tangent to Eu
0 at 0 and push

it forward:Vn+1 = fn(Vn).
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Sequences of local diffeomorphisms

Controlling hyperbolicity and regularity

R
d = Tf n(x)M = Eu

n ⊕ E s
n fn = (An ⊕ Bn) + sn

Start with an admissible manifold V0 tangent to Eu
0 at 0 and push

it forward:Vn+1 = fn(Vn).

Vn = graphψn = {v + ψn(v)} ψn : B(Eu
n , rn) → E s

n

Need to control the size rn and the regularity ‖Dψn‖, |Dψn|ε.
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Sequences of local diffeomorphisms

Controlling hyperbolicity and regularity

Consider the following quantities:

λu
n = log(‖A−1

n ‖−1) λs
n = log ‖Bn‖

αn = ∡(Eu
n ,E

s
n ) Cn = |Dsn|ε

Vn = graphψn = {v + ψn(v)} ψn : B(Eu
n , rn) → E s

n

Need to control the size rn and the regularity ‖Dψn‖, |Dψn|ε.



Introduction General method Recurrence to Sn(K) Applications

Sequences of local diffeomorphisms

Classical Hadamard–Perron results

Uniform case: Constants such that

λs
n ≤ λ̄s < 0 < λ̄u < λu

n

αn ≥ ᾱ > 0

Cn ≤ C̄ <∞

Then Vn has uniformly large size: rn ≥ r̄ > 0.
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Sequences of local diffeomorphisms

Classical Hadamard–Perron results

Uniform case: Constants such that

λs
n ≤ λ̄s < 0 < λ̄u < λu

n

αn ≥ ᾱ > 0

Cn ≤ C̄ <∞

Then Vn has uniformly large size: rn ≥ r̄ > 0.

Non-uniform case: λs
n, λ

u
n, αn still uniform, but Cn not.

Cn grows slowly ⇒ rn decays slowly
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Sequences of local diffeomorphisms

Classical Hadamard–Perron results

Uniform case: Constants such that

λs
n ≤ λ̄s < 0 < λ̄u < λu

n

αn ≥ ᾱ > 0

Cn ≤ C̄ <∞

Then Vn has uniformly large size: rn ≥ r̄ > 0.

Non-uniform case: λs
n, λ

u
n, αn still uniform, but Cn not.

Cn grows slowly ⇒ rn decays slowly

We want to consider the case where

λs
n < 0 < λu

n may fail (may even have λu
n < λs

n)

αn may become arbitrarily small

Cn may become arbitrarily large (no control on speed)
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Sequences of local diffeomorphisms

Usable hyperbolicity

In order to define ψn+1 implicitly, we need control of the regularity
of ψn. Control ‖Dψn‖ and |Dψn|ε by decreasing rn if necessary. So
how do we guarantee that rn becomes “large” again?
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Sequences of local diffeomorphisms

Usable hyperbolicity

In order to define ψn+1 implicitly, we need control of the regularity
of ψn. Control ‖Dψn‖ and |Dψn|ε by decreasing rn if necessary. So
how do we guarantee that rn becomes “large” again?

Defect – splitting not dominated: dn = max
(

0, 1
ε
(λs

n − λu
n)

)

Distortion – large nonlinearity, small angle: βn = Cn(sinαn+1)
−1

Fix a threshold value β̄ and define the usable hyperbolicity:

λn =

{

λu
n − dn if βn ≤ β̄,

min
(

λu
n − dn,

1
ε
log βn−1

βn

)

if βn > β̄.

Continuous dominated splitting ⇒ λn = λu
n
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Sequences of local diffeomorphisms

Positive usable hyperbolicity

Key criterion will be positive usable hyperbolicity:

lim
n→∞

1

n

n−1
∑

k=0

λk > 0 for some β̄

One way to establish this is to have both of the following:

1 Expansion beats defect:

lim
n→∞

1

n

n−1
∑

k=0

λu
k − dk > 0

2 Distortion is almost bounded: Let Γβ̄ = {n | βn > β̄}. Then

Γβ̄ has arbitrarily small upper asymptotic density.
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Frequency of large admissible manifolds

A Hadamard–Perron theorem

Fn = fn−1 ◦ · · · ◦ f1 ◦ f0 : U0 → R
d = Tf n(x)M

V0 ⊂ R
d a C 1+ε manifold tangent to Eu

0 at 0

Vn(r) = connected component of Fn(V0) ∩ B(r) containing 0

Theorem (C.–Dolgopyat–Pesin 2011)

Suppose lim 1
n

∑n−1
k=0 λk > χ̄ > 0 for some β̄. Then there exist

constants ᾱ, γ̄, κ̄, r̄ > 0 and a set Γ ⊂ N with positive lower

asymptotic frequency such that for every n ∈ Γ,

1 ∡(Eu
n ,E

s
n ) ≥ ᾱ;

2 Vn(r̄) = graphψn and ‖Dψn‖ ≤ γ̄, |Dψn|ε ≤ κ̄;

3 if Fn(x),Fn(y) ∈ Vn(r̄), then for every 0 ≤ k ≤ n,

‖Fn(x) − Fn(y)‖ ≥ e(n−k)χ̄‖Fk(x) − Fk(y)‖.
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Frequency of large admissible manifolds

Idea of proof

Start with V0, study Vn = Fn(V0). Choose rn, γn, κn such that

Vn(rn) = graphψn

‖Dψn‖ ≤ γn and |Dψn|ε ≤ κn.

Can improve γn, κn at the cost of reducing rn, or vice versa. Give
conditions on “goodness parameters” rn, γn, κn; inequalities in
terms of λu

n, λ
s
n, and βn.
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Frequency of large admissible manifolds

Idea of proof

Start with V0, study Vn = Fn(V0). Choose rn, γn, κn such that

Vn(rn) = graphψn

‖Dψn‖ ≤ γn and |Dψn|ε ≤ κn.

Can improve γn, κn at the cost of reducing rn, or vice versa. Give
conditions on “goodness parameters” rn, γn, κn; inequalities in
terms of λu

n, λ
s
n, and βn.

Truncate parameters at threshold values r̄ , γ̄, κ̄:

define goodness gn by g0 = 1 and gn+1 = min(1, eλngn);

rn = r̄ gn, γn = γ̄, κn = κ̄g−ε
n .
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Frequency of large admissible manifolds

Idea of proof

Start with V0, study Vn = Fn(V0). Choose rn, γn, κn such that

Vn(rn) = graphψn

‖Dψn‖ ≤ γn and |Dψn|ε ≤ κn.

Can improve γn, κn at the cost of reducing rn, or vice versa. Give
conditions on “goodness parameters” rn, γn, κn; inequalities in
terms of λu

n, λ
s
n, and βn.

Truncate parameters at threshold values r̄ , γ̄, κ̄:

define goodness gn by g0 = 1 and gn+1 = min(1, eλngn);

rn = r̄ gn, γn = γ̄, κn = κ̄g−ε
n .

positive asymptotic rate of usable hyperbolicity

⇒ positive frequency of usable hyperbolic times (Pliss’ lemma)

⇒ thresholded parameters spend enough time at threshold



Introduction General method Recurrence to Sn(K) Applications

Frequency of large admissible manifolds

Key consequence

µ0 = Leb |V0

µn = (f n
∗
µ0)|Vn(rn) (normalised)

µn ∈ Sn(K ) for n ∈ Γ

νN = 1
N

∑N−1
k=0 µn

νN has uniformly positive projection to Sn(K ) for N ≫ n
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Frequency of large admissible manifolds

Key consequence

µ0 = Leb |V0

µn = (f n
∗
µ0)|Vn(rn) (normalised)

µn ∈ Sn(K ) for n ∈ Γ

νN = 1
N

∑N−1
k=0 µn

νN has uniformly positive projection to Sn(K ) for N ≫ n

Problem: lim νN is not invariant because of normalisation.

Key step for applications: Show that the set of points with positive
rate of usable hyperbolicity has positive Lebesgue measure. (Either
on M or on V0.)
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Existence of an SRB measure

Cone families

Return to a local diffeomorphism f : U → M. Given x ∈ M, a
subspace E ⊂ TxM, and an angle θ, we have a cone

K (x ,E , θ) = {v ∈ TxM | ∡(v ,E ) < θ}.

E , θ depend measurably on x  measurable cone family.
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Existence of an SRB measure

Cone families

Return to a local diffeomorphism f : U → M. Given x ∈ M, a
subspace E ⊂ TxM, and an angle θ, we have a cone

K (x ,E , θ) = {v ∈ TxM | ∡(v ,E ) < θ}.

E , θ depend measurably on x  measurable cone family.

Suppose ∃ two measurable cone families K s(x),Ku(x) s.t.

1 Df (Ku(x)) ⊂ Ku(f (x)) for all x ∈ A

2 Df −1(K s(f (x))) ⊂ K s(x) for all x ∈ f (A)

3 TxM = E s(x) ⊕ Eu(x)



Introduction General method Recurrence to Sn(K) Applications

Existence of an SRB measure

Usable hyperbolicity (again)

Measurable transverse cone families K s(x),Ku(x) ⊂ TxM.

λu(x) = inf{log ‖Df (v)‖ | v ∈ Ku(x), ‖v‖ = 1},

λs(x) = sup{log ‖Df (v)‖ | v ∈ K s(x), ‖v‖ = 1}.

Let α(x) = ∡(K s(x),Ku(x)). Fix ᾱ > 0 and consider

d(x) = max

(

0,
1

ε
(λs(x) − λu(x)

)

,

λ(x) =

{

λu(x) − d(x) if α(x) ≥ ᾱ,

min
(

λu(x) − d(x), 1
ε
log α(x)

α(f −1(x))

)

if α(x) < ᾱ.
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Existence of an SRB measure

An existence result

Consider points with positive asymptotic usable hyperbolicity:

S ᾱ =

{

x
∣

∣

∣
lim

n→∞

1

n

n−1
∑

k=0

λ(f k(x)) > 0 and lim
n→∞

1

n

n−1
∑

k=0

λs(f k(x)) < 0

}
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Existence of an SRB measure

An existence result

Consider points with positive asymptotic usable hyperbolicity:

S ᾱ =

{

x
∣

∣

∣
lim

n→∞

1

n

n−1
∑

k=0

λ(f k(x)) > 0 and lim
n→∞

1

n

n−1
∑

k=0

λs(f k(x)) < 0

}

Theorem (C.–Dolgopyat–Pesin 2011)

If ∃ ᾱ > 0 such that LebS ᾱ > 0, then f has an SRB measure.
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Existence of an SRB measure

An existence result

Consider points with positive asymptotic usable hyperbolicity:

S ᾱ =

{

x
∣

∣

∣
lim

n→∞

1

n

n−1
∑

k=0

λ(f k(x)) > 0 and lim
n→∞

1

n

n−1
∑

k=0

λs(f k(x)) < 0

}

Theorem (C.–Dolgopyat–Pesin 2011)

If ∃ ᾱ > 0 such that LebS ᾱ > 0, then f has an SRB measure.

Theorem (C.–Dolgopyat–Pesin 2011)

Let V be tangent to Ku(x) at x. Suppose ∃ ᾱ > 0 such that

lim
r→0

mV (S ᾱ ∩ B(x , r))

mV (B(x , r))
> 0.

Then f has an SRB measure.
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Maps on the boundary of Axiom A: Slowdown, no shear

Large perturbations: an indifferent fixed point

f an Axiom A diffeomorphism, f (p) = p.

f has an SRB measure.

Small perturbations of f are Axiom A.

Consider perturbation on boundary of “small”.
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Maps on the boundary of Axiom A: Slowdown, no shear

Large perturbations: an indifferent fixed point

f an Axiom A diffeomorphism, f (p) = p.

f has an SRB measure.

Small perturbations of f are Axiom A.

Consider perturbation on boundary of “small”.

Near p, this is time-1 map of ẋ = Ax . Fix ψ : [0, 1] → [0, 1] s.t.

ψ is C∞ on (0, 1);

ψ(0) = 0; ψ′ > 0 on (0, r0); ψ ≡ 1 on [r0, 1];

ψ(r) ≈ rα near 0, for some 1
2 < α < 1.

Near p, let g = time-1 map for ẋ = ψ(‖x‖2)Ax , with g = f

outside of V = B(p, r0).

Theorem (C.–Dolgopyat–Pesin 2011)

g has an SRB measure.
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Maps on the boundary of Axiom A: Slowdown, no shear

Usable hyperbolicity for g

If f has a smooth invariant measure µ, then ψ(‖x‖2)−1dµ
defines a smooth invariant measure for g .

If the SRB measure for f is not smooth, then the attractor for
f is not g -invariant.
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Usable hyperbolicity for g

If f has a smooth invariant measure µ, then ψ(‖x‖2)−1dµ
defines a smooth invariant measure for g .

If the SRB measure for f is not smooth, then the attractor for
f is not g -invariant.

f is Axiom A ⇒ f has invariant cone families Ku(x) and K s(x)

Ku(x) and K s(x) are g -invariant.

λu(x) ≥ 0 ≥ λs(x) and α(x) ≫ 0 for every x .

λ(x) = λu(x) ≥ χ > 0 for every x /∈ V .

1

n

n−1
∑

k=0

λ(gk(x)) ≥ χ ·
1

n
#{0 ≤ k < n | gk(x) /∈ V }
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Average sojourn times

τ(x) = min{t | g t(x) /∈ V }

G (x) = g τ(x)(x)

τn(x) = τ(Gn−1(x))

Claim: ∃ R > 0 such that lim 1
n

∑n
k=1 τk(x) ≤ R for Leb-a.e. x .

Ω(t1, . . . , tn) = {x | τk(x) = tk for 1 ≤ k ≤ n}

LebΩ(~t) ≤ Cn
∏n

k=1 t
−γ
k with γ > 2

Model (τk) with i.i.d. (Tk) such that P(Tk = t) = Ct−γ

Claim holds using fact that E (Tk) <∞
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An indifferent fixed point with a shear

Slow down Axiom A f near p = f (p) as before.

Let N : R
d → R

d be linear such that

N(Rd) ⊂ {0} × R
u ⊂ ker N,

and ξ : [0, 1] → [0, 1] such that

ξ is C∞ on (0, 1);

ξ(0) = 1; ξ ≡ 0 on [r0, 1].

Near p, let g = time-1 map for ẋ = (ψ(‖x‖2)A + ξ(‖x‖2)N)x ,
with g = f outside of V = B(p, r0).

Theorem (C.–Dolgopyat–Pesin 2011)

g has an SRB measure.
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A = V \ g(V ) (just entered neighbourhood of p)
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Stable cones for g

Shear ⇒ stable cone for f is no longer g -invariant. Need to

1 establish existence of stable invariant cones K s(x) for g ;

2 estimate α(x) = ∡(K s(x),Ku(x)).

Claim: This boils down to estimating average sojourn times.

A = V \ g(V ) (just entered neighbourhood of p)

B = g(V ) \ V (just left the neighbourhood of p)

Let G : A → B and F : B → A be the induced maps

Need to understand action of DG and DF on the space of
s-dimensional subspaces of R

d transverse to R
u × {0}.

Identify this space with (Ru)s

DG acts as a translation (parabolically)

DF acts as multiplication (hyperbolically)
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Stable cones for g (ctd.)

{E ⊂ R
d | E transverse to R

u × {0}} ↔ (Ru)s

E → R
u × {0} ↔ ~v → ∞

Goal: ~v such that

~v , DG (~v), DF ◦ DG (~v), DG ◦ DF ◦ DG (~v), . . .

does not go to ∞. This corresponds to E ⊂ R
d such that

E , DG (E ), DF ◦ DG (E ), DG ◦ DF ◦ DG (E ), . . .

does not go to R
u ×{0}. Given ~v = (v1, . . . , vs) ∈ (Ru)s , we have

‖DGx(~v)j‖ ≥ ‖vj‖ − Cτ(x),

‖DFx(~v)j‖ ≥ λ‖vj‖, where λ > 1.
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B(Rn(x)) contains some ~v whose iterates do not go to ∞
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bounded average sojourn time

⇒ positive asymptotic rate of usable hyperbolicity
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