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LECTURE 1 1

Lecture 1

a. A three-fold cord. The word “fractal” is one which has wriggled
its way into the popular consciousness over the past few decades, to the
point where a Google search for “fractal” yields over 12 million results (at
the time of this writing), more than six times as many as a search for the
rather more fundamental mathematical notion of “isomorphism”. With a
few clicks of a mouse, and without any need to enter the jargon-ridden
world of academic publications, one may find websites devoted to fractals
for kids, a blog featuring the fractal of the day, photo galleries of fractals
occurring in nature, online stores selling posters brightly emblazoned with
computer-generated images of fractals. . . the list goes on.

Faced with this jungle of information, we may rightly ask, echoing Paul
Gauguin, “What are fractals? Where do they come from? Where do we go
with them?”

The answers to the second and third questions, at least as far as we are
concerned, will have to do with the other two strands of the three-fold cord
holding this course together—namely, dynamical systems and chaos.1 As an
initial, näıve formulation, we may say that the combination of dynamical
systems and fractals is responsible for the presence of chaotic behaviour. For
our purposes, fractals will come from certain dynamical systems, and will
lead us to an understanding of certain aspects of chaos.

But all in good time. We must begin by addressing the first question;
“What are fractals?”

b. Intricate geometry and self-similarity. Consider an oak tree
in the dead of winter, viewed from a good distance away. Its trunk rises
from the ground to the point where it narrows and sends off several large
boughs; each of these boughs leads away from the centre of the tree and
eventually sends off smaller branches of its own. Walking closer to the tree,
one sees that these branches in turn send of still smaller branches, which
were not visible from further away, and more careful inspection reveals a
similar branching structure all the way down to the level of tiny twigs only
an inch or two long.2

The key points to observe are as follows. First, the tree has a compli-
cated and intricate shape, which is not well captured by the more familiar
geometric objects, such as lines, circles, polygons, and so on. Secondly, we
see the same sort of shape on all scales—whether we view the tree from fifty
yards away or from fifty inches, we will see a branching structure in which
the largest branch (or trunk) in our field of view splits into smaller branches,
which then divide themselves, and so on.

1Chaos theory has, of course, also entered the popular imagination in its own right
recently, thanks in part to its mention in movies such as Jurassic Park.

2All of this is still present in summer, of course, but the leaves get in the way of easy
observation.
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These features are shared by many other objects which we may think of
as fractals—we see a similar picture if we consider the bronchial tree, the
network of passageways leading into the lungs, which branches recursively
across a wide range of scales. Or we may consider some of the works of
the artist M. C. Escher, we see intricate patterns repeating at smaller and
smaller scales.

Yet another striking example may be seen by looking at a high-resolution
satellite image (or detailed map) of a coastline. The boundary between land
and sea does not follow a nice, simple path, but rather twists and turns
back and forth; each bay and peninsula is adorned with still smaller bays
and peninsulas, and given a map of an unfamiliar coast, we would be hard
pressed to identify the scale at which the map was printed if we were not
told what it was.

The two threads connecting these examples are their complicated geom-
etry and some sort of self-similarity. Recall that two geometric figures (for
example, two triangles) are similar if one can be obtained from the other
by a combination of rigid motions and rescaling. A fractal exhibits a sort
of similarity with itself; if we rescale a part of the image to the size of the
whole, we obtain something which looks nearly the same as the original.

We now make these notions more precise. Simple geometric shapes, such
as circles, triangles, squares, etc., have boundaries which are smooth curves,
or at least piecewise smooth. That is to say, we may write the boundary
parametrically as

~r(t) = (x(t), y(t)),

and for the shapes we are familiar with, x and y are piecewise differentiable
functions from R to R, so that the tangent vector ~r ′(t) exists for all but a
few isolated values of t. By contrast, we will see that a fractal “curve”, such
as a coastline, is continuous everywhere but differentiable nowhere.

As an example of this initially rather unsightly behaviour, we consider
the von Koch curve, defined as follows. Taking the interval [0, 1], remove
the middle third (just as in the construction of the usual Cantor set), and
replace it with the other two sides of the equilateral triangle for which it is
the base. One obtains the piecewise linear curve at the top of Figure 1; this
is the basic pattern from which we will build our fractal.

Observe that the second curve in Figure 1 consists of four copies of the
first, each of which has been scaled to 1/3 its original size and then used
to replace one of the four line segments in the original pattern. The new
curve contains 16 line segments, each of length 1/9. Replacing each of these
segments with an appropriately scaled copy of the basic pattern, we obtain
the third curve in the figure, and so on.

Each step in this construction—each curve in Figure 1—is piecewise
smooth, even piecewise linear. We may consider their parametrisations
f1, f2, f3, . . . , each of which is a piecewise smooth map from [0, 1] to R2. It
is not too difficult to show that the sequence {fn}∞n=1 converges uniformly,
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Figure 1. The first few steps in the construction of the von
Koch curve.

and hence the limit f : [0, 1] → R2 exists and is continuous. The von Koch
curve is the image of this function f , the end of the limiting process whose
first few steps are shown.

Although each of the functions fn is piecewise smooth, their limit f is
not differentiable anywhere, and hence the von Koch curve does not admit
a tangent vector at any point, despite being continuous. This is a mani-
festation of the complicated and intricate geometry we referred to earlier;
since the self-similarity of the curve is evident from the construction, we
may justifiably call this object a fractal.

It is natural to characterise a curve by its length, and so we may ask
how long the von Koch curve is. One may easily verify that the nth step in
the iterative procedure leading to the von Koch curve is a piecewise linear
curve containing 4n line segments, each of length (1/3)n. At this stage of the
iteration, then, the entire curve has length (4/3)n—but this quantity grows
without bound as n goes to infinity! The only conclusion we can reach is
that the von Koch curve has infinite length, despite being contained in a
bounded region of the plane—we will see that this sort of behaviour is in
fact quite common for fractals.

Indeed, consider the iterative procedure illustrated in Figure 2, wherein
each side of the square is replaced with the zig-zag shown, which comprises
four line segments of length slightly greater than 1/4. Each of these segments
is then replaced with an appropriately scaled version of the zig-zag pattern,
and so on; the first few steps of the iteration are shown. Note that at each
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Figure 2. A fractal island.

step, we add exactly as much area as we remove, and so the area of each
“island” is equal to 1. However, a similar calculation to the one above shows
that the limiting fractal island has a coastline of infinite length, despite
having unit area.

These last two examples show that the usual ways of characterising and
measuring geometric objects—length, area, volume, etc.—are insufficient to
deal with fractals. Both the von Koch curve and the coastline of the fractal
island have infinite length, but zero area, and so we will need new tools in
order to study them properly. First, though, we briefly turn our attention
to the second strand of the three-fold cord, dynamical systems.

c. Things that move (or don’t). In some sense, anything that moves
is a dynamical system (and for that matter, so is everything that doesn’t
move). Somewhat more helpfully, we may consider any set X with a map
f taking X to itself; that is, f assigns to each x ∈ X an element f(x) ∈ X.
If we think of each point in X as specifying a particular configuration of
some system, then f is merely an encoding of the rule by which the system
evolves from one state to the next. Some states evolve to other states under
the action of f , while others may be fixed; if every point x is fixed, then f is
the identity map, and nothing moves. But this is, of course, a rather trivial
case.

We refer to the point f(x) as the image of x under the action of f ;
the essential feature of a dynamical system is that each image f(x) is also
an element of X, and thus lies in the domain of f ; that is, the map f
takes X into itself, and so we can iterate it. Having found the image of a
point x, we can then take the image of f(x) in turn, which will be denoted
f2(x) = f(f(x)). Continuing the iteration, we obtain f3(x) = f(f2(x)), and
in general, fn+1(x) = f(fn(x)).

In light of the key role iterative processes played in our earlier examples
of fractals, the reader may feel justified in suspecting that the presence of
an iterative process in this description of a dynamical system has something
to do with the promised connection between the two; we will see later that
this is in fact the case.
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The sequence x, f(x), f2(x), . . . is referred to as the trajectory of x; if
we think of each iteration of the map f as specifying how the system evolves
from one time step to the next, then it makes sense to think of the number
of iterations n as the amount of time which has elapsed, and the trajectory
is simply a list of the states through which the system passes as time goes
on.3

If the map f is invertible, then we may also consider the point f−1(x),
which is known as the preimage of x; similarly, we have f−2(x), f−3(x), and
so on. Thus the trajectory is defined not just for positive values of n, but
over the entire set of integers, and is a doubly infinite sequence of points in
X. In fact, the notion of preimage is well defined and useful even if f is not
invertible, but we will come to that later.

In and of themselves, sets are rather bland objects (with apologies to any
set theorists in the audience), and so we usually consider dynamical systems
defined on sets X which possess some additional structure. In particular, if
we hope to have anything to do with fractals, which are geometric objects,
the set X should possess some geometric structure, and so Euclidean space
is a natural place to begin.

As an example, we may consider a rotation of the plane R2 by some
angle α, or a translation by some vector ~v, or a reflection in some line ℓ—
these, together with the set of glide reflections, are all the rigid motions of
the plane, and may all be thought of as dynamical systems.

We do not need to restrict ourselves to isometries—any matrix
(
a b
c d

)

defines a dynamical system on R2 by

f : R2 → R2,
(
x1

x2

)

7→
(
a b
c d

)(
x1

x2

)

.

The value of the determinant of this matrix has ramifications for the prop-
erties of the dynamical system it defines. For example, if the determinant
is equal to 1, then f is area-preserving ; that is, the image f(A) of a domain
A ⊂ R2 has the same area as A itself.

We may also consider non-linear maps from the plane to itself—in fact,
most of the interesting examples are of this sort. So for now, let f : R2 →
R2 be any continuous map of the plane into itself. Let A ⊂ R2 be some
domain—perhaps a disc, perhaps something rather more complicated—and
suppose that the image of each point in A is itself in A. We say that A is
invariant under the action of f , and so we can write f : A → A. It follows
that for any point x ∈ A, the entire trajectory of x lies within A.

In principle, if we have precise knowledge of the map f and the initial
point x, then we can precisely compute each point fn(x) in the trajectory of

3This describes what is known as a discrete time dynamical system. One may also
consider continuous time dynamical systems, in which the time variable may take any real
value, but we will not do so just now.
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x. There is no randomness in the action of f—it is entirely deterministic, and
given sufficient patience and computing power, we can predict the future.
Or so it seems. . .

Suppose we divide A into two subdomains A1 and A2 in such a way that
every point x ∈ A lies in exactly one of the two. Now instead of describing
the trajectory of a point x by giving the precise location of each iterate
fn(x), we may instead “blur our vision” and only record whether it lies in
A1 or A2. In this way we assign to a point x a sequence of 1’s and 2’s, known
as a coding of x (really, of the trajectory of x).

It is natural to ask if we can go in the other direction—given a sequence of
1s and 2s, can we find a point x whose trajectory is coded by that sequence?
If we can, is it unique, or might there be several such points?

The answer to these questions is somewhat involved, and depends heavily
on the particular system f and on the choice of partition {A1, A2}. We will
see that in many important cases, the answer to both questions is yes.

Suppose for the moment, then, that we have such a correspondence
between trajectories of our dynamical system and sequences of 1’s and 2’s.
Imagine taking a coin and flipping it repeatedly; after each flip, write down
the number 1 if the coin comes up heads, and the number 2 if it comes up
tails. In this manner we obtain a sequence of 1’s and 2’s which is entirely
random, and which codes the trajectory of some point x.

This brings us to a rather jarring conclusion—the trajectory of this point
x will appear to hop at random between A1 and A2, just as the outcome
of the coin toss hops at random between heads and tails. But we said
earlier that f is wholly deterministic, with no randomness whatsoever—
where, then, does this random-looking behaviour come from?

We will eventually resolve this paradox, but will first need to make the
concepts involved more precise. For the time being, we merely observe
that this initially unpalatable coexistence of deterministic and random be-
haviour is at the heart of the theory of chaos; indeed, it was to describe such
situations that James Yorke first coined the somewhat controversial term
“deterministic chaos”. We will see in due course how such behaviour arises
from the combination of dynamical systems and fractal geometry.
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Lecture 2

a. Dynamical systems: terminology and notation. Let us slow
down now and take a more leisurely look at some of the concepts which will
be foundational to our discussion of dynamical systems, before moving on to
consider some apparently simple but ultimately extremely challenging and
enlightening examples.

We begin with the n-dimensional Euclidean space Rn, that is, the col-
lection of n-element vectors, each of which is an n-tuple of real numbers.
As our dynamical system f , we may consider any rule, algorithm, map, etc.
which takes one element of Rn and gives us back another.

It may happen that f is not defined on all of Rn, but only on some
domain D ⊂ Rn. For instance, the rule which lets us go from x to f(x) may
only make sense when x is a vector of length no greater than R; in this case,
the domain of definition is the ball of radius R centred at the origin.

As mentioned last time, we say that f(x) is the image of x, and x is a
preimage of f(x). The choice of article is important; while the map f must
send x to a unique point f(x), it is quite possible that there is some point
y 6= x with f(y) = f(x), in which case y is also a preimage of f(x).

We will also speak of the image of a set—if A ⊂ D lies within the domain
of definition, then the image of A is

f(A) = { f(x) | x ∈ A }.
Of particular importance is the image of the domain D. This image f(D) is
also known as the range of f , and we will mostly be concerned with examples
for which the range lies inside the domain of definition.

A subset A ⊂ D for which f(A) ⊂ A is said to be invariant under f ;
if the domain D is invariant, then we can apply f again, and again, and
again, ad infinitum, without ever leaving D. Thus we may consider not only
f , but the map obtained by applying f twice—we denote this by f2, and
write f2(x) = (f ◦ f)(x) = f(f(x)). Similarly, we may consider f3, f4, and
in general fn, defined as

fn = f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n times

.

Thus the ability to iterate f means that we are in fact considering a
whole family of maps fn : D → D. It is immediate from the definition that

(1) fn+m = fn ◦ fm = fm ◦ fn

whenever m and n are non-negative integers. This is the so-called semi-
group property, which allows us to translate questions about the behaviour
of iterates of f to questions about the action of a particular semi-group4

on the domain D, leading to a more algebraic approach which is sometimes
useful.

4We must speak of semi-groups rather than groups since f may be non-invertible.
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The sequence of points x, f(x), f2(x), . . . is referred to as the trajectory
of x (or sometimes as the orbit). The number n of iterations plays the role
of time—the near future corresponds to small values of n, the far future
to large values. While it may at first seem somewhat unnatural to think
of time as moving in discrete increments, instead of a steady stream as we
are accustomed to, observe that any measurement we may wish to make can
only be carried out at discrete times—any two observations will be separated
by a small interval, which may be vanishingly short or numbingly long, but
nevertheless has the effect that our data is always collected with respect to
a set of discrete time steps.

As suggested above, there are many important systems for which f is
not one-to-one, and hence not invertible. Thus different initial conditions
may eventually wind up following the same trajectory, and we cannot run
time backwards—the past determines the future, but the future does not
necessarily determine the past. Even in this time-irreversible case, we still
may (and often do) consider preimages of points, and also of sets; given a
set A ⊂ D, the preimage of A is

(2) f−1(A) = {x ∈ D | f(x) ∈ A },
which consists of all the points whose images lie in A. Note that although
there may be several preimages of a point, a set only has one preimage.5

The definition (2) is valid whether f is invertible or not. If f is in
fact invertible, with f(D) = D, then f−1 is a map in its own right. The
existence of an inverse for f allows us to go backward in time, and produce
the negative iterates

f−n = f−1 ◦ f−1 ◦ · · · ◦ f−1

︸ ︷︷ ︸

n times

.

In this case preimages are uniquely defined, and the trajectory of x may
be extended to a doubly infinite sequence {fn(x)}n∈Z. Thus the group
property (1) holds for any integers m and n, whether positive or negative.6

b. Examples.
b.1. A rather unrealistic population model. Consider a population of

duck-billed platypi (or bacteria, or whatever species you fancy), whose size
will be represented by a variable x. Given the size of the population at
the present time, we want to predict the size of next year’s population (or
perhaps the next hour’s, in the case of bacteria). So if there are x platypi
this year, there will be f(x) next year—of course, since we cannot have a
negative number of platypi, we must restrict x to lie in the interval [0,∞),
which will be the domain of definition for f .

5Of course, if we think of a point as a set with only one element, then its preimage
as defined in (2) is unique as a set.

6And we have a true group action, rather than the action of a semi-group.
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(x0, 0)

(x0, x1) (x1, x1)

(x1, x2) (x2, x2)

(x2, x3) (x3, x3)

(x3, x4) (x4, x4)

x

f(x)

Figure 3. Cobweb diagram for a simple population model.

What form should f take? As a first (simplistic) approximation, we may
suppose that the platypi reproduce at a constant rate, and so if there are x
of them this year, there will be rx next year, where r > 1 is a real number,
and r − 1 represents the proportion of newborns each year.

We would like to understand what the trajectories of the system look
like for various possible starting populations. To this end, we use a cobweb
diagram, as shown in Figure 3, which shows the graph of f . If x0 is the initial
value of x, then the next point in the trajectory is f(x0), which we denote
by x1; we may find this value by following the vertical line through (x0, 0),
which intersects the graph of f at the point (x0, f(x0)) = (x0, x1). Following
the horizontal line through this point until it intersects the bisectrix y = x,
we reach the point (x1, x1), and now our x-coordinate is x1 = f(x0), the
next point in the trajectory after x0.

In order to find the next point in the trajectory after x1, we repeat this
process; first follow the vertical line through (x1, x1) to its intersection with
the graph of f , the point (x1, f(x1)) = (x1, x2), and then move horizontally
to (x2, x2).

In general, we write xn = fn(x0) for the points of the trajectory, and we
see that one obtains xn from xn−1 by moving vertically to the graph, and
then horizontally to the bisectrix. This gives a simple graphical procedure
which allows us to investigate the qualitative properties of the trajectory of
x0.

In this case, we see that for any initial population size x0 6= 0, the
population size grows without bound; we say that the trajectory goes to
infinity. The case x0 = 0 is different, reflecting the fact that if there are
no platypi to begin with, then no new ones will be born; nothing begets
nothing. We say that 0 is a fixed point for the map f ; algebraically, a fixed
point is a point x such that f(x) = x, and for any such point we see that
the trajectory never moves.
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(x0, 0)

(x0, x1)
(x1, x1)

(x1, x2)
(x2, x2)

(x2, x3)
(x3, x3)

(x3, x4)
(x4, x4)

x

f(x)

Figure 4. A dying population.

An important feature of this particular fixed point is that it is unstable—
even a very small population x0 will eventually grow to be arbitrarily large.
Fixed points with this property, for which the trajectories of nearby points
are driven away, are also called repelling.

b.2. A model which could be realistic. Of course, as everyone knows,
platypi are not immortal. Alles Fleisch es ist wir Gras, and our model
needs to take into account the population reduction caused by death by
disease, predation, etc. This will have the effect of changing the value of
the parameter r, reducing it by counteracting the increase in population
provided by the year’s births. If it reduces it to the point where r < 1,
then the graph of f is as shown in Figure 4, and the cobweb diagram clearly
illustrates the fate of the platypus colony.

In this case, 0 is still a fixed point, but it is now stable—a value of x0

near 0 will lead to a trajectory which converges to 0. Fixed points with this
property, for which the trajectories of nearby points are drawn to the fixed
point, are also called attracting.

Note that from the mathematical point of view, there is a simple re-
lationship between the case r > 1 and the case r < 1; they are inverses.
Indeed, if we write fr : x 7→ rx, then it is easy to see that f−1

r = f1/r.
b.3. An innocent-looking model. As any biologist or ecologist will no

doubt protest quite vigorously, the preceding models are so simplistic as
to be entirely unrealistic. Among other weaknesses, they fail to take into
account the fact that resources are limited, and whatever river our platypi
find themselves in can only support a finite population size before starvation
or overcrowding leads to disaster.

To address this shortcoming, we introduce a new term into our equa-
tion. Suppose the environment determines some maximum population P ,
which corresponds, for instance, to the amount of resources available. Then
the population cannot grow beyond P , and furthermore, if the population
reaches P , all the food will be eaten and the platypi will starve, sending
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x

f(x)

Figure 5. The logistic map with r = 2.8.

the next year’s population to 0. We model this situation with the formula
x 7→ rx(P −x); in order to keep the equations as simple as possible, though,
we rescale x so that it stands for the proportion of the maximum population
P , and so lies between 0 and 1. Then the dynamical system in question is

(3)
f : [0, 1] → [0, 1],

x 7→ rx(1 − x),

where r is a parameter encoding information about the system, such as
reproduction rate, mortality rate, etc. The map in (3) is known as the
logistic map, and its graph for the value r = 2.8 is shown in Figure 5, along
with a typical trajectory.

Unlike the example x 7→ rx examined earlier, the logistic map displays a
startling intricacy when we begin to track the behaviour of typical trajecto-
ries for various values of the parameter r. Indeed, the amount of literature on
the logistic map is such that one could easily devote an entire year’s course
to the subject without exhausting the corpus of present knowledge, and the
logistic map (along with its relatives) is still an area of active research.

Leaving behind for the time being any physical interpretations of the
model, let us focus on the mathematical structure. By performing the ap-
propriate change of coordinates x 7→ y, we can show that the map f : x 7→
rx(1 − x) is equivalent to the map g : y 7→ y2 + c, where the value of the
parameter c will depend on the value of r.

Exercise 1. Find an explicit change of coordinates which demonstrates
the above correspondence. Which values of c corresponds to values of r
which could occur in the model?

For large enough values of c, the graph of g lies entirely above the bi-
sectrix, and every trajectory escapes to infinity, as shown in Figure 6. The
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g(y)

Figure 6. Trajectories escaping to infinity.

g(y)

Figure 7. A fixed point which is neither attracting nor repelling.

parabola moves down as c decreases, and eventually, for some critical value
of c, becomes tangent to the bisectrix, as shown in Figure 7.

Exercise 2. Find the value of c for which this occurs.

The point of tangency p is a fixed point for g. As is evident from the
cobweb diagram, trajectories which start a little bit to the left of p are
attracted to it, while trajectories which start just to the right are repelled
and go to infinity. Thus in this case we have a fixed point which is neither
an attractor nor a repeller.

Moving the initial point further to the left, one sees that for large enough
negative values of x0, the next point in the trajectory leaps to the right of
p, and then the trajectory goes to infinity. The point of transition between
the two sorts of behaviour is x0 = −p, which leads to x1 = f(x0) = p, and
so the trajectory becomes trapped on the fixed point p.

Thus we have completely classified the asymptotic behaviour of trajec-
tories for this particular map; points in [−p, p] are attracted to the fixed
point p, while all other points go to +∞ under repeated iterations.
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We will see, however, that the picture becomes vastly more complicated
than this if we continue to decrease the parameter c.



14 CONTENTS

0

1f
(x

)

0 1
x

Figure 8. A piecewise linear map with chaotic behaviour.

Lecture 3

a. A linear example with chaotic behaviour. Aside from being
quite unrealistic, the linear population model in the previous lecture did
not display any chaotic behaviour. This is actually a feature of any linear
map—the theory of Jordan normal form (sometimes called Jordan canonical
form), which is one of the most important results in basic linear algebra,
offers a complete classification of linear maps in Rn, and describes all the
possible behaviours, none of which display any real complexity.

By contrast, the logistic map f : x 7→ x2+c displays a variety of complex
behaviours as we consider different parameter values, a quality which makes
it eminently worth of further study. In the previous lecture, we described
its behaviour for large values of c, and took a very brief look at how that
behaviour becomes more intricate as c decreases. In fact, for values of c near
−2, the logistic map exhibits fully chaotic behaviour, in the sense discussed
in Lecture 1.

We will have more to say about the logistic map later—for the time
being, we remark that a good deal of its complex behaviour can be attrib-
uted to its non-linearity. That same non-linearity, though, makes the map
far more difficult to study—linear models are simply more tractable than
non-linear ones. For this reason, we will first spend some time studying
a map which is only piecewise linear, rather than fully linear, but which
nevertheless displays chaotic behaviour.

Consider the map f shown in Figure 8, which is defined linearly on each
of the intervals I1 = [0, 1/3] and I2 = [2/3, 1] so that the image of both
intervals is f(I1) = f(I2) = [0, 1]. Thus the domain of definition of f is
D = I1 ∪ I2, and the range is [0, 1]. Notice that the range does not lie
inside the domain of definition—I1∪I2 is not invariant for f , and so f is not
defined at every point in the range. The cobweb diagram in the figure shows
one iteration in the trajectory of the point 1/6, whose image lies outside the
domain of definition, and hence cannot be iterated further.
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Figure 9. Finding the preimage f−1(D).

If we cannot iterate the map f , then we cannot study the dynamics, and
so we must determine which points admit a second iteration. That is, what
is the domain on which the map f2 = f ◦ f is defined?

In order for f2(x0) to be defined, both x0 and f(x0) must lie in the
domain of f ; that is, we must have

x0 ∈ D ∩ f−1(D) = {x | x ∈ D and f(x) ∈ D }.
This is shown graphically in Figure 9, a sort of cobweb diagram; placing the
domain D along the vertical axis, we find its preimage f−1(D) by following
each horizontal line through D to all of the points where it intersects the
graph of f , and then moving vertically from these intersection points to the
x-axis. We see that the domain on which f2 is defined consists of four closed
intervals, each of length 1/9. Writing these as

I11 =

[

0,
1

9

]

, I21 =

[
2

3
,
7

9

]

,

I12 =

[
2

9
,
1

3

]

, I22 =

[
8

9
, 1

]

,

we see that f(I11) = f(I21) = I1, that f(I12) = f(I22) = I2, and that
f2(I11) = f2(I12) = f2(I21) = f2(I22) = [0, 1]. Observe that the intervals
Ii1i2 may be defined in terms of the action of f as follows:

(4) Ii1i2 = Ii1 ∩ f−1(Ii2).

We obtained the domain of f by removing the (open) middle third from
the interval [0, 1], leaving two closed intervals of length 1/3. From these,
we obtained the domain of f2 by removing the (open) middle third of each,
leaving four closed intervals of length 1/9. The graph of f2 is shown in
Figure 10; in this picture we already see the beginnings of self-similarity,
and it is easy to see that the domain of f3 will likewise consist of eight
closed intervals of length 1/27.
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Figure 10. The second iterate of f .

In general, an inductive argument shows that the domain of fn consists
of 2n closed intervals, each of length 3−n. Following (4), we may denote
these by

(5) Ii1i2···in = Ii1 ∩ f−1(Ii2) ∩ · · · ∩ f−(n−1)(Iin),

where each ik is either 1 or 2. Observe that for a fixed value of n, any two
such intervals are disjoint; that is,

Ii1···in ∩ Ij1···jn = ∅
whenever (i1, . . . , in) 6= (j1, . . . , jn). Increasing n by one, we see from the
construction that

Ii1···in = Ii1···in1 ∪ Ii1···in2.

Thus the domain of definition of the nth iterate fn may be written

Dn =
⋃

(i1,...,in)

Ii1···in ,

where the union is taken over all n-tuples with values in {1, 2}. Letting n
run to infinity, we see that the domain on which every iterate fn is defined
is

C =
⋂

n≥1

⋃

(i1,...,in)

Ii1···in ,

which is the standard middle-thirds Cantor set. As regards the dynamics
of the map f , the key property of C is that it is the largest invariant set.
In the first place, it is genuinely invariant, unlike the approximations Dn,
for which we have f(Dn) = Dn+1 * Dn; for the Cantor set itself, we have
f(C) = C. Furthermore, if A ⊂ D is any invariant set, f(A) ⊂ A, then we
must have A ⊂ C.

Thus if we wish to study the dynamics of f , the “proper” domain to
consider is the Cantor set C. To get a first idea of how the dynamics of
f : C → C behave, consider two distinct points x, y ∈ C which are very
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close together, so that d(x, y) is very small. How far apart are their images?
It is not too hard to see that we have

d(f(x), f(y)) = 3d(x, y),

so that the distance between x and y is increased by a factor of 3. For higher
iterates fn, we have

d(fn(x), fn(y)) = 3nd(x, y),

provided that the trajectories have stayed close up until that point; in par-
ticular, this will be true if fk(x) and fk(y) lie in the same interval I1 or I2
for each 1 ≤ k < n.

The significance of this result is that small errors are magnified; if x
represents the true state of the system, but we instead measure it as y
due to a very small experimental error, then the trajectory we predict will
diverge exponentially quickly from the true trajectory. In this case, the
notion of instability, which we introduced earlier for fixed points, applies
to every trajectory of the system; whatever trajectory we look at, nearby
trajectories will be repelled at an exponential rate. This phenomenon is
known as sensitive dependence on initial conditions, and may be thought of
as a preliminary indication of chaotic behaviour.

b. The Cantor set and symbolic dynamics. When Georg Cantor
first conceived his eponymous set, he was hoping to settle the continuum
hypothesis by constructing a subset of the interval whose cardinality lay
strictly between that of the integers and that of the real line. While this
turned out not to be the case, as we shall see, the Cantor set has nevertheless
become an object of fundamental importance to a number of different areas
in mathematics, not just dynamics, although it is this last incarnation of
the Cantor set with which we shall be most concerned.

We start with an innocent-looking question. How big is the Cantor
set? Of course, we need a notion of “bigness”. Since each step in the
construction involves intervals, we might first try the notion of length. At
the first iteration, we see that D1 comprises two intervals of length 1/3, and
so has total length 2/3. At the next iteration, four intervals of length 1/9
give D2 a total length of 4/9. In general, we may easily see that Dn is a
union of intervals with total length (2/3)n; since this goes to 0 as n → ∞,
we must consider the “length” of C to be 0. Alternately, we may look at the
lengths of the intervals which are removed at each step, and see that they
sum to 1.

From a probabilistic point of view, this means that if we choose a point
in the interval [0, 1] at random, the probability of picking a point on the
Cantor set is precisely zero. It would seem that length is not the proper way
to measure how big C is.

Since C is not “big enough” to have positive length, we may try mea-
suring it a different way, by counting the number of points it contains.
We immediately see that it has infinitely many points, and so we next ask
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whether it is countable or uncountable. To answer this question, we ob-
serve, as Cantor did, that each point x ∈ C uniquely determines a sequence
i1, i2, . . . , where each ik is either 1 or 2, by the rule

x ∈ Ii1 ∩ Ii1i2 ∩ · · · ∩ Ii1···in ∩ · · · ,
where all we are doing is asking which interval Ii1···in contains x at each
step n of the iteration. This defines a map from C to the space of symbolic
sequences

Σ+
2 = {1, 2}N = { (ik)

∞
k=1 | ik = 1 or 2 ∀k ≥ 1 }.

Furthermore, the correspondence is bijective—given any such sequence,
we see that the intersection

N⋂

n=1

Ii1···in = Ii1···in

is an interval whose length goes to 0 as N → ∞, and so

∞⋂

n=1

Ii1···in = {x}.

It follows that the sequence i1, i2, . . . comes from exactly one point x, and
we have demonstrated that the following coding map is a bijection:

h : Σ+
2 → C,

ω = (i1, i2, . . . ) 7→
⋂

n≥1

Ii1···in .

Exercise 3. Using binary expansions of real numbers, show that Σ+
2

has the same cardinality as [0, 1], and hence that C does as well.

In fact, the coding map h does more than just establish a bijection
between Σ+

2 and C, which only shows that the two are the same from a
set-theoretic point of view. The correspondence runs deeper than that, to
an equivalence between the dynamics of the two sets as well.

Of course, at this point we have not put any dynamics on the set Σ+
2 ,

and so we define a map σ : Σ+
2 → Σ+

2 in order for the previous claim to make
any sense. Recalling the definition of the sets Ii1···in in (5), we see that the
coding of a point ω = (in)n∈N ∈ Σ+

2 can be written

h(ω) =
∞⋂

n=1

f−(n−1)(Iin) = Ii1 ∩ f−1(Ii2) ∩ f−2(Ii3) ∩ · · · ,

and so

(6)
f(h(ω)) = Ii2 ∩ f−1(Ii3) ∩ f−2(Ii4) ∩ · · ·

= h(ω′)
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where we write ω′ = (i2, i3, . . . ), and use the fact that f(Ii1) = [0, 1], and
also that f(f−1(X)) = X for any set X in the range of f .7 The map which
takes ω to ω′ is particularly simple—all we have to do is drop the first
symbol, i1, and shift all the others one position to the left. This is the shift
map

σ : Σ+
2 → Σ+

2 ,

(i1, i2, i3, . . . ) 7→ (i2, i3, i4, . . . ),

with which (6) can be written in the form

(7) f ◦ h = h ◦ σ.
Thus we have shown that the following diagram commutes:

(8)

Σ+
2

σ−−−−→ Σ+
2



yh



yh

C
f−−−−→ C

That is, we may follow a point in Σ+
2 by first applying σ and then using h

to pass to a point in C, or by first passing to a point in C via h, and then
applying f , and we will reach the same point whichever way we go.

The relationship between f and σ given by (7) is called a conjugacy, and
allows us to draw conclusions about the dynamics of f based on analogous
results for the dynamics of σ.

For example, we may ask how many periodic points of a given order f
has; that is, how many solutions there are to the equation fm(x) = x for a
fixed integer m. Two obvious periodic points are 0 and 1, which are fixed
by f and are thus immediately periodic. It is not so obvious what happens
for larger values of m, but we may obtain the answer relatively easily by
passing to the symbolic setting. Here we see that any fixed point must have
i2 = i1, and similarly in+1 = in for every n. Thus the only fixed points are
(1, 1, 1, . . . ) and (2, 2, 2, . . . ), which correspond to 0 and 1, respectively. For
m = 2, the equation σ2(ω) = ω tells us that we may choose i1 and i2 to be
either 1 or 2, but that after that we must have

in =

{

i1 n odd,

i2 n even.

Thus there are four points with σ2(ω) = ω—in addition to the two mentioned
above, we have (1, 2, 1, 2, . . . ) and (2, 1, 2, 1, . . . ).

In general, any sequence ω which repeats after m digits will satisfy
fm(ω) = ω, and since there are 2m such sequences, we have 2m periodic
points of period m.8 Passing to C via the conjugacy given by h, we see that

7Note that the similar-looking statement f−1(f(X)) = X is not true in general.
8Of course, some of these will also be periodic points of lower order. We must do a

little more work if we with to count points with primitive period m.
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f also has 2m periodic points of period m, and so the set of periodic points
is countable.

Exercise 4. Argue directly from the definition of f that the set of
periodic points is countably infinite. Can you obtain a result on the number
of periodic points with a given period without using symbolic dynamics?

Having seen that h respects the dynamics of f and σ, it is natural to ask
what other aspects of the sets C and Σ+

2 are preserved by the conjugacy.
Since C lies in the interval [0, 1], we have a notion of distance, and hence a
definition of convergence;9 we can say what it means for a sequence (xn)n ⊂
C to converge to a point x ∈ C.

If we define a distance function on Σ+
2 , then we will have a notion of

convergence there too, and we may ask whether h takes convergent sequences
in Σ+

2 to convergent sequences in C, and vice versa. This will expand the
range of questions about the dynamics of f which can be answered by looking
at the symbolic case to include questions of a topological nature—that is,
questions involving convergence.

To this end, given two sequences ω = (i1, i2, . . . ) and ω′ = (i′1, i
′
2, . . . ) in

Σ+
2 , define the distance between them by

(9) dα(ω, ω′) =
∑

j≥1

|ij − i′j |
αj

,

where α > 1 is fixed. Note that since each numerator |ij − i′j | is either 0 or
1, this series converges absolutely. We may easily verify that d = dα satisfies
the axioms of a metric:

(1) d(ω, ω′) ≥ 0, with equality iff ω = ω′.
(2) d(ω, ω′) = d(ω′, ω).
(3) d(ω, ω′) ≤ d(ω, ω′′) + d(ω′′, ω′) (triangle inequality).

Each of these follows immediately from its counterpart for the usual distance
on R.

With this definition, we will see in the next lecture that if (xn)n ⊂ Σ+
2 is

any convergent sequence (with respect to d), then (h(xn))n ⊂ C converges
as well, and so h is continuous. A similar conclusion applies for h−1, and
so the coding map h : Σ+

2 → C is a homeomorphism, that is, a continuous
bijection with continuous inverse.

Colloquially, we may say that h respects convergence, and so we have a
correspondence not only between the dynamics of f : C → C and σ : Σ+

2 →
Σ+

2 , but between the topologies as well.

9More technically, C inherits a metric structure from the interval, which defines a
topology in the natural way.
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Lecture 4

a. A little basic topology. Let us pause to recall some of the basic
definitions of point-set topology in the context of a metric space. Given a
space X with a metric d, we may consider the set of all points which lie
within a fixed distance r > 0 of a point x ∈ X:

B(x, r) = { y ∈ X | d(x, y) < r }.
This is the open ball of radius r centred at x. We say that a set U ⊂ X is
open if for every x ∈ U there exists r > 0 such that B(x, r) ⊂ U ; that is, if
a sufficiently small ball around x is contained in U for every x ∈ U .

If U1 and U2 are open sets, it is easy to verify that their union U1∪U2 is
open as well—indeed, this holds for the union of any collection of open sets,
no matter how large. One may also check that the intersection U1∩U2 is open
as well, and that this property carries over to finite intersections U1∩· · ·∩Un,
but not to infinite intersections, as the example Un = (−1/n, 1/n) ⊂ R
illustrates.

Given any set E ⊂ X, we may consider the r-neighbourhood of E, defined
as

⋃

x∈E

B(x, r);

this is just the set of all points in X which lie within r of some point in
E, and is in some sense a “fattening” of the set E. For example, if E is
the ball B(0, a) ⊂ Rn, then the r-neighbourhood of E is just the larger
ball B(0, a + r). If E is a set with a more complicated geometry, such as
the Cantor set, then its r-neighbourhoods will in some sense have a simpler
geometric structure than E itself.

We say that a set E is closed if for every sequence (xn)n∈N ⊂ E which
converges to some point x ∈ X, we have in fact x ∈ E. This is often ex-
pressed as the statement that E contains its limit points, and we leave as an
exercise the fact that this is equivalent to the property that the complement
of E, denoted X \ E = Ec, is open.

From this last statement, or from the definition, it follows that arbitrary
intersections of closed sets are closed, as are finite unions of closed sets.
Infinite unions of closed sets may not be closed—consider En = [1/n, 1].

We need a notion of when two metric spaces (X, d) and (Y, ρ) have the
same topological structure, and this relies on the idea of a continuous map.
Given h : X → Y and x ∈ X, we say that h is continuous at x if for all ε > 0
there exists δ > 0 such that ρ(h(x), h(y)) < ε whenever d(x, y) < δ. A map
which is continuous at each point x ∈ X is referred to simply as continuous.
If h is one-to-one and onto—that is, if it is a bijection—we may consider
the inverse map h−1 : Y → X. If both h and h−1 are continuous, then h is
a homeomorphism; such an h gives a correspondence between open sets in
X and open sets in Y , and similarly for closed sets, so the two spaces have
equivalent topologies.
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b. The topology of symbolic space. What are the open and closed
sets in the symbolic space Σ+

2 ? We defined a metric (9) on Σ+
2 , and so all

the notions in the previous section make sense, but what do the open and
closed sets actually look like?

For the sake of this discussion, fix α > 2, and consider the ball B(ω, r)
centred at a point ω = (i1, i2, . . . ) ∈ Σ+

2 with radius r = 1/α > 0. How do
we tell if another point ω′ = (i′1, i

′
2, . . . ) is in B(ω, r)? The distance between

the two points is

dα(ω, ω′) =
∞∑

j=1

|ij − i′j |
αj

,

and we see immediately that if i1 6= i′1, the first term alone means that the
sum is ≥ 1/α. Conversely, if i1 = i′1, then the first term in the sum vanishes,
and the distance is at most

∞∑

j=2

1

α

j

=
1

α

1

α− 1
<

1

α
,

where the last inequality uses the fact that α > 2. Thus we see that

B(ω, r) = {ω′ ∈ Σ+
2 | i′1 = i1 }.

There are exactly two possibilities for i1, and so there are exactly two pos-
sible sets of this form:

C1 = {ω′ = (1, i′2, i
′
3, . . . ) },

C2 = {ω′ = (2, i′2, i
′
3, . . . ) }.

We refer to C1 and C2 as cylinders of length 1; each contains all sequences in
Σ+

2 for which the first term matches a particular specification. If we demand
that the first n terms follow a particular pattern, we obtain a cylinder of
length n:

(A) Ci1···in = {ω′ ∈ Σ+
2 | i′k = ik ∀1 ≤ k ≤ n }.

Following the above argument, we see that these are exactly the balls of
radius 1/αn, provided α > 2. There is a one-to-one correspondence between
cylinders of length n and n-tuples with entries in {1, 2}.

In fact, the first part of the argument goes through whatever value of
α > 1 we use for the metric, and we have the following:

Proposition 1. Cylinders are open.

Proof. Given a cylinder Ci1···in and a point ω ∈ C, we may choose any
r < 1/αn, and then we see, as above, that d(ω, ω′) ≥ r unless all the terms
with j ≤ n vanish; that is, unless ij = i′j for all 1 ≤ j ≤ n. Thus d(ω, ω′) < r

implies ω′ ∈ Ci1···in , and so B(ω, r) ⊂ Ci1···in . �

That’s not the end of the story, though. . .

Proposition 2. Cylinders are closed.
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Figure 11. Another piecewise linear map with chaotic behaviour.

Proof. Let Ci1···in be a cylinder in Σ+
2 , and suppose (ω(m))m ⊂ Ci1···in

is a sequence which converges to ω(0) ∈ Σ+
2 asm→ ∞. Then d(ω(m), ω(0)) →

0, and in particular, each term in the sum (9) must go to 0. Thus i
(m)
j → i

(0)
j

for every j ≥ 1, and since i
(m)
j = ij for every 1 ≤ j ≤ n and all m, we have

i
(0)
j = ij for 1 ≤ j ≤ n, and so ω(0) ∈ Ci1···in . It follows that Ci1···in is

closed. �

Thus cylinders are both open and closed, a somewhat unfamiliar phe-
nomenon if our only experience is with the topology of R. The feature of the
topology of Σ+

2 which permits this behaviour is the fact that the cylinders
of a given length are all disjoint, and their union is the whole space—we say
that they partition Σ+

2 . This gives an alternate proof of the second proposi-
tion above, once the first is known; the complement of an n-cylinder Ci1···in
is a union of 2n − 1 n-cylinders, each of which is open, and hence Ci1···in is
closed.

We can now show that the topologies of the Cantor set C and the sym-
bolic space Σ+

2 are equivalent:

Theorem 3. The coding map h : Σ+
2 → C is a homeomorphism.

Proof. Recall that h is a bijection, and is defined by the inclusion

x ∈ Ii1 ∩ Ii1i2 ∩ · · · ,
and so we see that h(Ci1···in) = Ii1···in for every cylinder in Σ+

2 . Since the
sets Ii1···in are all closed in C (being closed intervals), we have shown that
h and h−1 both take closed sets to closed sets, which suffices to show that
h is a homeomorphism. �

c. What the coding map doesn’t do. In the previous lecture, we
saw that the coding map respects the dynamics of the two systems f : C → C
and σ : Σ+

2 → Σ+
2 ; we have now seen that it respects topology as well. So
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Figure 12. The domain of definition of f2.

from either a dynamical or topological point of view, we may as well study
whichever is better suited to the problem at hand, knowing that our results
will be valid for the other as well.

However, the two systems are not equivalent in every aspect. In the
first place, C lies on the real line, from which it inherits both an ordering
and a differentiable structure; it makes sense to think of a point z ∈ C
as lying between two others x and y, and since we can add and subtract
elements of C, we can define the derivative of a map f as the limit of the
ratio (f(y)−f(x))/(y−x). In contrast, Σ+

2 has no notion of “between-ness”,
nor have we defined a way add or subtract sequences, and so the definition
of derivative is meaningless.

A further hint that Σ+
2 might not capture quite everything there is to

know about the Cantor set C comes from considering more general dy-
namical systems defined in the interval. Fix two disjoint closed intervals
I1, I2 ⊂ [0, 1], and define a piecewise linear map f : I1 ∪ I2 → [0, 1] as shown
in Figure 11, so that f(I1) = f(I2) = [0, 1] (note that for our purposes, each
branch of f may be either increasing or decreasing).

If we try to iterate f more than once, we run into the same problem
as before; some points in I1 or I2 have images which do not lie in either
interval, and so cannot be iterated again. This leads us down exactly the
same path as in the previous lecture; the domain of definition of f2 is a
union of four intervals, as shown in Figure 12, and so on for f3, f4, . . . . The
only difference in this case is that the intervals may be of varying lengths,
but the combinatorial and topological structure is identical to that in the
previous analysis, and we again get a Cantor set (rather than the Cantor
set), for which we have a coding map and symbolic dynamics just as before.

Thus we see that Σ+
2 models not just the dynamics of our original map

on the middle-thirds Cantor set, but the dynamics of any map defined in
this fashion (note that the original definition is just a special case of this
one, with I1 = [0, 1/3] and I2 = [2/3, 1]). Indeed, all these maps (and
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Figure 13. A piecewise linear map with 4 branches.

Cantor sets) have the same dynamical and topological structure—however,
as we observed above, Σ+

2 does not capture certain metric properties of the
system, which vary depending on the choice of I1 and I2.

Indeed, we may consider maps with more than two branches, as shown
in Figure 13. Once again, we build the biggest invariant subset, a repeller C
with a Cantor-like structure. The only change in this case is that because
there are more intervals at each step, the alphabet for the symbol space is
larger—{1, . . . , p} instead of {1, 2}, where p is the number of branches of
the map. Then writing

Σ+
p = {1, . . . , p}N = {ω = (i1, i2, . . . ) | ij ∈ {1, . . . , p} },

we again have a coding map h : Σ+
p → C which is a homeomorphism and

which respects the dynamics. As before, different Cantor sets have the same
coding, and so some structure is certainly lost in passing to the symbolic
point of view.

In the end, the fact that we cannot completely restore the set C from
knowledge of Σ+

p will not cause us to lose much sleep, because the crucial
information is preserved. We will see rather more complicated examples
which are modeled by these same symbolic dynamics, which turn out to
contain the essence of the chaotic behaviour.
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Lecture 5

a. Geometry of Cantor-like sets. Let us return for the time being
to the Cantor-like set generated by a piecewise linear map defined on just
two disjoint closed intervals, I1 and I2, and focus on the more geometrical
aspects of the situation.

The Cantor-like set C is defined as

(10) C =
⋂

n≥1




⋃

(i1,...,in)

Ii1···in



 ,

How long are the intervals Ii1···in? Beginning with n = 1, let λ1 and λ2

denote the lengths of I1 and I2, respectively—then writing |Ii| for the length
of the interval Ii, we have |Ii| = λi for i = 1, 2.

For n = 2, we examine the four intervals shown in Figure 10, and recall
that the ratio |f(Ii1i2)|/|Ii1i2 | is given by the slope of f in Ii1i2 , which the
comments above show to be 1/λi1 . Thus the intervals Ii1i2 have lengths
given by

|I11| = λ2
1, |I21| = λ2λ1,

|I12| = λ1λ2, |I22| = λ2
2,

where we use the fact that f(Ii1i2) = Ii2 .
This generalises immediately to a formula for all values of n:

(11) |Ii1···in | = λi1 · · ·λin .
Now that we know how long the intervals Ii1···in ought to be, we can

try to carry out the construction of the set C (or one like it) without ref-
erence to the dynamics of f . To this end, consider the following geometric
construction:

(1) Begin by choosing two disjoint closed intervals I1, I2 ⊂ [0, 1] and
two ratio coefficients λ1, λ2 > 0 with λ1 + λ2 < 1.

(2) Put two closed intervals inside I1, whose lengths are λ1|I1| and
λ2|I1|; denote these by I11 and I12, respectively.

(3) Construct I21, I22 ⊂ I2 in a similar manner.
(4) Repeat steps (2) and (3) within each of the intervals Ii1i2 to con-

struct eight disjoint closed intervals Ii1i2i3 ; iterate this procedure
to produce intervals Ii1···in with length given by

Ii1···in = |Ii1 |
n∏

j=2

λij .

(5) Construct a Cantor-like set C as the limit of this iterative proce-
dure, as in (10).

The only difference between this construction and the earlier construc-
tion via the dynamics of f is that in the initial procedure, the position
of the intervals Ii1···in was determined by the dynamics, whereas here they
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are free to be placed anywhere within Ii1···in−1 . We can construct a coding

map h : Σ+
2 → C exactly as we did before, by considering the intersection

∩n≥1Ii1···in , and we get the following diagram:

Σ+
2

σ−−−−→ Σ+
2



yh



yh

C C

The lack of any dynamics on C ⊂ [0, 1] means that the diagram does not
close as it did in the commutative diagram in Lecture 3. We can, however,
define a map f : C → C so that the diagram closes and commutes; simply
take f = h ◦ σ ◦ h−1.

We have much less information about this artifically constructed map f
than we had before, when we began with f and used it to construct C. All
we can say in this case is that f is continuous, since each of σ, h, and h−1

are, and that it has all the dynamical properties of the shift map σ which
we discussed before, such as a dense set of periodic orbits.

The geometric construction outlined above may just as well be car-
ried out with more than two intervals; if we begin with disjoint intervals
I1, . . . , Ip ⊂ [0, 1] and ratio coefficients λ1, . . . , λp > 0 with Σiλi < 1, then
we may build Ii1···in as before, with length given by (11), and define a Cantor-
like set C by (10). As in the case p = 2, this generalises the construction in
the previous lecture of a Cantor-like set as the maximal invariant set (the
repeller) of a piecewise linear map with p branches, by “forgetting” about
the map f and allowing the intervals Ii1···in to be placed arbitrarily within
Ii1···in−1 . The coding map h : Σ+

p → C is defined as before, and we may

again place some dynamics on C by the formula f = h ◦ σ ◦ h−1.
These examples illustrate the use of dynamical systems and geometric

constructions as tools to study each other, which will be a prominent theme
of this course. Many dynamical systems can be better understood by exam-
ining the appropriate geometric construction, and similarly, many geometric
constructions are best viewed as arising from a particular dynamical system.

At this point, however, we have not yet developed the proper tools to
study the geometric properties of the various Cantor-like sets we have en-
countered. Each has the power of the continuum (that is, it can be put into
a bijective correspondence with the set of real numbers), and yet has zero
“length”, in a sense which can be made precise. If we wish to use them as
a tool to study the associated maps, we must somehow characterise them,
but do not yet have the means to do so.

b. More general Cantor-like sets. Before examining possible ways
of characterising Cantor-like sets, let us stretch our legs a bit and examine
some of the other creatures in the zoo. So far we have been planted firmly
in front of the cage labeled “one-dimensional constructions”, but there is no
reason why we could not consider examples in higher dimensions as well.



28 CONTENTS

Figure 14. A Cantor-like construction in R2.

To this end, let D1, . . . , Dp be disjoint closed discs contained in the unit
disc in R2; the case p = 3 is illustrated in Figure 14. Choose ratio coefficients
λ1, . . . , λp, and carry out an iterative procedure as before; within the disc
Di1 , place disjoint discs Di1i2 whose diameters are diam(Di1)λi2 , and so on.
Taking the union over all discs corresponding to words of length n, and then
taking the intersection over all n ≥ 1, we obtain a Cantor-like set as before.

Of course, there is nothing special about discs, or about two dimensions,
in this construction. The same procedure goes through for any domain in
R2, or indeed in any Rn, and the end result will always be homeomorphic
to Σ+

p . Thus we see that all these various Cantor-like sets have the same
topology, despite our feeling that they must be somehow different geometri-
cally; this reinforces our earlier point that Σ+

p carries no information about
the geometry of the Cantor-like sets it models.

Figure 15. Constructing the Sierpiński gasket.

A similar construction, which has a little more built-in regularity, may
be carried out by dividing an equilateral triangle into four smaller triangles,
each similar to the first and congruent to each other, removing the middle
triangle, and then iterating the procedure on the remaining three. The first
few steps of the process are shown in Figure 15.

The fractal set C obtained as the limit of this procedure is known as the
Sierpiński gasket10, and shares many properties with the Cantor-like sets
we have been discussing, although it differs from them by being connected;
that is, it has no proper non-trivial subsets which are both open and closed.

Another interpretation of this set comes from the following algorithm,
which Manfred Schroeder refers to as “Sir Pinski’s game” in his book Frac-
tals, Chaos, Power Laws. Given a point x inside the equilateral triangle,
we define f(x) by first finding the nearest vertex of the triangle to x, and
then doubling the distance from x to that vertex, as shown in Figure 16.

10Or as the Sierpiński triangle, sieve, dust, carpet, or any number of other descriptive
terms.
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Figure 16. Sir Pinski’s game.

Repeating the process takes us to the point f2(x), and so on, until we leave
the triangle, at which point the trajectory will go off to infinity. The game,
then, is to choose an initial point x whose trajectory remains in the triangle
for as long as possible.

The reader may verify that the winning points, whose trajectory never
leaves the triangle, are precisely the points in the Sierpiński gasket. The
map f is of the same sort as we encountered earlier, when we looked at
piecewise linear maps on the interval; in this case, f is a piecewise affine
map on the plane, and the Sierpiński gasket is the maximal invariant set,
the repeller, for f .

We can produce a coding map h : Σ+
3 → C by labeling the triangles at

each step of the iteration with the appropriate sequence of 1’s, 2’s, and 3’s,
and associating to each infinite sequence in Σ+

3 the corresponding infinite
intersection of nested triangles, which is just a single point. As in the one-
dimensional case, the coding map completes the commutative diagram in (8).

The careful reader will by this point be howling in protest that the map
f is not well defined everywhere. Indeed it is not; what are we to do with
the points in C which are equidistant from two vertices of the triangle? f is
supposed to double the distance from the nearest vertex, but what if that
vertex is not unique? There are only 3 points in C which encounter this
problem, but there are 9 more which are mapped into one of those 3, and
in general, there are 3n points in C for which fn is not uniquely defined.

This technicality arises since C is not totally disconnected, as the Cantor-
like sets we constructed earlier were. It is the same difficulty one encounters
when dealing with decimal representations of the real numbers—such repre-
sentations are not unique for certain numbers, namely those whose decimal
expansion terminates. In this case, it is the points whose trajectory under
f eventually stabilises at one of the vertices which cause trouble.

For the time being, we choose to ignore this troublesome quirk of the
Sierpiński gasket, and divert prying eyes elsewhere by bedazzling the reader
with a higher-dimensional version of the same thing. Instead of a triangle,
begin with a tetrahedron in R3, and remove the middle of the five congruent
tetrahedra into which it decomposes. Iterating this procedure, one obtains
a fractal sometimes known as the Sierpiński sponge.

All our examples up to this point have been linear—the building blocks
at any given step of the construction are just scaled-down copies of those
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Figure 17. A non-linear interval map.

at the previous step. This will not always be the case in the examples of
interest—most of the truly interesting phenomena in the real world, after
all, are not particularly linear. Thus we may return to the one-dimensional
setting and consider the sort of map f : I1 ∪ I2 → [0, 1] shown in Figure 17,
which is piecewise continuously differentiable, with |f ′(x)| ≥ a > 1, where a
is a fixed real number.

Nearly everything from our previous discussion of piecewise linear maps
goes through—we can follow a Cantor-like construction to obtain a repeller
C for f , which will be a maximal invariant set, and which is homeomorphic
to symbolic space via the coding map h : Σ+

2 → C, which also conjugates
the dynamics of σ and f . The only thing that fails is the formula (11) for
the lengths of the intervals Ii1···in—a new formula can be found, but it is
rather more complicated.

Or we could modify the two-dimensional construction in Figure 14;
rather than shrinking the discs equally in all directions, we could contract
by a factor of λ in one direction, and µ in another, so that the building
blocks at successive iterations are increasingly eccentric ellipses. The topo-
logical characterisation in terms of Σ+

p still goes through, but the geometry
is patently different from what came before.

c. Making sense of it all. Up to this point, we have been behav-
ing like Adam, merely wandering around the Garden and naming all the
animals; now we must become Linnaeus, and make some attempt at clas-
sifying the fractal fauna we find around us. For the various fractal sets we
have described are in fact different from each other geometrically, but our
usual measuring sticks are not properly equipped to distinguish them. Ev-
ery example we have encountered is uncountable, and so cardinality alone
is insufficient. If we try to measure “length”, the Cantor-like sets all have
length zero, while the fractal curves (the von Koch curve, the fractal coast-
lines) have infinite length. Trying a two-dimensional notion of size, one may
see that the latter have zero area; we seem to be at an impasse.



LECTURE 5 31

The way out of our predicament is provided by the idea of fractal dimen-
sion, a notion which is at once tremendously important and frustratingly
elusive. Its importance will become apparent when we see how readily it
lets us make sense of the thicket of examples we have presented thus far; its
elusiveness is due to the fact that, put starkly, it is not defined!

Let us explain this last statement. The concept of fractal dimension was
popularised by Benoit Mandelbrot in his landmark 1977 book The Fractal
Geometry of Nature. In that work, he found the fractal dimension of a wide
variety of examples, demonstrating that unlike our usual idea of dimension,
it does not have to be an integer; however, the book is more concerned
with exhibiting the utility of fractals as tools in various scientific contexts
than it is with presenting precise mathematical definitions. Thus while this
book introduced fractals to the broader scientific community, which has
found uses for them in a dazzlingly wide variety of scientific models (to say
nothing of the fractal artwork which has sprung up in the decades following
Mandelbrot’s work), it does not contain a single unifying definition of just
what the fractal dimension of a set actually is.

In fact, the “proper” notion of fractal dimension predates Mandelbrot
by over half a century, and was first introduced in 1919 by Felix Hausdorff.
Now referred to as the Hausdorff dimension, it is one of the fundamental
geometric characteristics of a set, and we will see that it lets us distinguish
between the various Cantor-like sets we have met.

However, we will also see that the Hausdorff dimension is rather dif-
ficult to compute, and that there are dozens of alternative definitions of
fractal dimension, which are often more tractable. Upper box dimension,
lower box dimension, correlation dimension, information dimension, Lya-
punov dimension—these and many others are available to us when we seek
to classify fractal sets, and are all candidates for the title of “fractal di-
mension”. The situation is made quite messy by the fact that these various
dimensional quantities may not coincide—indeed, we will see concrete ex-
amples for which they are different.

One of the primary goals of this course, then, will be to clarify the rela-
tions between the various notions of fractal dimension. These quantities are
fundamental characteristics of many dynamical systems, giving a geometri-
cal characterisation of chaotic behaviour, and so it is important to under-
stand how they fit together. Mercifully, we will see that in many important
cases, all the reasonable definitions of fractal dimension coincide, and the
mess cleans itself up; this goes some way towards explaining Mandelbrot’s
omission of a precise definition.
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Lecture 6

a. The definition of Hausdorff dimension. In this lecture, we de-
fine the notion of Hausdorff dimension for a set Z ⊂ Rn; the definition,
however, requires some work to set up, and so we first take some time to go
through the necessary preliminaries.

Given a set Z ⊂ Rn, we consider a collection U = {Ui} of open sets in
Rn which cover Z; that is, for which

⋃

i

Ui ⊃ Z.

Such a collection is known as an open cover ; we will usually simply refer to a
cover, with the implicit assumption that all elements of the cover are open.
The picture to keep in mind is a collection of open balls (whose radius may
vary), although of course more general open sets are allowed.

We denote the diameter of a set Ui by

diamUi = sup{ d(x, y) | x, y ∈ Ui },
and the diameter of a cover by

diamU = sup
Ui∈U

diamUi.

Fix ε > 0. If diamU ≤ ε, that is, if every Ui ∈ U has diamUi ≤ ε, then we
say that U is an ε-cover.

We will only consider covers with at most countably many elements.
The reason for this is that we want to use the cover U to “measure” the set
Z, by assigning each element of the cover a certain (positive) weight, and
then summing these weights over all elements of the cover. Clearly, though,
an uncountable collection of positive numbers cannot have a finite sum.

In what follows, we consider a fixed α ≥ 0, ε > 0, and an ε-cover U . We
define (somewhat arbitrarily, it may seem) a “potential” for the entire cover
U by the formula

(12)
∑

i

(diamUi)
α.

The reader may justifiably feel that we have just pulled a rabbit from a
hat without any explanation of where it came from—that will come in due
course. For the time being, observe merely that (12) gives us a way of
assigning a number, the “potential”, to any ε-cover U . We want to use this
number to characterise the set Z; the difficulty, of course, is that the set
Z admits many open covers. So how are we to decide which one to use?
Which of the many possible numbers obtained from (12) properly measures
Z?

By adding unnecessary extra sets to our cover (repeating a set several
times, for example), we can make the quantity in (12) arbitrarily large; thus
it seems that large values of the potential are somehow to be disregarded,
and we should look for the cover which minimises (12). Since an optimal
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cover may not exist (the minimum may not be achieved), we consider the
greatest lower bound of such quantities, and write

(13) m(Z,α, ε) = inf

{
∑

i

(diamUi)
α
∣
∣
∣U is an ε-cover of Z

}

.

Now we have a function m which depends on the set Z and the param-
eters α and ε. Observe that given ε1 > ε2 > 0, any ε2-cover is also an
ε1-cover. Thus the set of covers over which the infimum in (13) is taken for
ε2 is a subset of the set of covers for ε1, and it is then immediate that

m(Z,α, ε2) ≥ m(Z,α, ε1).

This shows that m(Z,α, ε) is monotonic as a function of ε, and hence the
limit

(14) m(Z,α) = lim
ε→0

m(Z,α, ε)

exists, although it may be ∞, and indeed often is, as we shall see.
Now for a particular value of α ≥ 0, we have a set function m(·, α); this

is a real-valued function defined on the space of all subsets of Rn, which
assigns to a subset Z ⊂ Rn the value m(Z,α) defined as above. The next
proposition summarises its most important properties.

Proposition 4. The set function m(·, α) : Z 7→ m(Z,α) satisfies the
following properties:

(1) Normalisation: m(∅, α) = 0 for all α > 0.
(2) Monotonicity: m(Z1, α) ≤ m(Z2, α) whenever Z1 ⊂ Z2.
(3) Subadditivity: m(

⋃

j Zj , α) ≤∑jm(Zj , α) for any finite or count-
able collection of subsets Zj.

Proof. (1) follows immediately upon observing that any open set, of
any diameter, covers ∅.

(2) uses the same idea as in the proof of monotonicity of m(Z,α, ·); an
ε-cover of Z2 is an ε-cover of Z1, and hence the infimum in m(Z2, α, ε) is
being taken over a smaller set.

(3) is slightly more involved, and requires the following technical lemma,
which is an immediate consequence of the definitions of limit and infimum.

Lemma 5. Fix Z ⊂ R2 and α ≥ 0 such that m(Z,α) < ∞. For every
δ > 0 and ε > 0, there exists an open ε-cover U = {Ui} of Z such that
|m(Z,α) −∑i(diamUi)

α| ≤ δ.

To prove (3), we first observe that if any of the valuesm(Zj , α) is infinite,
then their sum is infinite, and the inequality is trivial. Thus we assume they
are all finite; fixing δ > 0 and writing Z =

⋃

j Zj , we may apply the lemma

to each Zj to obtain ε-covers Uj = {Uji}i (for arbitrarily small ε > 0) such
that

|m(Zj , α) −
∑

i

(diamUji)
α| ≤ δ

2j
.
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We see that U =
⋃

j Uj = {Uji}i,j is an open cover of Z, and since each of
the Uji has diameter ≤ ε, it is actually an ε-cover. Thus

m(Z,α, ε) ≤
∑

i,j

(diamUji)
α

=
∑

j

(
∑

i

(diamUji)
α

)

≤
∑

j

(

m(Zj , α) +
δ

2j

)

=
∑

j

m(Zj , α) + δ,

This holds for all δ > 0 and for all ε > 0; hence (3) holds. �

So far the parameter α has been listed among the dramatis personae,
but has done little more than linger at the edge of the stage, constant and
unchanging. Its appearance on centre stage will finally bring us to the
definition of Hausdorff dimension.

To that end, then, let us consider m(Z, ·) : [0,+∞) → [0,+∞] as a
function of α. As they say, a picture is worth a thousand words, and so we
try to draw its graph.

There are three possibilities for the value of m(Z,α) at any given α—
it may be 0, it may be ∞, or it may be finite. The former two are not
particularly interesting; after all, our main grievance with the ideas of cardi-
nality, length, area, etc. as tools for classifying fractals was that they always
returned answers which were either 0 or ∞.

The third possibility, that 0 < m(Z,α) <∞ for a particular value of α,
turns out to have rather drastic consequences, as we see in the following two
propositions.

Proposition 6. If α ≥ 0 is such that m(Z,α) < ∞, then m(Z, β) = 0
for every β > α.

Proof. A straightforward computation shows that

m(Z, β, ε) = inf
U

∑

i

(diamUi)
β

= inf
U

∑

i

(diamUi)
β−α(diamUi)

α

≤ inf
U

∑

i

εβ−α(diamUi)
α

= εβ−αm(Z,α, ε),

and since β − α > 0, we have εβ−α → 0. Since m(Z,α, ε) ≤ m(Z,α) < ∞,
this implies that m(Z, β, ε) → 0 as ε→ 0. �
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As an immediate consequence of this proposition, we have the following
dual statement:

Proposition 7. If α ≥ 0 is such that m(Z,α) > 0, then m(Z, β) = ∞
for every β < α.

≈

α

∞

αC

m(Z, α)

Figure 18. The graph of m(Z, ·).

It follows from these propositions that the graph of m(Z, ·) is as shown
in Figure 18; below some critical value αC , the function takes infinite values,
and for α > αC , we have m(Z,α) = 0. Thus the function m(Z, ·) is entirely
determined by the location of αC and the value of m(Z,αC); the latter may
lie anywhere in [0,∞], while the former may take any value in [0,∞). Just
which values they take, of course, depends on the set Z—this is the whole
point.

We are now in a position to complete our definition—the Hausdorff
dimension of a set Z, denoted dimH Z, is the critical value αC at which the
function m(Z, ·) passes from ∞ to 0. Thus, we have

dimH Z = sup{α ∈ [0,∞) | m(Z,α) = ∞}
= inf{α ∈ [0,∞) | m(Z,α) = 0 }.

So we have the definition! But what does it mean? In what sense is this
the “dimension” of the set Z? Does it agree with our usual intuitive ideas
of dimension? What properties does it have? How do we actually compute
it for specific examples? What does it have to do with fractals? Where in
the world does the function m(Z,α, ε) come from? We will address these
questions in the next lecture, and see that they do in fact have satisfactory
answers.
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Lecture 7

a. Properties of Hausdorff dimension. Now that we have a def-
inition of Hausdorff dimension and have seen what’s under the hood, we
take this new notion out for a test drive, and see how it behaves. Some
important properties of Hausdorff dimension can be deduced as immedi-
ate consequences of the corresponding properties of the set function m(·, α)
given in Proposition 4:

Proposition 8. The Hausdorff dimension has the following basic prop-
erties:

(1) dimH ∅ = 0.
(2) dimH Z1 ≤ dimH Z2 whenever Z1 ⊂ Z2.
(3) dimH(

⋃

i Zi) = supi dimH Zi, where {Zi} is any countable collec-
tion of subsets of Rn.

A singleton set Z = {x} has m(Z,α, ε) = 0 for all α > 0, ε > 0, and so
applying the third property above, we obtain

Corollary 9. If Z is countable, then dimH Z = 0.

Thus the set of rational numbers has Hausdorff dimension zero, despite
being dense in the interval, and hence fairly “large” in the topological sense.

So points have zero Hausdorff dimension, which we would expect. What
about lines and planes? Do they have the “correct” Hausdorff dimension?
Before answering this question, we state two lemmas which codify a common
technique for giving upper and lower bounds on the Hausdorff dimension.

Lemma 10. We have that dimH Z ≤ α, if there exists C > 0 such that
for all ε > 0, there exists an ε-cover U = {Ui} with

∑

i(diamUi)
α ≤ C.

Proof. The condition given guarantees that m(Z,α, ε) ≤ C for all ε >
0; hence m(Z,α) <∞, and the result follows. �

Lemma 11. We have that dimH Z ≥ α, if there exists C > 0 and ε > 0
such that

∑

i(diamUi)
α ≥ C for all ε-covers U = {Ui}.

Proof. The condition given guarantees that m(Z,α, ε) ≥ C for some
ε > 0, hence m(Z,α) > 0, and the result follows. �

We now apply these lemmas to the case of the real line.

Proposition 12. dimH R = 1.

Proof. Let Z = [0, 1] be the unit interval in R. By part (3) of Proposi-
tion 8, it suffices to show that dimH Z = 1. We do this by using Lemma 10 to
show that dimH Z ≤ 1, and then using Lemma 11 to show that dimH Z ≥ 1.

To satisfy the condition of Lemma 10, we consider ε > 0 and choose
an integer n such that 1/n ≤ ε. Consider the intervals (i/3n, (i + 1)/3n)
for i = 0, . . . , 3n − 1; these cover every point of [0, 1] except the endpoints
i/3n. If we extend each interval to include the two beside it, then we get
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the intervals Ui = ((i−1)/3n, (i+2)/3n), each of which has length 1/n ≤ ε,
and so U = {Ui} is an ε-cover of Z. It has 3n elements, and so we see that

∑

i

(diamUi) = 3n · 1

n
= 3.

Thus Lemma 10 applies with C = 3 and α = 1, and we have dimH Z ≤ 1.
The other direction is rather harder, reflecting the general fact that

upper bounds on the Hausdorff dimension are usually easier to obtain than
lower bounds. The reason for this is that in order to apply Lemma 10, we
only needed to construct a single “good” partition for each ε > 0; in order
to get a lower bound by applying Lemma 11, we need to deal with every
ε-cover for some sufficiently small ε.

While we cannot apply Lemma 11 directly to our present problem with
α = 1, we can reach the same result by showing that the lemma applies for
every α < 1. Indeed, then we will have dimH Z ≥ α for all α < 1, which of
course implies that dimH Z ≥ 1, as desired.

To that end, fix α < 1. We wish to find ε > 0 such that
∑

i(diamUi)
α >

1 for every ε-cover U . For any such U , we have

∑

i

(diamUi)
α =

∑

i

(diamUi)(diamUi)
α−1

≥
(
∑

i

diamUi

)

εα−1.

It is relatively easy to see that since the sets Ui cover [0, 1], we must have
∑

i diamUi ≥ 1. Indeed, if we write ai = inf Ui and bi = supUi, then we
have Ui ⊂ (ai, bi), with diamUi = bi − ai (where we take [0, bi) and (aj , 1]
in the cases ai = 0, bj = 1), and so the argument reduces to the case where
each Ui is an interval.11 By compactness of [0, 1], we may find i1, . . . , in such
that

0 = ai1 < ai2 < bi1 < ai3 < bi2 < · · · < ain < bin−1 < bin = 1,

11More generally, we may observe that each Ui is a finite or countable union of
intervals, by letting Ii(x) denote the largest open interval containing x which is a subset
of Ui, and verifying that Ii(x) and Ii(y) either coincide or are disjoint. There are at most
countably many different Ii(x) since each contains a distinct rational number.
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at which point we see that
∑

i

diamUi =
∑

i

bi − ai

≥
n∑

k=1

bik − aik

>

(
n−1∑

k=1

aik+1
− aik

)

+ bin − ain

= bin − ai1 = 1.

Thus
∑

i(diamUi)
α ≥ εα−1. Since α < 1, we have εα−1 > 1 for sufficiently

small ε > 0. Then Lemma 11 applies, showing that dimH Z ≥ α, and since
α < 1 was arbitrary, we have dimH Z ≥ 1, which completes the proof. �

This result shows that Hausdorff dimension gives the result we would
expect for a line; in fact, a more general argument along the same lines shows
that if Z ⊂ Rn is any open set (indeed, any set with non-empty interior),
then dimH Z = n. In particular, dimH Rn = n, and so Hausdorff dimension
agrees with our usual definition of dimension for lines, planes, and so on.

But what is our usual definition of dimension? Of course we know that
the n-dimensional Euclidean space Rn has, well, dimension n, but why?
What is it about this space that makes it n-dimensional?

b. Topological dimension. Consider an open cover U of Rn. Fix a
point x ∈ Rn, and count the number of elements of the cover which contain
x; we call this the multiplicity of U at x, and denote it by M(U , x). The
quantity M(U) = supxM(U , x) is called the multiplicity of U ; as with our
earlier definition of m(Z,α, ε) via covers, we can make M(U) as large as
we like (even infinite) by choosing a cover with “too many” elements, and
so we want a cover for which M(U) is minimal. Thus we define M(Rn) =
infU M(U), and investigate how this quantity is connected to the dimension
of Rn.

In the case n = 1, we are just covering the line, and it is easy to construct
a cover U with M(U) = 2. Since we must have intersections between the
elements of the cover (otherwise R would be disconnected), we see that
M(R) = 2.

In the plane, one may construct a cover by open discs which has mul-
tiplicity 3, as shown in Figure 19, and it is not too hard to show that this
is optimal, so M(R2) = 3. Similarly, the minimal multiplicity for a cover
of Rn is n + 1, which connects M(Rn) to the dimension of Rn. All that is
required for the definition of M , however, is a topological space, and so we
may make the following definition.

Definition 13. The topological dimension of a topological space X is
the quantityM(X)−1; that is, the dimension is one less than the multiplicity
of an optimal cover.
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Figure 19. A cover of R2 with multiplicity 3.

The discussion at the beginning of this lecture shows that Hausdorff
dimension and topological dimension agree when it comes to the Euclidean
spaces Rn; is this always the case? Have we just given two rather different
definitions of the same quantity?

c. Comparison of Hausdorff and topological dimension. One dif-
ference in the two definitions is immediately apparent; the topological di-
mension is always an integer, while the Hausdorff dimension can take any
non-negative real value, as we will eventually see.

Another difference becomes apparent if we look at what notions are used
in the definitions; the topological dimension can be defined for any topolog-
ical space, whether or not it has a metric, while the Hausdorff dimension
requires a metric for its definition. Of course, a single topological space can
be equipped with multiple metrics; for example, the usual metric on Rn is
given by Pythagoras’ formula

(15) d(x, y) =

√
∑

i

(xi − yi)2,

but other metrics may be introduced by the formulae

ρ(x, y) =
∑

i

|xi − yi|,(16)

σ(x, y) = max
i

|xi − yi|.(17)

We say that two metrics d and ρ on a space X are equivalent if they induce
the same topology; that is, if the identity map from (X, d) to (X, ρ) is
a homeomorphism. All three of the metrics just introduced for Rn are
equivalent, and so they lead to the same topological dimension. Do they
also lead to the same Hausdorff dimension?

This question cannot be answered by topology alone; we need a stronger
relationship between the metrics. We say that d and ρ are strongly equivalent
if there exists a positive constant C such that

(18)
1

C
ρ(x, y) ≤ d(x, y) ≤ Cρ(x, y)
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for all x, y in the space.

Exercise 5. Show that d, ρ, and σ as defined above on Rn are all
strongly equivalent.

So what happens to the Hausdorff dimension under strongly equivalent
metrics? Recalling the definition of m(Z,α, ε), we see that passing to a
strongly equivalent metric changes each term (diamUi)

α by at most a factor
of C; hence m(Z,α, ε) and m(Z,α) are changed by at most a factor of
C. This does not affect whether or not m(Z,α) is finite or infinite for a
particular α, so the critical value αC , and hence the Hausdorff dimension,
remains unchanged.
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Lecture 8

a. Some point set topology. We have, of necessity, been dabbling in
topological notions at various points in the preceding lectures; for the benefit
of the reader who does not have much background in point set topology, or
who may be aided by a brief review of the relevant definitions and results,
we give a (rather hasty) sketch of the basic outlines of the subject in this
lecture.

There are various senses in which two metrics d1 and d2 on Rn (or more
generally, on any metric space X) may be said to be “the same”; we give
three such notions, from weakest to strongest.

Definition 14. d1 and d2 are equivalent (denoted d1 ∼ d2) if the iden-
tity map Id: (X, d1) → (X, d2) is a homeomorphism; that is, if for every
x ∈ X and every ε > 0 there exists δ > 0 such that d1(x, y) ≤ δ implies
d2(x, y) ≤ ε, and d2(x, y) ≤ δ implies d1(x, y) ≤ ε.

d1 and d2 are uniformly equivalent if the identity map and its inverse
are both uniformly continuous; that is, if for every ε > 0 there exists δ > 0
(independent of x, y) such that the implications in the previous paragraph
hold.

d1 and d2 are strongly equivalent if there exists C > 0 such that for all
x, y, we have

C−1d2(x, y) ≤ d1(x, y) ≤ Cd2(x, y).

Strong equivalence implies uniform equivalence, which in turn implies
equivalence, but neither of the reverse implications holds in general. For
the time being, we focus on the weakest notion, that of plain old unadorned
equivalence.

The statement that d1 and d2 are equivalent may be rephrased as the
statement that every d1-ball contains a d2-ball, and vice versa. In particular,
since an open set U is one which contains a sufficiently small ball around
every point in U , we see that the metrics d1 and d2 define precisely the same
collection of open sets; that is, they define the same topology.

Definition 15. Let X be a set, and T a collection of subsets of X such
that:

(1) ∅, X ∈ T .
(2) If U, V ∈ T then U ∩ V ∈ T .
(3) If {Uα} ⊂ T then

⋃

α Uα ∈ T , where the union may be taken over
any collection of sets in T , countable or not.

Then the pair (X, T ) is a topological space, and T is the topology on X. The
sets in T are referred to as open sets; given a point x ∈ X, an open set
containing x is a neighbourhood of x.

This definition codifies these three properties of open sets in Rn as the
only axioms which need to be satisfied in order for topological concepts
such as convergence, compactness, and continuity to be used. Once we
know which sets are open, all these concepts are in play.
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It also suffices to know which sets are closed ; we say that A ⊂ X is closed
if its complement X \A is open. There are various equivalent definitions of
closed sets. For example, x ∈ X is an accumulation point for A ⊂ X if every
neighbourhood of x contains a point in A. Then the closure of A, denoted
Ā, is the set of all accumulation points of A, and A is closed if and only if
A = Ā.

Conspicuously lacking from the definition of a topological space is any
notion of size. We have no way to say that a particular neighbourhood
of x is “small”, or to compare neighbourhoods of different points. Clearly,
then, many concepts from calculus and real analysis cannot be stated in the
context of a general topological space; we can go a long way and obtain
many analytic results using only topological methods, but we cannot do
everything. The definition of a topological space is general enough to permit
some behaviour which is rather pathological from the point of view of the
standard topology on Rn.

Figure 20. Vacationing in France.

As an example of the sort of situation that can occur, let X be the unit
disc in R2, and introduce a new metric d by the formula

d(x, y) =

{

‖x− y‖ if x is a scalar multiple of y,

‖x‖ + ‖y‖ otherwise,

where ‖ · ‖ denotes the usual norm on R2, ‖x‖ =
√

x2
1 + x2

2. This is not
quite so unnatural an example to consider as it may appear; suppose you
are on holiday in France, and wish to take the high-speed train (the TGV)
from Marseille, on the Mediterranean, to Nantes, near the Atlantic (see
Figure 20). Because there is no direct TGV line between the two cities, you
must go via Paris (which corresponds to the origin in this example), and so
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as far as your travels are concerned, the distance from Marseille to Nantes
is found by adding together the distance from Marseille to Paris (‖x‖) and
the distance from Paris to Nantes (‖y‖).

On the other hand, if you wish to go from Marseille to Lyon, then there
is no need to go all the way to Paris first, since the two cities lie on the same
branch of the rail system, and so the distance is given by the usual formula
(‖x− y‖).

The new metric induces a rather different topology on the disc than the
one we are used to—for example, given any x 6= 0 in the disc, the interval

((1 − ε)x, (1 + ε)x) = { rx | 1 − ε < r < 1 + ε }

is open for every ε > 0, although these sets were neither open nor closed
in the usual topology. A striking distinction between the two spaces is
given by the notion of separability—a topological space is separable if it has
a countable dense subset. With the usual metric, the disc is a separable
metric space (consider points with rational coordinates), but in this new
metric, there is no countable dense subset, and so the space is not separable.

Another metric space which has unusual properties vis-à-vis Rn is the
symbolic space Σ+

p , equipped with the metric dα defined in (9). Like Rn,
this space is separable, but recalling the characterisation of open and closed
sets in terms of cylinders, we quickly see that open sets are also closed, and
vice versa! A set which is both open and closed is said to disconnect a
topological space; a connected space is one which cannot be disconnected.
Both the symbolic space Σ+

p and the Cantor set C are totally disconnected ;
they have no non-trivial connected subsets. This is indeed different from
the connectedness that we see in Rn.

b. Metrics and topologies. All metric spaces carry a topology which
is induced by the metric, and so far, all our examples of topological spaces
have been of this form. One may rightly ask, then, if every example arises
this way; given a topological space (X, T ), can we always find a metric
d on X such that the sets in T are precisely those sets which are unions
of d-balls? Such a space is called metrisable, and so we may ask, are all
topological spaces metrisable?

It turns out that the answer is “no”—some topologies do not come from
metrics. But which ones? Given a particular topology, how can we tell
whether or not it comes from a metric?

If (X, d) is a metric space, and A,B ⊂ X are any closed sets, then we
can find open sets U, V ⊂ X such that U ⊃ A, V ⊃ B, and U ∩ V = ∅. A
topological space with this property is called normal—there are a number of
related properties, known as separation axioms, which more or less describe
what sort of sets (single points, closed sets, etc.) can be separated by open
sets in the manner described above. For example, if the above property holds
when A and B are replaced by single points {x} and {y}, then the space is
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called Hausdorff ; it is easy to see that metric spaces have this property as
well.

Neither the Hausdorff property nor the normal property follows imme-
diately from the definition of a topological space. For example, the rather
small collection of subsets T = {∅, X} defines the trivial topology on a space
X, which is not Hausdorff, and hence not metrisable. Or we might take two
arbitrary sets A,B ⊂ X, and consider the smallest topology with respect to
which both A and B are open:

T = { ∅, A,B,A ∩B,A ∪B,X }.
(Note that A ∩ B may coincide with ∅, and A ∪ B may coincide with X.)
This too is not Hausdorff, and hence not metrisable.

On the other hand, if a topological space is both normal and Hausdorff,
then this is almost enough to make it metrisable.

In order to state what more is needed, we recall that in any metrisable
topology (X, T ), an open set can always be written as a union of balls
B(x, r). Thus although there are many open sets which are not of the form
B(x, r), the collection of balls is sufficient to generate the topology. More
generally, any collection of open sets B ⊂ T with the property that any
element of T can be written as a union of elements of B is known as a base
(or basis) of the topology.12

This is a global concept—it applies to the entire topological space. The
local version is that of a neighbourhood base, which is a collection B(x) of
neighbourhoods of x ∈ X such that any neighbourhood of x contains some
element of B(x). In a metric space, the collection

B(x) = {B(x, r) | r > 0 }
is a neighbourhood base at each x ∈ X. In fact, it suffices to consider any
sequence of values for r which goes to 0; in particular, {B(x, 1/n) | n ∈ N}
is a countable neighbourhood base. A topological space which admits a
countable neighbourhood base at each point is said to be first countable,
and so we see that metric spaces are first countable.

In the familiar case of Rn, we may consider all balls of rational radius
centred at points with rational coordinates—this forms a countable base for
the topology, not just a neighbourhood base. A topological space with a
countable base is called second countable, and one sees immediately that
every separable metric space is second countable.

This flurry of definitions allows us to state (without proof) one of the
most important results in basic point set topology, which gives a nearly
complete answer to the question of which topological spaces are metrisable.

Theorem 16 (Urysohn’s metrisation theorem). If (X, T ) is a second
countable, normal, Hausdorff topological space, then X is metrisable.

12Equivalently, a base may be characterised by the requirement that every open set
contain a member of the base.
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Actually, slightly stronger versions of this theorem are available, but this
will be enough for our purposes. In a nutshell, then, the moral of the story is
that all topological spaces are metrisable, except for rather weird cases with
which we will not concern ourselves.

So we are interested in topological spaces whose topologies come from
some metric. But which metric? As we saw in Example 5, the three metrics
in (15)–(17) all lead to the same topology on Rn, and in general, a single
topology on a space X may be induced by many different, but equivalent,
metrics.

With this in mind, we return to our discussion of the topological and
Hausdorff dimensions of a set Z ⊂ Rn with metric ρ, denoting the latter by
dimH,ρ Z to indicate the dependence on the metric. We continue to write d
for the standard metric given by (15).

The relationship between the two notions of dimension is given by the
following deep theorem due to Hausdorff; this pearl of dimension theory was
the motivation for his introduction of the notion of Hausdorff dimension.

Theorem 17 (Hausdorff’s theorem). Given a set Z ⊂ Rn, the topological
dimension dimZ and the Hausdorff dimensions dimH,ρ Z are related by the
following variational principle:

(19) dimZ = inf
ρ∼d

dimH,ρ Z.

That is, the topological dimension is the infimum of the possible Hausdorff
dimensions, taken over all metrics ρ which are equivalent to the standard
metric d.

In fact, we will eventually see an even better result than this. For the
time being, let us consider a continuous map f : Rn → Rn, and examine the
relationship between dimH Z and dimH f(Z), which on the face of it is a
different matter than what we have been discussing.

A simple example where Z and f(Z) have different Hausdorff dimensions
is the case where f is a projection to a subspace, and so dimH f(Z) <
dimH Z for an appropriate choice of Z. In general, the Hausdorff dimension
can also increase under the action of f ; we will see later that the von Koch
curve has Hausdorff dimension strictly greater than 1, despite being the
homeomorphic image of the unit interval.

If f is Lipschitz, however, the story is different. We first observe that in
the definition of Hausdorff dimension, it suffices to consider covers by open
balls B(x, r) with r ≤ ε.

Proposition 18. Define a function mB by

mB(Z,α, ε) = inf

{
∑

i

(2ri)
α
∣
∣
∣U = {B(xi, ri)} is an ε-cover of Z

}

,
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for any Z ⊂ Rn, α ≥ 0, and ε > 0. As before, define mB(Z,α) =
limε→0mB(Z,α, ε); then we have

dimH(Z) = inf{α ≥ 0 | mB(Z,α) = 0 }
= sup{α ≥ 0 | mB(Z,α) = ∞}.

Proof. We are taking the infimum over a smaller collection of covers
than in (13), and so the inequality mB ≥ m is automatic. Now given an
ε-cover U of Z by arbitrary open sets of small diameter, observe that for
each Ui ∈ U , we may take xi ∈ Ui and ri = diamUi, and then we have

Ui ⊂ B(xi, ri),

from which it follows that

2αmB(Z,α, 2ε) ≤ m(Z,α, ε) ≤ mB(Z,α, ε).

Taking the limit as ε→ 0, we have

2αmB(Z,α) ≤ m(Z,α) ≤ mB(Z,α),

and so the critical value αC is the same for both m and mB. �

We now address the case where f is Lipschitz.

Proposition 19. If f : Rn → Rn is Lipschitz, then dimH f(Z) ≤ dimH Z
for every Z ⊂ Rn.

Proof. Let L > 0 be such that d(f(x), f(y)) ≤ Ld(x, y). Then if
U = {Ui} is any ε-cover of Z, we have diam f(Ui) ≤ LdiamUi, and so
f(U) = {f(Ui)} is an Lε-cover of f(Z), for which

∑

i

(diam f(Ui))
α ≤ Lα

∑

i

(diamUi)
α.

It follows thatm(f(Z), α, Lε) ≤ Lαm(Z,α, ε), whencem(f(Z), α) ≤ Lαm(Z,α).
Thus if m(Z,α) is finite, so is m(f(Z), α), which implies that dimH f(Z) ≤
dimH Z. �

A bijection f such that both f and f−1 are Lipschitz is known as a bi-
Lipschitz function. It follows from Proposition 19 that dimH f(Z) = dimH Z
whenever f is bi-Lipschitz.

All this is actually quite related to our previous discussion of the depen-
dence of Hausdorff dimension on the metrics. If f is a homeomorphism and
ρ is a metric on Rn, then the formula ρf (x, y) = ρ(f(x), f(y)) defines a new
metric ρf on Rn, and we see that

dimH,ρf
Z = dimH f(Z).

With this correspondence between bijections and changes of metric, we see
that the bi-Lipschitz functions are precisely those for which ρ and ρf are
strongly equivalent; indeed, the definition of strong equivalence boils down
to the statement that the identity map is bi-Lipschitz. Thus Hausdorff
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dimension is preserved by strong equivalence, but not by topological equiv-
alence; the latter preserves topological dimension, which by Theorem 17 is
the infimum of the possible Hausdorff dimensions.
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Lecture 9

a. Topological consequences. Even though the Hausdorff dimension
depends on the metric, we can still occasionally use it to deduce some purely
topological information.

Theorem 20. If Z ⊂ Rn has dimH Z < 1, then Z is totally disconnected.

Before we prove this statement, recall that Z is connected if it cannot
be written as a union of non-empty disjoint open sets. There is a stronger
notion of path connectedness, which requires that we be able to connect any
two points x, y by a path (that is, a continuous image of [0, 1]), but the former
definition is more important for our purposes. Z is totally disconnected if
for every x, y ∈ Z, x 6= y, we can write Z as a union of two non-empty
disjoint open sets U1, U2 such that x ∈ U1, y ∈ U2.

Any Cantor-like set is totally disconnected, as is the symbolic space Σ+
p ;

this follows since cylinders are both open and closed.
In order to prove Theorem 20, we first need to say a few words about

Lebesgue measure on [0, 1]. This is a generalisation of the notion of “length”
to sets which are not intervals. Given a set Z ⊂ [0, 1], we will write Leb(Z)
for the Lebesgue measure of Z; if Z is an interval [a, b], then the Lebesgue
measure, is just the length,

(20) Leb([a, b]) = b− a.

Endpoints do not contribute to the Lebesgue measure of an interval; (20)
also applies to intervals of the form (a, b), (a, b], and [a, b).

If I1 and I2 are two intervals, they may either overlap or be disjoint. If
they overlap, then their union is again an interval, and so Leb(I1 ∪ I2) is
given by (20). If they are disjoint, we define

Leb(I1 ∪ I2) = Leb(I1) + Leb(I2).

In fact, we define Lebesgue measure this way for any set Z which is a union
of countably many disjoint intervals:

(21) Leb

(
⋃

i

Ii

)

=
∑

i

Leb(Ii).

Each partial sum over finitely many disjoint intervals is less than 1, and so
the infinite sum converges.

In order to generalise (21) to sets which are not countable unions of
intervals, we cover them with such unions. Paralleling the definition of
m(Z,α), we define the Lebesgue measure of a set Z ⊂ [0, 1] by

(22) Leb(Z) = inf

{
∑

i

Leb(Ii)
∣
∣
∣ {Ii} is a cover of Z by open intervals

}

.

Indeed, it follows from (22) that Leb(Z) = m(Z, 1), and so the Hausdorff
function m(·, 1) is just Lebesgue measure. In particular, we see if a set Z
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has Hausdorff dimension strictly less than 1, then Z admits interval covers
of arbitrarily small total length, hence Leb(Z) = 0.

Proof of Theorem 20. To show that Z is totally disconnected, we
consider arbitrary points x, y ∈ Z, and produce two open sets U, V ⊂ Z
such that x ∈ U , y ∈ V , U ∩ V = ∅, and U ∪ V = Z. To this end, define
a function f : Z → R+ by f(z) = d(x, z); that is, f measures the distance
from x to z.

Clearly, f is a Lipschitz function, and so Proposition 19 gives the bound

dimH f(Z) ≤ dimH Z < 1,

and it follows from our earlier remarks that Leb(f(Z)) = 0. But this implies
that f(Z)c, the complement of f(Z), is dense; indeed, if it were not dense,
then f(Z) would contain an interval, and hence have positive Lebesgue
measure.

Thus we may find r ∈ f(Z)c such that 0 < r < f(y), and we define two
open sets by

U = f−1([0, r)) = { z ∈ Z | d(x, z) < r },
V = f−1((r,∞)) = { z ∈ Z | d(x, z) > r }.

Obviously U and V are disjoint; furthermore, since r /∈ f(Z), we see that
U ∪ V = Z. Finally, x ∈ U and y ∈ V , so x and y do not lie in the same
connected component of Z. Since x and y were arbitrary, we are done. �

b. Hausdorff dimension of Cantor-like constructions. We have
spent some time discussing Cantor-like sets C obtained through an iterative
construction as in (10), but have not yet determined their Hausdorff dimen-
sion. The construction is a fairly general one—we may use any number p
of basic intervals at each step of the iteration, we may choose any positive
numbers λ1, . . . , λp whose sum is less than 1 as the ratio coefficients, and
we may place the basic intervals Ii1···in+1 anywhere we like within the basic
interval Ii1···in from the previous step, provided they are disjoint. How do
these choices affect the Hausdorff dimension dimH C? Does it matter where
we put the intervals? What is the dependence on λi?

These questions were first asked by Abram Besicovitch, one of the founders
of the dimension theory of fractals, to his students in a seminar he organ-
ised at Cambridge upon his arrival there from Russia in 1927. After various
arguments had been put forth to the effect that the Hausdorff dimensions
ought to depend on the spacing between the intervals, one of those stu-
dents, Patrick Moran, proved that the spacing actually has no effect on the
Hausdorff dimension, by establishing the following result:

Theorem 21. If C is any Cantor-like set given by (10), with ratio coef-
ficients λ1, . . . , λp, then its Hausdorff dimension dimH C is the unique value
of t which satisfies the equation

(23) λt1 + λt2 + · · · + λtp = 1.
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Proof. First we must verify that (23) does in fact have a unique so-
lution. The function defined by the left hand side is continuous, takes the
value p at t = 0, and is equal to

∑

i λi < 1 at t = 1, hence by the Interme-
diate Value Theorem, there exists some t ∈ (0, 1) such that the function is
equal to 1. Furthermore, a simple computation of the derivative shows that
the function is strictly decreasing, and so the solution t is unique.

From now on, then, t shall denote the unique value for which (23) holds.
As in the proof of Proposition 12, there are two parts to the arguments; first
we show that dimH C ≤ t, then that dimH C ≥ t.

We begin by obtaining the upper bound, which uses Lemma 10. So
for every ε > 0, we must find a “good” ε-cover, for which the quantity
∑

i(diamUi)
t does not depend on ε.

We claim that the cover by basic intervals at an appropriate step n of
the iteration is the desired one. Writing λmax = max{λ1, . . . , λp}, we see
that

|Ii1···in | = |Ii1 |
n∏

j=2

λij ≤ |Ii1 |λmax
n−1 ≤ λmax

n−1,

and so if we fix n such that λmax
n−1 < ε, we may consider the ε-cover

U = { Ii1···in | 1 ≤ ij ≤ p ∀1 ≤ j ≤ n }.
It follows that

m(C, t, ε) ≤
∑

(i1,...,in)

|Ii1···in |t

=
∑

(i1,...,in−1)

|Ii1···in−11|t + · · · + |Ii1···in−1p|t

=
∑

(i1,...,in−1)

|Ii1···in−1 |t(λt1 + · · · + λtp)

=
∑

(i1,...,in−1)

|Ii1···in−1 |t

= · · ·
=
∑

i1

|Ii1 |t,

but this last quantity is a constant, independent of ε, and so Lemma 10
applies: m(C, t) ≤∑i |Ii|t <∞, therefore dimH C ≤ t.

As usual, the proof that dimH C ≥ t is harder, and we take this up in
the next lecture. �
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Lecture 10

a. Completion of the proof of Theorem 21. In order to show that
dimH C ≥ t, we want to apply Lemma 11 by showing that for a sufficiently
small ε > 0, every ε-cover has

(24)
∑

i

(diamUi)
t ≥ K > 0,

where K is a constant chosen independently of the cover. The plan of attack
is to show that it suffices to establish (24) for any ε-cover by basic intervals,
and then to apply the following lemma, which gives the necessary bound in
that particular case.

Lemma 22. If every element of the open cover U is a basic interval, then

(25)
∑

i

(diamUi)
t ≥

p
∑

j=1

|Ij |t,

and the quantity on the right is independent of the cover.

Proof. Because C is compact, U has a finite subcover; restricting the
sum in (25) to the elements of this subcover will not increase the sum, and
so without loss of generality we may assume that U is finite. Indeed, we
take U to be minimal in the sense that no proper subcollection of the open
sets Ui forms a cover of C.

Given a basic interval Ii1···in , we refer to n as the depth. Because U is
finite, there exists some n such that the depth of each basic interval in U is
at most n.

Let Ii1···in be a basic interval of maximal depth in U . Since U is minimal,
it does not contain the basic interval Ii1···in−1 (otherwise we could eliminate
Ii1···in and obtain a proper subcover). It follows that each of the basic
intervals Ii1···in−1j for j = 1, . . . , p is contained in U .

Thus the sum in (25) contains the partial sum

|Ii1···in−11|t + · · · + |Ii1···in−1p|t.
By the formula (11) for the lengths of the basic intervals and the definition
of t, this is equal to

(|Ii1···in−1 |λ1)
t + · · · + (|Ii1···in−1 |λp)t = |Ii1···in−1 |t(λt1 + · · · + λtp)

= |Ii1···in−1 |t,
and it follows that the sum in (25) is not changed if we replace all the basic
intervals of depth n by the corresponding intervals of depth n−1. The result
follows by induction. �

We now show that the case of an arbitrary ε-cover can be reduced to
the case of a cover by basic intervals, and find the lower bound K in terms
of
∑

j |Ij |t.
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To this end, for each r > 0, we consider the collection V(r) of basic
intervals Ii1···in whose lengths satisfy

(26) λminr ≤ |Ii1···in | ≤
r

λmin
,

where λmin = mini λi < 1. It follows that V(r) is a cover of C with uniformly
bounded multiplicity; that is, each point x ∈ C is covered by at most M =
2 log λmin/ log λmax elements of V.

Thus V(r) has the following crucial property: if U ⊂ R has diamU = r,
then U intersects at most M ′ = M/λmin elements of V(r). The exact value
of the constant M ′ is unimportant; what matters is that it is independent
of r.

Now let U be any ε-cover of C; for each Ui, write ri = diamUi, and let
Ui,1, . . . Ui,m(i) be the basic intervals in V(ri) which intersect Ui. It follows
from the above remarks that m(i) ≤M ′; furthermore, we see from (26) that

diamUi,j ≤
diamUi
λmin

,

whence we obtain the bound
m(i)
∑

j=1

(diamUi,j)
t ≤ M ′

λmin
t (diamUi)

t.

Summing over all the elements of U yields

∑

i

(diamUi)
t ≥

(
λmin

t

M ′

)
∑

i

m(i)
∑

j=1

(diamUi,j)
t,

and since {Ui,j} is a cover of C by basic intervals, we may apply Lemma 22
to obtain

∑

i

(diamUi)
t ≥

(
λmin

t

M ′

) p
∑

j=1

|Ip|t = K > 0,

which completes the proof. �

The preceding proof is easily the most intricate argument we have come
across so far; the reader is encouraged to test his or her understanding of the
method by considering a Cantor-like construction in the plane, using discs
instead of intervals (see Figure 14). If the ratio coefficients are λ1, . . . , λp,
then the set resulting from the iterative construction again has Hausdorff
dimension given as the solution t of (23). The proof is essentially a verbatim
copy of the one we have just given, but the reader will be well served by
following it through step-by-step and writing down a formal argument.
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Lecture 11

a. A competing idea of dimension. In the definition of the Haus-
dorff function m(Z,α), we considered covers whose sets have diameter less
than or equal to ε; within a particular cover, we might find sets on many
different scales, some of which could have diameter much smaller than ε.

An alternate approach is to restrict our attention to covers by sets on
the same (small) scale; consider the function
(27)

r(Z,α, ε) = inf

{
∑

i

(diamUi)
α
∣
∣
∣Ui open,

⋃

i

Ui ⊃ Z, diamUi = ε

}

.

This differs from the definition (13) of m(Z,α, ε) in only a single symbol; ≤
is replaced by =. One effect of this change is immediate; the argument that
m(Z,α, ε) depends monotonically on ε does not apply to r(Z,α, ε), since
the collections of admissible covers for two different values of ε are disjoint!

As a result of this change, we have no a priori guarantee that the limit
of r(Z,α, ε) as ε → 0 exists; indeed, there are many examples for which
it does not. To deal with this difficulty, we need the concept of upper and
lower limits.

Definition 23. Given a sequence (xn) ⊂ R, a point x ∈ R is an accu-
mulation point of (xn) if there exists a subsequence (xnk

) which converges
to x. The lower limit of (xn) is

lim
n→∞

xn = inf{x | x is an accumulation point of (xn) },

and the upper limit is

lim
n→∞

xn = sup{x | x is an accumulation point of (xn) }.

The lower and upper limits are sometimes denoted by lim inf and lim sup,
respectively, and one may hear the terms infimum (supremum) limit, or
possibly limit inferior (superior).

Example 24. Define two sequences by xn = 1/n and yn = 1− 1/n, and
interweave them:

z2n−1 = xn,

z2n = yn.

Then the sequence (zn) does not converge, but it has subsequences which
do. The set of accumulation points of (zn) is {0, 1}, and we see that

lim
n→∞

zn = 0,

lim
n→∞

zn = 1.
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Exercise 6. Show that the lower and upper limits may equivalently be
defined by

lim
n→∞

xn = lim
n→∞

(

inf
m≥n

xm

)

,

lim
n→∞

xn = lim
n→∞

(

sup
m≥n

xm

)

.

Furthermore, show that x = limxn if and only if both of the following hold:

(1) For every ε > 0, there exists N such that xn ≥ x− ε ∀n ≥ N .
(2) There exists a subsequence (xnk

) of (xn) which converges to x.

Similarly, show that x = limxn if and only if:

(1) For every ε > 0, there exists N such that xn ≤ x+ ε ∀n ≥ N .
(2) There exists a subsequence (xnk

) of (xn) which converges to x.

An immediate consequence of the definition is that limxn = limxn if and
only if limxn itself exists, in which case it is equal to the common value,
and is the only accumulation point.

We have given the definition of the lower and upper limits for a discrete
index (n), but it goes through equally well in the case of a continuous index
(such as ε). Thus returning to the function r(Z,α, ε), we define

r(Z,α) = lim
ε→0

r(Z,α, ε),

r(Z,α) = lim
ε→0

r(Z,α, ε).

The following partial analogue of Proposition 4 is immediate from the
definitions:

Proposition 25. The set functions r(·, α) and r(·, α) satisfy the follow-
ing properties:

(1) Normalisation: r(∅, α) = r(∅, α) = 0 for all α > 0.
(2) Monotonicity: r(Z1, α) ≤ r(Z2, α) and r(Z1, α) ≤ r(Z2, α) when-

ever Z1 ⊂ Z2.

Conspicuously absent from Proposition 25 is the subadditivity property
which held for m(·, α). The proof of that property relied on the construction
of an ε-cover as a union of covers of arbitrarily small diameter; because the
definition of r(Z,α, ε) does not allow us to use sets of diameter less than ε,
the proof does not go through here. While we will see in the next lecture
that r(Z,α, ε) is subadditive for finite collections {Zi}, no such result holds
for countable collections, or for r(Z,α, ε). The consequences of this will
become apparent shortly.

As functions of α, r(Z,α) and r(Z,α) have similar properties to m(Z,α);
there are critical values αC , αC below which the value of the function is ∞,
and above which it is 0. The critical value of m(Z,α) determines the Haus-
dorff dimension of Z, and the critical values of r and r are also dimensional
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quantities, known as the lower box dimension and upper box dimension,
respectively,13 and denoted dimBZ and dimBZ. As with αC , we have

dimBZ = αC = inf{α > 0 | r(Z,α) = 0 }
= sup{α > 0 | r(Z,α) = ∞},

dimBZ = αC = inf{α > 0 | r(Z,α) = 0 }
= sup{α > 0 | r(Z,α) = ∞}.

b. Basic properties and relationships. As an immediate conse-
quence of Proposition 25, we have the following analogue of Proposition 8:

Proposition 26. The upper and lower box dimensions have the follow-
ing basic properties:

(1) dimB∅ = dimB∅ = 0.
(2) dimBZ1 ≤ dimBZ2 and dimBZ1 ≤ dimBZ2 whenever Z1 ⊂ Z2.
(3) dimB(

⋃

i Zi) ≥ supi dimBZi and dimB(
⋃

i Zi) ≥ supi dimBZi, where
{Zi} is any countable collection of subsets of Rn.

Property (3) is weaker than its analogue in Proposition 8 because of the
failure of countable subadditivity for the lower and upper box dimensions;
we will see an example where the inequality is strict.

First, we examine the relationship between the Hausdorff dimension and
the two box dimensions. It follows immediately from the definitions that

m(Z,α) ≤ r(Z,α) ≤ r(Z,α)

for any Z ⊂ Rn and α > 0, and thus we have the relations

(28) dimH Z ≤ dimBZ ≤ dimBZ.

One of our primary goals will be to establish conditions on Z under
which all three dimensional quantities in (28) coincide. When this occurs,
we may refer to the common value as the fractal dimension without fear of
ambiguity, and we will see that the three quantities agree for a wide range
of examples, including some rather complicated sets. However, we will also
see relatively simple examples of sets Z for which the inequalities in (28)
become strict; the challenge is to develop some criteria which may let us
know what sort of behaviour to expect for a particular Z.

First, though, let us address the definition (27) of r(Z,α, ε), which played
a key role in the description of the lower and upper box dimensions. Since
we restrict our attention to covers in which every set has diameter ε, every
term in the sum

∑

i(diamUi)
α is the same! It seems rather silly, then, to

continue writing it as a sum, and indeed (27) is equivalent to

r(Z,α, ε) =

{

εαN(U)
∣
∣
∣Ui open,

⋃

i

Ui ⊃ Z,diamUi = ε

}

,

13In the literature, one may also find the box dimensions referred to as box counting

dimensions, entropy dimensions, or capacities.
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where N(U) denotes the number of elements in the cover U . Writing N(ε)
(or sometimes N(Z, ε)) for the smallest value of N(U), where U is any open
cover by sets of diameter ε, we see that

(29) r(Z,α, ε) = εαN(ε).

Exercise 7. Show that the lower and upper box dimensions may be
characterised by

dimBZ = αC = lim
ε→0

logN(ε)

log 1/ε
,(30)

dimBZ = αC = lim
ε→0

logN(ε)

log 1/ε
.(31)

Proposition 18 showed that defining m(Z,α, ε) in terms of open balls
rather than open sets does not change the critical value αC , and hence leads
to an equivalent definition of the Hausdorff dimension. The same is true for
the lower and upper box dimensions, and the proof goes through verbatim;
hence we may also use NB(ε), the smallest cardinality of a cover of Z by
balls of diameter ε, in (30) and (31).

Because N(ε) (and NB(ε)) must be finite in order for the definition of
lower and upper box dimension to make any sense, we restrict our atten-
tion to bounded subsets of Rn. Furthermore, we may in fact consider only
compact subsets Z, thanks to the following fact.

Proposition 27. The box dimension (lower or upper) of a set Z is the
same as the box dimension (lower or upper) of its closure.

Proof. Recall that the closure Z̄ of a set Z ⊂ Rn is just the union of
Z and its accumulation points. If {B(xi, ε/2)} covers Z, then {B(xi, ε)}
covers Z̄, and so

N(Z̄, 2ε) ≤ N(Z, ε) ≤ N(Z̄, ε),

from which (30) and (31) show that dimBZ = dimBZ̄, and also dimBZ =
dimBZ̄. �

Thus it suffices to consider subsets of Rn which are both closed and
bounded, hence compact.

In particular, Proposition 27 lets us give our first example of a set for
which the competing ideas of dimension do not agree, and the inequality
in (28) becomes strict.

Example 28. Let Z = Q ∩ [0, 1] be the set of all rational numbers in
the unit interval. Then Z is countable, which implies that dimH Z = 0 by
Corollary 9. However, Z is dense in [0, 1], and so

dimBZ = dimB[0, 1] = 1,

dimBZ = dimB[0, 1] = 1.
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There are many other examples of sets for which the Hausdorff and box
dimensions do not agree; indeed, in the next lecture we will see how to
construct, for any 0 < α ≤ β < 1, a countable closed set Z ⊂ [0, 1] such
that dimH Z = 0, dimBZ = α, and dimBZ = β. In fact, Z will have a
particularly simple form; it will be a sequence converging to 0.

Despite the fact that such simple sets can display this rather unpleasant
behaviour, there is a large class of examples for which dimH Z = dimBZ =
dimBZ; in particular, the three quantities coincide for the “standard” geo-
metric objects, such as line segments, discs, cubes, etc.

For general subsets Z ⊂ Rn, even though the inequalities in (28) may
become strict, it is still possible to prove the following (rather deep) theo-
rem, due to Lev Pontryagin and Lev Shnirel’man in 1932, which is a stronger
version of Hausdorff’s theorem (Theorem 17). As with the Hausdorff dimen-
sion, the lower and upper box dimensions depend on the choice of metric;
we will see in the next lecture that passing to a strongly equivalent metric
preserves these dimensions, but they may change if the new metric is merely
equivalent.

Theorem 29 (Pontryagin-Shnirel’man). Given a set Z ⊂ Rn, the topo-
logical dimension dimZ and the lower box dimensions dimB,ρZ are related
by the following variational principle:

(32) dimZ = inf
ρ∼d

dimB,ρZ.

That is, the topological dimension is the infimum of the possible lower box
dimensions, taken over all metrics ρ which are equivalent to the standard
metric d.

No analogue of this result holds for the upper box dimension, and so
this theorem is in some sense the best result possible. Pontryagin and
Shnirel’man were the first to introduce the concept of lower box dimen-
sion, which they called the metric order, a piece of terminology which has
fallen by the wayside. Perhaps because no such result holds for the upper
box dimension, they did not consider that quantity.
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Lecture 12

a. Further properties of box dimension. Given a continuous map
f : Rn → Rn, how are the box dimensions of Z related to the box dimen-
sions of f(Z)? If f is Lipschitz, then we have the following analogue of
Proposition 19.

Proposition 30. If f : Rn → Rn is Lipschitz, then dimBf(Z) ≤ dimBZ
and dimBf(Z) ≤ dimBZ for every Z ⊂ Rn.

Proof. Given Z ⊂ Rn, let N(Z, ε) denote the cardinality of a minimal
cover of Z by open sets of diameter ε. Now if U = {Ui} is any such cover of
Z, then diam f(Ui) ≤ LdiamUi, where L is a Lipschitz constant for f , and
so f(U) = {f(Ui)} can be “fattened up” into an open cover of f(Z) by sets
of diameter precisely Lε; it follows that N(f(Z), Lε) ≤ N(Z, ε), and so

logN(f(Z), Lε)

logL+ log 1/Lε
≤ logN(Z, ε)

log 1/ε
.

Taking lower and upper limits as ε→ 0 gives the result. �

It follows that if f is bi-Lipschitz, then Z and f(Z) have the same box
dimensions. In particular, the lower and upper box dimensions do not change
if we pass to a strongly equivalent metric.

We have seen many similarities between the Hausdorff dimension and
the box dimension, and have also seen one example (the rational numbers)
for which they differ. Before giving a further class of such examples, we
show that for a very important family of sets, the Cantor-like constructions
we have seen so far, all three quantities coincide.

Theorem 31. Let C be the limit of a Cantor-like construction (10),
where the diameters of the basic intervals Ii1···in are given by (11). Then
dimH C = dimBC = dimBC.

Proof. From the inequalities in (28), it will suffice to show that dimBC ≤
dimH C. By Moran’s theorem (Theorem 21), dimH C is the unique solution
of (23), and so we show that dimBC ≤ t, where

∑

i λ
t
i = 1.

Given ε > 0, we want to estimate N(Z, ε) from above, and so we produce
a cover of C by open sets of diameter ε as follows. Fix x ∈ C, and let n(x)
be the unique integer such that

|Ii1···in(x)−1
| ≥ ε > |Ii1···in(x)

|.

Thus for each x we may choose an open interval U(x) of length ε which con-
tains Ii1···in(x)

. Because C is compact, it can be covered by a finite collection

{Ii1···in(xi)
}Ni=1. Without loss of generality, we may take this collection to be
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disjoint; then for the open cover U = {U(xi)}Ni=1, we have

(33)

∑

i

(diamU(xi))
t ≤ 1

λmin

∑

i

|Ii1···in(xi)
|t

=
1

λmin

(
|I1|t + · · · + |Ip|t

)
,

where the last equality follows by the same calculation as in the proof of
Theorem 21.

It follows from (33) that r(Z, t, ε) ≤ K for every ε > 0, where K does not
depend on ε, and hence r(Z, t) ≤ K < ∞. But this implies that dimBZ ≤
t = dimC Z, and we are done. �

b. A counterexample. We now construct a counterexample which
shows that the coincidence of the three dimensional quantities can fail for
relatively simple subsets of [0, 1].

Theorem 32. Given any 0 < α ≤ β < 1, there exists a countable closed
set A ⊂ [0, 1] such that dimH A = 0, dimBA = α, and dimBA = β.

Proof. Fix 0 < a ≤ 1/3, and consider the sequence an = an → 0. We
will construct a set A ⊂ [0, 1] as an increasing sequence beginning at 0; the
first few terms will be separated by a gap of length a1, the next few by a
gap of length a2, and so on. That is, the set A will be the sequence

(34)

{

0, a1, 2a1, . . . , b1a1,

b1a1 + a2, b1a1 + 2a2, . . . , b1a1 + b2a2,

...
(

n∑

k=1

bkak

)

+ an+1, . . . ,

(
n∑

k=1

bkak

)

+ bn+1an+1,

(
n+1∑

k=1

bkak

)

+ an+2, . . .

}

together with its limit point, where (bn) is a sequence of nonnegative integers
which we will choose so as to obtain the desired result for the lower and upper
box dimensions. We write the endpoints between sequences of differently
spaced points as

Tn =
n∑

k=1

bkak,

and see that limn→∞ Tn = T , the limit point of A.
The fact that dimH A = 0 follows immediately from the fact that A is

countable, and so it remains to choose (bn) so as to guarantee dimBA = α
and dimBA = β. The key properties of our sequence (bn) will be as follows:
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(1) (bn) tends to infinity monotonically as n→ ∞.
(2)

∑∞
n=1 anbn < 1.

(3) The exponential growth rate of the partial sums Sn =
∑n

k=1 bk is
given by

lim
n→∞

logSn
log 1/an

= α, lim
n→∞

logSn
log 1/an

= β.

(4) The “tail” [Tn, T ] of the set A is not too long: there exists a constant
C such that

T − Tn
anSn

≤ C

for all n.

The summability property (2) guarantees that A is bounded. The sig-
nificance of the partial sums Sn is that they let us estimate N(ε), the car-
dinality of an optimal cover by open sets of diameter ε. Indeed, for ε = an,
we see that any such cover must contain at least Sn sets, since each set can
contain at most one of the points Tk + mak for k ≤ n, m ≤ bk, and Sn is
the number of such points. Furthermore, we may cover the interval [Tn, T ]
with (T − Tn)/ε intervals of length ε, and by property (4), this shows that
N(ε) ≤ (C + 1)Sn. The result for the lower and upper box dimensions will
then follow immediately from property (3).

n

a−αn

a−βn

bn

n1 n2 n3

Figure 21. Building a sequence (bn).

It remains only to produce a sequence with these properties. To this
end, we follow a four-step recursive procedure, illustrated in Figure 21. At
first, bn is just the integer part of a−αn, and so Sn also grows at the same
rate as a−αn. It follows that the quantity (logSn)/(log 1/an) converges to α
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as n grows, and so we may choose n1 such that

(35)

∣
∣
∣
∣

logSn1

log 1/an1

− α

∣
∣
∣
∣
<

1

2
.

Now we would like to let bn follow the function a−βn for a while, to
approximate the desired upper limit, but if we jump directly to the graph
of a−βn at n1, we will find that the sequence we eventually produce fails
property (4), and so we must be slightly more careful. Thus for n > n1, we
let bn grow exponentially until it reaches the upper function at n2, at which
point we have bn follow a−βn until

(36)

∣
∣
∣
∣

logSn3

log 1/an3

− β

∣
∣
∣
∣
<

1

2
.

Finally, for n > n3, we leave bn constant until it is once again equal to a−αn

at n4 (which is somewhere off the right edge of the graph in Figure 21).
Then we iterate all four steps of this procedure, replacing the bound 1/2
in (35) and (36) with (1/2)k at the kth iteration. One may then verify that
the sequence (bn) so constructed has properties (1)–(4), and thus the set A
given in (34) has the dimensions claimed. �

In some sense, this is the simplest possible counterexample to equal-
ity in (28); any simpler set is just finite, and then all three quantities are
immediately 0.

Note that Theorem 32 does not provide a set A with dimH A = 0,
0 < dimBA < 1, and dimBA = 1; this case, which requires a different
construction, is left as an exercise for the reader.

We will use this construction again in the next lecture, when we examine
another difference between the lower and upper box dimensions; namely,
their behaviour under finite unions.



62 CONTENTS

Lecture 13

a. Subadditivity, or the lack thereof. An important property of
the dimensional quantities we have seen so far is their behaviour under
taking countable unions. We saw in Proposition 8 that dimH (

⋃

i Zi) =
supi dimH Zi, while the best that Proposition 26 could offer for the lower
and upper box dimensions was an inequality. Indeed, the example of the
rational numbers in the unit interval showed that the box dimensions can
increase when we take a countable union; taking Zi to be singleton sets
which exhaust Q ∩ [0, 1], we saw that

dimB

(
⋃

i

Zi

)

= 1 > 0 = sup
i

dimBZi,

dimB

(
⋃

i

Zi

)

= 1 > 0 = sup
i

dimBZi.

The reason for the discrepancy between the two sorts of dimensions is
the fact that while m(Z,α) is countably subadditive (Property (3) in 4),
neither r(Z,α) nor r(Z,α) has this property. The best we can hope for in
this case is finite subadditivity:

Exercise 8. Show that for any finite collection of sets {Zi}ki=1 in Rn,
we have

(37) r(
k⋃

i=1

Zi ≤
k∑

i=1

r(Zi, α),

and that consequently

(38) dimB

k⋃

i=1

Zi =
k

max
i=1

dimBZi.

However, even this weakened property only holds for the upper box
dimension; for the set function r(Z,α) associated to the lower box dimension,
we have no subadditivity property at all! This is the second case we have
seen in which the lower and upper box dimensions behave in fundamentally
different ways; the first was the Pontryagin-Shnirel’man theorem for the
lower box dimension, which had no analogue for the upper box dimension.

The following example demonstrates the failure of even finite subad-
ditivity for r(Z,α), by giving two sets Z1, Z2 such that dimBZ1 ∪ Z2 >
max{dimBZ1,dimBZ2}.

Example 33. Fixing 0 < α < β < 1, we may use the construction in the
proof of Theorem 32 to find Z1 ⊂ [0, 1] and Z2 ⊂ [2, 3] such that dimH Z1 =
dimH Z2 = 0, dimBZ1 = dimBZ2 = α, and dimBZ1 = dimBZ2 = β. We
wish to modify the construction slightly to ensure that dimBZ1 ∪ Z2 > α.

The key idea in the construction was for bn to follow first one exponential
curve, then the other, transferring at the appropriate indices ni. In our
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present case, we wish to start b
(1)
n (the sequence defining Z1) on the lower

exponential curve, and b
(2)
n (defining Z2) on the upper curve; furthermore,

we define a single sequence ni of indices for both b
(1)
n and b

(2)
n by requiring

that the estimates on S
(1)
ni and S

(2)
ni are both within the range given by (35)

and (36).
Defining Z1 and Z2 in this way, we see that if ε > 0 is such that

(logN(Z1, ε))/(log 1/ε) is near α, then (logN(Z2, ε))/(log 1/ε) will be near
β, and vice versa. Since N(Z1 ∪ Z2, ε) ≥ N(Z1, ε) + N(Z2, ε), it can then
be shown that (logN(Z1 ∪ Z2, ε))/(log 1/ε) is bounded away from α, and
hence dimBZ1 ∪ Z2 > α = dimBZ1 = dimBZ2.

b. A little bit of measure theory. As we have seen, computing
the Hausdorff dimension of a set can be very difficult, even if the set is
geometrically quite regular, as was the case for the Cantor-like sets we have
considered so far. For sets whose self-similarity is not quite so regular, the
situation becomes even worse; for example, consider the non-linear map
shown in Figure 17. This map generates a repelling Cantor set C through
the same construction that we carried out for the linear map in Figure 8,
and so we may ask what the Hausdorff dimension of C is. C is the limit
set of a Cantor-like construction in which the ratio coefficients are no longer
constant, but may change at each step of the iteration; this occurs because
the map is no longer linear, and so how much contraction occurs at each
step now depends on which point we consider, not just on which interval it
is in.

How does the Hausdorff dimension respond to this change in the con-
struction? The problems which arise at this stage are much more difficult
than those we encountered in proving Theorem 21, and many answers are
unknown.

There are various lines of attack that we might pursue at this point. For

example, we might write λ
(n)
i for the ratio coefficients at the nth step of the

iteration, and try to figure out what happens if the λ
(n)
i converge to some

fixed coefficients λi as n → ∞. If we can deal with this more general case,

which seems more tractable than consider completely arbitrary λ
(n)
i , then

we will have successfully expanded the class of examples for which we have
some answers.

In order to go further, though, we will need to expand our toolkit. At
some point it will become necessary to distinguish between “bad” points of
C, which we may want to ignore, and “good” points, which we may be able
to deal with, and to show that there are in some sense “more” of the latter.
In order to make all this precise, we need the idea of a measure. Without
further ado, then, we have the following definition.

Definition 34. Let X be any set (which will be called our space), and
let A be a collection of subsets of X. A is called an algebra if

(1) ∅, X ∈ A.
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(2) A ∈ A implies X \A ∈ A.
(3) A1, A2 ∈ A implies A1 ∪A2 ∈ A.

Property (3) immediately implies that A is closed under finite unions:
⋃n
i=1Ai ∈

A whenever A1, . . . , An ∈ A. If in addition A is closed under countable
unions, that is, if

(4) An ∈ A ∀n ∈ N implies
⋃∞
n=1Ai ∈ A,

then A is a σ-algebra. The elements of A are referred to as measurable sets.
A set function m : A → [0,∞], which assigns to each measurable set

a non-negative number (or possibily ∞), is a measure if it satisfies the
following properties:

(1) m(∅) = 0.
(2) Monotonicity: m(A1) ≤ m(A2) whenever A1 ⊂ A2 and both are

measurable.
(3) σ-additivity: m(

⋃

i) =
∑

im(Ai) whenever {Ai} ⊂ A is a countable
collection of disjoint measurable sets.

The triple (X,A,m) is known as a measure space.

Before moving on to meatier applications, we give a few very basic ex-
amples of measure spaces.

Example 35. Let X be any set, and let A = {∅, X}. Then A is a σ-
algebra, and we may define a measure m by m(∅) = 0, m(X) = ∞. This, of
course, is a completely trivial example.

Example 36. Let X be any set, and let A = 2X be the power set of X;
that is, the collection of all subsets of X. A is again a σ-algebra (in fact, it
is the largest possible σ-algebra on X), and we define a measure m by

m(A) =

{

card(A) A finite,

∞ otherwise.

So if A is a finite set, m counts the number of points in A, otherwise it gives
∞; this is known as the counting measure on X.

Example 37. LetX and A be as in the previous example, and fix x ∈ X.
Define m by

m(A) =

{

1 x ∈ A,

0 x /∈ A.

Thus m simply measures whether or not A contains the point x; this is
known as the point measure sitting on x.
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Lecture 14

a. Lebesgue measure and outer measures. We now introduce a
more complicated example of a measure space; Lebesgue measure on Rn,
which we first mentioned in the proof of Theorem 20. In the case n = 1,
which we will consider first, this is a generalisation of the idea of “length”
which applies to a broader class of sets then merely intervals.

The full construction of Lebesgue measure is one of the primary parts of
measure theory, and a complete treatment of all the details requires most of
a graduate-level course, so our discussion here will necessarily be somewhat
abbreviated, and we will omit proofs. (The interested reader is referred to
Measure Theory by Paul Halmos, or Real Analysis by H. L. Royden, for a
complete exposition.)

In order to construct a measure space (X,A,m), we must do two things.
First, we must produce a σ-algebra A, which we would like to make as large
as possible. Second, we must figure out how to define a set function m
which satisfies the three properties of a measure. In particular, it is far from
clear how to guarantee that whatever function m we construct is σ-additive,
especially if the collection A of sets for which this must be checked is very
large.

There is a standard procedure in measure theory which deals with both
these challenges; for this we need the notion of outer measure.

Definition 38. A set function m∗ : 2X → [0,∞] is an outer measure if
it satisfies

(1) m∗(∅) = 0.
(2) m∗(A1) ≤ m∗(A2) whenever A1 ⊂ A2.
(3) m∗ (

⋃

iAi) ≤ ∑

im
∗(Ai) for any countable collection of subsets

Ai ⊂ X.

The first two properties are exactly those which we required for a mea-
sure; however, the third property of a measure, σ-addivity, has been replaced
here with the weaker property of σ-subadditivity. So in that regard, the no-
tion of outer measure is weaker than the notion of measure; however, we
require the outer measure to be defined for every subset of X.

In fact, we have already seen an example of an outer measure; the three
properties above are exactly what we proved in Proposition 4 for the set
function m(·, α). Thus Proposition 4 may be rephrased as the statement
that m(·, α) is an outer measure on Rn; from now on, we will write it as
mH(·, α) so as to stress the origin of this particular outer measure, and to
avoid confusion with our notation m for a measure.

Once we have an outer measure, there is a canonical way to produce both
a σ-algebra A and a measure m. The key step is the following definition.

Definition 39. Given an outer measure m∗ : 2X → [0,∞], we say that
E ⊂ X is measurable if for every A ⊂ X, we have

(39) m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec).
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As we need to gain σ-additivity in order to have a measure, this is a
reasonable definition to make; after all, (39) is just a very particular case of
finite additivity. Indeed, it turns out to be enough.

Theorem 40. Let A be the collection of measurable subsets of X for
an outer measure m∗, and let m be the restriction of m∗ to A; that is,
m(A) = m∗(A) for A ∈ A. Then

(1) A is a σ-algebra.
(2) m is a measure.

The procedure of passing from an outer measure to a measure and a
σ-algebra of measurable sets is a completely general one, which works for
any (X,µ∗).

Restricting our attention now to the case X = R, we follow the above
recipe by first defining an outer measure on R as follows:

(40) m∗(A) = inf

{
∑

k

ℓ(Ik)
∣
∣
∣

⋃

k

Ik ⊃ A, Ik ∈ C∀k
}

,

where C is the class of all open intervals, and ℓ : C → [0,∞] is the set
function ℓ(Ik) = diam(Ik). This is a particular example of a Carathéodory
construction, an important procedure for building an outer measure, and
hence a measure, using a set function on some family of subsets of X.

Observe that (40) is very reminiscent of our definition of mH(A, 1); the
only difference between the two is that the latter requires that we consider
covers whose diameter becomes arbitrarily small, whereas m∗ is not con-
cerned with the size of the elements of the cover. In fact, this makes no
difference to the actual value of the set function.

Proposition 41. m∗(A) = mH(A, 1) for every A ⊂ R.

Proof. It follows from the definitions that m∗(A) ≤ mH(A, 1, ε) for
every ε > 0, since the infimum in the latter is taken over a smaller collection
of covers, and hence m∗(A) ≤ mH(A, 1).

To prove the reverse inequality, fix γ > 0, and observe that there exists
ε > 0 such that

mH(A, 1) ≤ mH(A, 1, ε) + γ,

and that there exists a cover {Ik} of A by open intervals such that

m∗(A) ≥
∑

k

|Ik| − γ.

If the interval Ik has length greater than ε, we can cover it with intervals
Jk,i of length less than ε in such a way that

∑

i

|Jk,i| ≤ |Ik| +
γ

2k
.
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It follows that

m∗(A) ≥
∑

k,i

|Jk,i| − 2γ ≥ mH(A, 1, ε) − 2γ ≥ mH(A, 1) − 3γ,

and since γ > 0 was arbitrary, the result follows. �

Corollary 42. m∗ is an outer measure.

It follows that m∗ defines a σ-algebra A ⊂ 2R and a measure m : A →
[0,∞]. One may check that every interval I (whether open, closed, or nei-
ther) is measurable, and that m(I) = |I|, so that m really is an extension
of length.

Indeed, most of the sets we usually encounter are measurable; A contains
all open sets, all closed sets, and all countable sets, along with a great deal
more. In particular, the Cantor set C is closed, and hence measurable; one
may show that m(C) = 0, and this makes precise our statement in Lecture 3
that “the length of the Cantor set is zero”.

Lebesgue measure can be defined not just on the real line, but on any
Rn; simply replace the open intervals in the above procedure by open balls.
One may once again prove that m∗(A) = mH(A,n), although the argument
is slightly more difficult; it then follows that m∗ is an outer measure, and
it defines a measure m which agrees with the usual idea of n-dimensional
volume for familar geometric shapes such as balls and cubes.

b. Hausdorff measures. The fact that mH(·, α) is an outer measure
is not restricted to integer values of α, but holds true for any α > 0. We
call this the Hausdorff outer measure, and the measure it induces is called
Hausdorff measure. In this manner, we obtain quite a large collection of
measures sitting on Rn; in fact, a one-parameter family of them, indexed by
α.

Consider the middle-thirds Cantor set C ⊂ [0, 1]. What is its Hausdorff
measure? We know from the definition of Hausdorff dimension that

(41) mH(C,α) =

{

∞ α < dimH C,

0 α > dimH C;

the result m(C) = mH(C, 1) = 0 is just a particular case of this more general
fact. It follows from Moran’s equation (23) that the critical value αC is

αC =
log 2

log 3
.

Exercise 9. Prove that mH(C,αC) = 1.

The result of Exercise 9 is valid for any of the Cantor-like sets we have
considered; the key fact is the relationship (23) between the ratio coeffi-
cients, which lets us move between different levels of the construction with-
out changing the potential of a cover by basic intervals. Like Goldilocks, we
find that other values of α are either too big or too small for mH(C,α) to
measure C properly (41), but that αC is “just right”. For this particular
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choice of α, we get a Hausdorff measure which sits on the Cantor set, and
which will be of great utility to us later on.

In the meantime, one final property of the Hausdorff measures is worth
noting. Both the Hausdorff measures and the outer measures they are in-
duced from are translation invariant ; that is, mH(A,α) = mH(A+x, α) for
every A ⊂ Rn, x ∈ Rn, and α > 0, where A + x is the image of A under a
translation by the vector x. In particular, this is true for Lebesgue measure.
Note that for example, the point measure mx defined in the previous lecture
is not translation invariant.

In the next lecture, we will describe another way of building measures
on the Cantor set, by utilising the symbolic space Σ+

p , building measures
there, and then transferring them to the Cantor set via the coding map h.



LECTURE 15 69

Lecture 15

a. Choosing an outer measure. The Carathéodory construction of
an outer measure described in (40) is actually quite a common one. In
the construction of the Lebesgue measure, we took C to be the class of
open intervals, and ℓ to be the length function, ℓ((a, b)) = b − a. What
would happen if we chose a different set function ℓ? We can still define m∗,
determine which sets are measurable, and obtain a set function m; but will
it be a measure?

We examine the possible outcomes by considering three candidate set
functions:

ℓ1((a, b)) = eb−a,

ℓ2((a, b)) = (b− a)2,

ℓ3((a, b)) =
√
b− a.

The proof thatm∗ as defined in (40) is monotonic and σ-subadditive does
not rely on the particular form of ℓ, and so these properties hold whatever
set function we begin with. However, we see that in order to have m∗(∅) = 0,
we must be able to find sets U ∈ C for which ℓ(U) is arbitrarily small. Hence
if we take ℓ1 as our set function, m∗ will not be an outer measure.

Thus we must demand that ℓ(U) take arbitrarily small values, and both
ℓ2 and ℓ3 satisfy this requirement. It follows that these set functions will
define outer measures m∗

2 and m∗
3, respectively.

Exercise 10. Show that m∗
2(A) = 0 for every A ⊂ R; in particular,

show that every subset of X is measurable, but m∗
2(A) 6= ℓ(A) for A ∈ C.

Given that the whole point of introducing an outer measure using ℓ
was to extend the definition of ℓ beyond the elements of C, the result of
Exercise 10 is rather undesirable; m∗

2 does not agree with ℓ on the class of
intervals!

To avoid this behaviour, we consider only set functions ℓ such that the
outer measure they induce agrees with ℓ on the members of C. It is not
difficult to show that ℓ3 has this property—however, there is now another
problem. In order for the result of the Carathéodory construction to be a
genuine extension of the initial set function, the σ-algebra of measurable
sets should contain the collection of intervals, but this is not the case for ℓ3.
Indeed, given a < c < b, one immediately sees that

m∗
3((a, b)) =

√
b− a 6=

√
c− a+

√
b− c = m∗

3((a, c)) +m∗
3((c, b)),

and so intervals are non-measurable!
The upshot of all this is that if we want the measure induced by ℓ to

be “sensible”—that is, if we want it to agree with ℓ on intervals, and if we
want intervals to be measurable—then we must choose ℓ to be σ-additive
on the class of intervals. This is a very restrictive condition; indeed, if we
include the further requirement that ℓ be translation invariant, the only
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possibility for ℓ is a constant multiple of the length function, leading to
Lebesgue measure or a scalar multiple thereof.

b. Measures on symbolic space. We now move to another context
and discuss measures on the symbolic space Σ+

k . As before, we follow the
Carathéodory approach, taking for the collection C of basic sets the cylinders
in Σ+

k given by (A) on page 22.
Now we define a σ-additive set function m∗ on cylinders; choose positive

numbers p1, . . . , pk such that p1 + · · · pk = 1, and let m∗ be given by

(42) m∗(Ci1···in) = pi1pi2 . . . pin .

Example 43. In the case k = 2, the condition on the numbers pi reduces
to p1 + p2 = 1, and we often write p = p1, q = p2 = 1 − p. Then

(43) m∗(Ci1···in) = pjqn−j ,

where j is the number of times 1 appears in the sequence i1, . . . , in.
If we repeatedly toss a weighted coin such that the probability of heads

appearing on any given toss is p, and the probability of tails is q, then
m∗(Ci1···in) is the probability that the first n tosses give the result i1, . . . , in,
where ij = 1 denotes heads, and ij = 2 denotes tails.

Now we want to build a measure m on Σ+
k from the set function m∗. In

light of the discussion in the previous section, we hope to obtain a measure
for which cylinders are measurable, and which agrees with the set function
on cylinders. It can be shown that these will follow once we show that m∗

is additive on the class of cylinders; that is, that if C1, . . . , Cn are cylinders
whose union C1 ∪ · · · ∪ Cn is also a cylinder, then

(44) m∗(C1 ∪ · · · ∪ Cn) = m∗(C1) + · · · +m∗(Cn).

This in turn follows from the formula

(45) m∗(Ci1···in) = m∗(Ci1···in1) + · · · +m∗(Ci1···ink),

which is a direct consequence of (42). The proof that (45) implies (44) is
exactly the same argument that we used in the proof of Moran’s theorem,
with p1, . . . , pk taking the place of λt1, . . . , λ

t
k.

The measure m which is built from the set function m∗ in (42) is called
a Bernoulli measure. In fact, there are many such measures, since we may
choose any positive parameters p1, . . . , pk which sum to 1.

Bernoulli measures all have the following interesting property:

Proposition 44. Let m be a Bernoulli measure on Σ+
k , and Ci1···in any

n-cylinder. Then

(46) m(σ−1(Ci1···in)) = m(Ci1···in).

Proof. Recall that the preimage of the cylinder Ci1···in is

σ−1(Ci1···in) = {ω ∈ Σ+
k | σω ∈ Ci1···in }

= C1i1···in ∪ · · · ∪ Cki1···in .
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Then it follows from (42) that

m(σ−1(Ci1···in)) = p1m(Ci1···in) + · · · + pkm(Ci1···in)

= (p1 + · · · pk)m(Ci1···in)

= m(Ci1···in). �

It follows from Proposition 44 that m(σ−1E) = m(E) for any measur-
able set E ⊂ Σ+

k ; we say that m is an invariant measure with respect to σ,
or sometimes that it is a shift-invariant measure.

c. Measures on Cantor sets. Let C be a Cantor-like set, h : Σ+
k → C

the coding map and recall the conjugacy between the shift σ and the map
f : C → C which is illustrated in the commutative diagram (8). We may
use this conjugacy to transfer a measure m on Σ+

k to a measure µ on C, as
follows.

The measurable subsets of C will be precisely those sets A whose preim-
ages h−1(A) are measurable; we may define the measure of such sets as

(47) µ(A) = m(h−1(A)).

After having built one finite measure on C, the Hausdorff measure mH(·, α),
we now have a whole family of finite measures on C which come from the
Bernoulli measures on Σ+

k . The Hausdorff measure corresponds to the par-
ticular choice pi = λαi ; all the other measures are new.

All of these measures are f -invariant; this follows since

µ(f−1(A)) = m(h−1f−1(A))

= m(σ−1h−1(A))

= m(h−1(A))

= µ(A).

Thus we have one class of f -invariant measures on the Cantor set; the
Bernoulli measures. We could consider many other classes of measures as
well, such as the point measures. However, as we are interested in studying
the dynamics of f , only the invariant measures are really important, and a
point measure mx is only invariant if x is a fixed point for f .

Eventually, we will see an even larger class of invariant measures on
the Cantor set, the so-called Markov measures, which will be introduced
the same way as the Bernoulli measures, via a particular set function on
cylinders in symbolic space. The idea motivating their introduction is simple
enough; the coin flips described in Example 43 are independent events, as
the outcome of a given flip does not depend on the outcomes which came
before it. But what if this was not the case? What if the process had
some sort of memory, so that the future depends somehow on the past? For
example, we could consider a bag containing two colours of marbles, white
and black; we pull out a marble at random, and write 1 if it is white, and
2 if it is black. Repeating this, without replacing our earlier picks, gives us
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a sequence of 1’s and 2’s, but now the probabilities at each step depend on
the previous results. A process such as this which exhibits finite memory is
known as a Markov process.
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Lecture 16

a. Markov measures. We now turn our attention to another class
of measures on Σ+

k , called Markov measures. We fix k positive numbers
p1, . . . , pk such that

∑

i pi = 1, and a k × k matrix P = (pij) with non-
negative entries such that

(48)
k∑

j=1

pij = 1 for all i,

called a stochastic matrix.
Now we construct a σ-additive set function on cylinders by

(49) m(Ci1···in) = pi1pi1i2pi2i3 · · · pin−1in ,

and follow the usual Carathéodory construction to obtain a measure m on
Σ+
k ; this is the Markov measure associated to the probability vector p =

(p1, . . . , pk) and the stochastic matrix P .

Exercise 11. Use the property (48) of a stochastic matrix P to show
that the set function defined in (49) is σ-additive on cylinders.

Exercise 12. Show that the Markov measure generated by p and P is
shift-invariant.

One interpretation of (49) is as follows: consider a process which may
give any one of k results at a given time n ∈ N, and write in for the result
observed. Then each sequence ω = (i1, i2, . . . ) ∈ Σ+

k represents a particular
instance of the process, in which the results i1, i2, . . . were observed. As
was the case with Bernoulli measures, the Markov measure m(Ci1···in) of a
cylinder gives the probability that the first n results are i1, . . . , in.

Alternatively, we may think of in as representing the state of a system
at time n. An element pi of the probability vector gives the probability of
beginning in state i, and an entry pij of the stochastic matrix P gives the
probability of going from state i to state j at any given time-step; that is,
it gives the conditional probability of being in state j at time n + 1, given
that the state at time n is i.

We may represent this graphically, as shown in Figure 22 for the case
k = 3. The vertices of the graph represent the states of the system, and
to the edge from vertex i to vertex j is associated a transition probability
pij . The condition that the matrix P be stochastic may be rephrased as the
condition that the outgoing transition probabilities from any given vertex
sum to 1; that is, if we are at vertex i now, then at the next time step, we
will be somewhere. We may be at vertex i again (with probability pii), but
we will not simply vanish from the graph.

In this interpretation, the symbolic space Σ+
k may be thought of as the

set of all possible paths along edges of the graph, and the measure of a
cylinder Ci1···in is the probability that a randomly chosen itinerary on the
graph begins with i1, . . . , in.
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Figure 22. A Markov measure on Σ+
3 .

Now what happens if one of the transition probabilities is 0? If pij = 0,
then the probability of going from vertex i to vertex j is 0, and so we may
as well erase this edge from the graph. What does this do to the set of all
possible paths, which was in one-to-one correspondence with symbolic space
Σ+
k ?

Before answering this question, we introduce another definition from
measure theory.

b. The support of a measure. Fix a point x ∈ Rn, and consider
the point measure mx on Rn defined in Exercise 37. If E ⊂ Rn does not
contain x, then as far as the measure is concerned, the points in E may be
neglected without losing anything important, since mx(E) = 0. Thus from
the measure theoretic point of view, the measure space (Rn,mx) is the same
as the measure space ({x},mx), since the only difference between the two is
a set of zero measure.

In the same vein, given any measure m on Rn, there is a canonical way
to decompose Rn into two parts, one of which may be discarded, since it
has measure zero with respect to m, and the other of which carries all the
information about the measure. The latter set is called the support of m,
and is the smallest closed set of full measure. This definition goes through
not just for Rn, but for any topological space X equipped with a measure;
we write

(50) suppm = {x ∈ X | m(E) > 0 ∀E ∋ x, E open }.
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The measure m sits on the support suppm in the sense that an open set has
positive measure if it intersects the support non-trivially, and zero measure
otherwise.

Example 45. LetX be the unit interval [0, 1]. Ifm is Lebesgue measure,
then m((a, b)) = b − a > 0 for all a < b, so open intervals have positive
measure. Since open sets are countable unions of open intervals, we see that
all open sets have positive measure, hence suppm = [0, 1].

For the point measure mx, the above discussion may be summarised as
the statement that suppmx = {x}.

Example 46. Let X be the symbolic space Σ+
k . If m is the Bernoulli

measure given by a probability vector with positive entries, we see from (42)
that cylinders have positive measure; since any open set is a union of cylin-
ders, it follows that the support of m is the entire space Σ+

k .
Similarly, if m is a Markov measure for which all entries of both the

probability vector and the stochastic matrix are positive, then all cylinders
have positive measure by (49), and we again have suppm = Σ+

k .

Returning to our question from the previous section, we may ask what
suppm looks like if one or more of the entries pij are equal to 0. In this
case, we see that the measure of a cylinder Ci1···in is positive precisely when
all the entries pijij+1 are positive for j = 1, . . . , n − 1. In particular, if any
of the entries in the stochastic matrix vanish, then some cylinders have zero
measure; since cylinders are open, this means that the support of m is not
the whole space Σ+

k .
To describe suppm, we introduce a k×k matrix whose entries are either

0 or 1, which keeps track of which entries of P vanish; let A = (aij) be
defined by

aij =

{

0 pij = 0,

1 pij > 0.

A is called a transition matrix ; it records which transitions ij → ij+1 have
a non-zero probability of occurring. We say that a sequence ω = (i1, i2, . . . )
is admissible if aijij+1 = 1 for all j; that is, if we only follow edges in the
graph which carry a non-zero probability.

Note that a cylinder has positive measure precisely when it contains an
admissible sequence, and so we consider the set of admissible sequences,

(51) Σ+
A = {ω = (i1, i2, . . . ) ∈ Σ+

k | aijij+1 = 1 ∀j }.
If E ⊂ Σ+

k is open and intersects Σ+
A non-trivially, there exists a cylinder

Ci1···in ⊂ E ∩ Σ+
A, and we see that m(Ci1···in) > 0 since pijij+1 > 0 for

all j = 1, . . . , n − 1; it follows that m(E) ≥ m(Ci1···in) > 0, and thus
suppm = Σ+

A.
In Lecture 15(c), we saw how to use the coding map h to go from a

measure m on symbolic space Σ+
k to a measure µ = m ◦ h−1 on a Cantor

set C ⊂ [0, 1]. Let m be a Markov measure whose support is not the whole
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space; then some cylinders in Σ+
k have zero measure, and hence their images,

which are open sets in C, have zero measure as well.
In particular, we have suppµ $ C, where the points which are removed

from C are precisely those whose codings are not admissible; that is, at
each step of the construction we remove certain basic intervals which would
introduce an inadmissible coding. The result of this Markov construction is
another Cantor-like set, suppµ, which we would like to gain some informa-
tion about. For example, what is the Hausdorff dimension of the support of
µ? Because we have deleted basic intervals at each step of the construction,
we can no longer apply Moran’s theorem, and the question becomes much
more complicated. A version of Moran’s argument still goes through, but it
must be modified substantially, and becomes much more subtle in this case.

c. Markov measures and dynamics. A priori, the Markov construc-
tions described in the previous section seem rather artificial and contrived;
it may not be obvious just why such constructions would be important, or
where they would appear.

In fact, they are tremendously important in dynamics; as a very simple
example, consider a piecewise linear map of the interval [0, 1] of the sort
shown in Figure 23.

0

1f
(x

)

0 1
x

I1 I2

Figure 23. A map which is modelled by a subshift.

This map generalises the sort of map we saw in Figure 11; before, we
demanded that the image of each interval Ii be the entire interval [0, 1],
whereas now we demand only that f(Ii) be a subinterval which contains
every Ii it intersects. As before, we may consider the set of points whose
trajectories remain within the domain of definition of f ; this is a repelling
Cantor set, which can be modelled by subsets Σ+

A of the symbolic space Σ+
k ,

but not by the entire space. For the map shown in Figure 23, we see that
points in I2 can be mapped to either I1 or I2, but points in I1 can only be
mapped to I1. Thus the transition matrix is A = ( 1 0

1 1 ).
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It is obvious that if ω ∈ Σ+
A is an admissible sequence, then its image

σ(ω) under the shift will be admissible as well. Thus σ(Σ+
A) ⊂ Σ+

A, and

we say that Σ+
A is invariant under the action of σ. We may consider the

restriction of the shift σ to the domain Σ+
A, which is called a subshift of finite

type; for the sake of clarity, the shift σ : Σ+
k → Σ+

k is often referred to as the
full shift.

Subshifts of finite type are a very important class of models in dynamics,
whose applications stretch far beyond the simple interval maps we have
mentioned so far. Together with the Markov measures sitting on them, they
provide a powerful tool with which to study questions in dimension theory
and to examine the stochastic and chaotic properties of certain dynamical
systems.
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Lecture 17

a. Using measures to determine dimension. The measures we
have introduced so far are connected to dynamics by the fact that Bernoulli
and Markov measures on symbolic space are shift-invariant, and their pro-
jections to the Cantor set are invariant under the action of f . Now we
provide some justification for our claim that these measures can also tell us
something about the dimension of certain sets.

A finite measure is often called a mass distribution, since we may think
of it as describing how a specific amount of mass is distributed over a space.
If the measure is normalised so that µ(X) = 1, we often call µ a probability
measure, since in this case subsets of X may be thought of as events in a
probabilistic process.

The following theorem shows that existence of finite measures, or mass
distributions, with particular scaling properties has consequences for the
Hausdorff dimension of sets with positive measure.

Theorem 47 ((Uniform) Mass Distribution Principle). Suppose µ is a
finite measure on Rn, and that there exist α,K, δ > 0 such that for every
ball U = B(x, r) with radius r ≤ δ, we have

(52) µ(U) ≤ Krα.

Then if E ⊂ Rn is measurable and µ(E) > 0, we have dimH E ≥ α.

Proof. For any 0 < ε < δ and any cover U = {Ui} of E by balls of
diameter less than ε, we have

∑

i

(diamUi)
α ≥

∑

i

µ(Ui)

K
≥ µ (

⋃

i Ui)

K
≥ µ(E)

K
> 0,

and hence mH(Z,α) ≥ µ(E)/K > 0, so dimH E ≥ α. �

Theorem 47 gives a lower bound for the Hausdorff dimension, which is
typically the more difficult bound to obtain. Indeed, finding a measure µ
which satisfies the hypothesis of the theorem can be quite hard, and so we
will eventually see how to weaken the assumption on µ. First, though, we
consider the particular case of a Cantor-like construction in [0, 1] with ratio
coefficients λ1, . . . , λk > 0,

∑

i λi < 1, and describe a measure µ for which
the Mass Distribution Principle may be applied.

As we showed in the proof of Moran’s theorem, if V(r) denotes the
collection of basic intervals whose diameter is between λminr and r/λmin,
then each ball of radius r intersects at most M ′ elements of V(r), where M ′

is a constant independent of r. In particular, B(x, r) can be covered by at
most M ′ elements of V(r).

If we can show that (52) holds for basic intervals, then for each element
I of V(r) we will have µ(I) ≤ K(diam I)α ≤ K ′rα, where K ′ = K/λmin

α,
and hence B(x, r)α ≤M ′K ′rα. Thus it suffices to consider basic intervals.
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Now for a Bernoulli measure µ given by a probability vector (p1, . . . , pk),
we have µ(Ii1···in) = pi1 · · · pin , and (diam Ii1···in)α = λαi1 · · ·λαin

(
|Ii1 |α/λαi1

)
.

Thus in order to have µ(Ii1···in)/(diam Ii1···in)α bounded by a constant in-
dependent of (i1, . . . , in), we take pi = λαi , where α is the root of Moran’s
equation (23). This defines a Bernoulli measure µ which satisfies (52), and
so the Mass Distribution Principle gives the lower bound dimH C ≥ α, since
µ(C) = 1 > 0.

Of course in this case we already knew the answer, but this illustrates
the principle of using measures to obtain bounds on dimensional quantities
which might otherwise be difficult to gain information about. Certainly the
calculations in the proof of Theorem 47 are simpler than those involved
in computing the potential associated to a cover by basic intervals, and
showing that we can move between various levels of the construction without
changing the potential. Further, the present argument shows that any subset
of C which is given positive measure by the Bernoulli measure µ must have
Hausdorff dimension equal to α, which we could not have deduced directly
from Moran’s theorem.

However, Cantor-like sets are somewhat unique in admitting measures
satisfying the conditions of the Mass Distribution Principle. Another exam-
ple is Lebesgue measure on Rn, but further progress beyond these two rather
restrictive cases requires us to introduce a weaker condition on the measure,
which still gives us information about the dimension of certain sets.

b. Pointwise dimension. In the statement of Theorem 47, the con-
stants α,K, δ appearing in (52) were to be independent of both scale and
position; that is, they could not depend on either the centre x or the radius r
of the ball U = B(x, r). We now consider a slightly more general condition,
in which the constants are still independent of r, but may vary between
different positions in Rn, i.e., may depend on x.

To this end, we define the pointwise dimension of µ at x as the limit

(53) dµ(x) = lim
r→0

logµ(B(x, r))

log r
,

if the limit exists. Of course, the limit may not exist at every point x, and so
the pointwise dimension may not be defined for all x ∈ Rn. We emphasise
that the pointwise dimension is a property of the measure µ, rather than of
any particular set; this is in contrast to previous dimensional quantities we
have seen, which were all properties of sets.

The existence of the pointwise dimension at a point x leads to the fol-
lowing estimates: for every ε > 0, there exists δ > 0 such that for every
0 < r < δ,

dµ(x) − ε ≤ logµ(B(x, r))

log r
≤ dµ(x) + ε.

Since r < 1, the function t 7→ rt is decreasing in t, and so

rdµ(x)−ε ≥ µ(B(x, r)) ≥ rdµ(x)+ε,
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which gives us bounds reminiscent of (52). However, the scale δ for which
this estimate holds may vary from point to point, and dµ(x) itself may also
vary, and may not exist everywhere. Despite this, we will eventually see
that the pointwise dimension provides a useful tool for gaining information
about the dimension of a set by considering an appropriate measure.

Example 48. Consider a piecewise linear map f : I1 ∪ I2 → [0, 1] as in
Figure 8, where |I1| = |I2| = λ < 1/2. The repeller of f is a Cantor-like set
C modelled on Σ+

2 , and both ratio coefficients in the construction of C are
equal to λ.

Letm be a Bernoulli measure on Σ+
2 with probability vector (p, q), where

p, q > 0, p+ q = 1, and let µ be the corresponding Bernoulli measure on C.
Given x ∈ C, what is the pointwise dimension dµ(x)?

Say x = h(ω) = h(i1, i2, . . . ); the pointwise dimension is determined by
the measure of the balls B(x, r) centred at x, and for appropriate values
of r, these are just the basic intervals Ii1···in . We have |Ii1···in | = λn, and
so log r = n log λ (up to some constant difference which will vanish in the
limit). Furthermore, µ(Ii1···in) = pkqn−k, where k is the number of times
the symbol 1 appears in the string (i1, . . . , in).

In the simplest case, we have p = q = 1/2, and so µ(Ii1···in) = (1/2)n.
Thus the pointwise dimension is given by

(54) dµ(x) = lim
n→∞

log(µ(Ii1···in))

n log λ
=

log 2

− log λ
= dimH C.

Observe that in the example above, the Cantor set C is just the support
of the measure µ; this suggests some connection between the pointwise di-
mension of a measure and the Hausdorff dimension of its support. However,
the relationship is not always this simple. For most choices of p and q, the
pointwise dimension will not exist everywhere, and will not always equal
dimH C where it does exist. Indeed, consider the points x = h(1, 1, 1, . . . )
and y = h(2, 2, 2, . . . ) in C; an easy calculation shows that

dµ(x) =
log p

log λ
, dµ(y) =

log q

log λ
,

and the two are not equal except in the special case p = q = 1/2.
Thus the true relationship between the pointwise dimension of a measure

and the Hausdorff dimension of its support is somewhat more subtle, and
we will take this up in the next lecture.
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Lecture 18

a. The Non-uniform Mass Distribution Principle. Example 48
showed that the pointwise dimension of a measure can give us some infor-
mation about the Hausdorff dimension of a set. Of course, things are rarely
as simple as in that example, where the pointwise dimension exists at each
point, and is equal at every point to the Hausdorff dimension. In general,
the limit in (53) may not exist, and so we may consider instead the lower
and upper limits, which always exist; these are referred to as the lower and
upper pointwise dimensions of the measure µ at the point x, and denoted
by dµ(x) and dµ(x), respectively.

We have dµ(x) ≤ dµ(x) for any measure µ and any point x; the two
coincide if and only if the limit in (53) exists, in which case their common
value is the pointwise dimension.

The following result allows us to weaken the hypotheses of Theorem 47:

Theorem 49 (Non-uniform Mass Distribution Principle). Suppose µ is
a finite measure on Rn, that E ⊂ Rn has positive measure (µ(E) > 0), and
that there exists α > 0 such that

(55) dµ(x) ≥ α

for almost every x ∈ E. Then dimH E ≥ α.

Proof. Given ε > 0, we show that mH(E,α − ε) > 0, as follows. For
almost every point x ∈ E, we have

α ≤ dµ(x) = lim
r→0

logµ(B(x, r))

log r
,

and so there exists δ > 0 such that for all 0 < r < δ,

α− ε ≤ logµ(B(x, r))

log r
,

which leads to the inequality

(56) rα−ε ≥ µ(B(x, r)).

We would like to argue that by picking δ small enough, we can use (56)
to proceed exactly as in the proof of Theorem 47; however, since δ may
depend on x, we must be slightly more careful.

Let δn = 1/n, and write

En = {x ∈ E | (56) holds for all 0 < r < δn }.

Because (55) holds for almost every x ∈ C, we have µ
(
⋃

n≥1En

)

= 1, and

so there exists n such that µ(En) > 0.
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It suffices to show that mH(E,α− ε) ≥ mH(En, α− ε) > 0. Indeed, for
any open cover {B(xi, ri)} of En by balls of radius ri ≤ δn, we have

∑

i

diam(B(xi, ri))
α−ε = 2α−ε

∑

i

rα−εi

≥ 2α−ε
∑

i

µ(B(xi, ri))

≥ 2α−εµ

(
⋃

i

B(xi, ri)

)

≥ 2α−εµ(En).

It follows that mH(En, α − ε) ≥ 2α−εµ(En) > 0, and so dimH En ≥ α − ε.
By the monotonicity property of Hausdorff dimension, dimH E ≥ α−ε, and
since ε > 0 is arbitrary, we have dimH E ≥ α. �

b. Non-constant pointwise dimension. Let us return to the setting
of Example 48, a Cantor-like repeller C in the interval for a piecewise linear
map f as in Figure 8, where the two basic intervals I1 and I2 have equal
length λ. Consider the Bernoulli measure µ on C which is generated by
the probability vector (p, q), so that µ(I1) = p, µ(I2) = q. We want to
compute the pointwise dimension of µ at a point x ∈ C, and relate this
to the Hausdorff dimension of C, which as we already know from Moran’s
theorem, is dimH C = − log 2/ log λ.

To begin with, recall that we have a one-to-one correspondence between
elements of the Cantor set C and elements of the symbolic space Σ+

2 , and
so we consider the sequence (i1, i2, . . . ) = h−1(x) which gives the coding of
the point x.

In order to compute the ratio in (53), we may replace B(x, r) with Ii1···in ,
the basic interval containing x, and r with |Ii1···in | = λn, since the error
term between the two ratios vanishes in the limit. From the definition of a
Bernoulli measure, we have µ(Ii1···in) = pknqn−kn , where kn is the number
of times the symbol “1” appears in the sequence i1, . . . , in.

Proceeding näıvely and ignoring any questions regarding existence of
limits, we see that

(57)

dµ(x) = lim
n→∞

logµ(Ii1···in)

log |Ii1···in |

= lim
n→∞

log(pknqn−kn)

log λn

= lim
n→∞

kn log p+ (n− kn) log q

n log λ

=

(
limn→∞

kn

n

)
log p+

(
1 − limn→∞

kn

n

)
log q

log λ
.
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Thus everything hinges on the value (and existence) of the limit

(58) α(x) = lim
n→∞

kn(x)

n
.

The ratio kn/n is simply the proportion of ones in the first n entries of
(i1, i2, . . . ), and so the limit (if it exists) is the asymptotic frequency of
ones. But what is this value, and when does it exist?

Consider first the simple case p = q = 1/2. Then we may think of µ
as giving the probabilities of particular sequences of outcomes of a random
process, where at each step, we have an equal probability of choosing a 1 or
a 2 for the sequence, as if we were flipping a fair coin. Intuitively, we expect
such a process to yield an approximately equal number of ones and twos in
the long run, and so we expect to see the ratio kn/n converge to 1/2 as n
goes to infinity.

Of course, we can construct particular sequences for which this is not
the case; for x = h(1, 1, 1, . . . ), we have kn = n for all n, and so α(x) = 1.
Similarly, h(2, 2, 2, . . . ) gives a limiting value of 0, and in fact, given any
α0 ∈ [0, 1], it is not hard to construct an x ∈ C for which α(x) = α0; there
are also many points for which the limit does not exist. So we can only
expect the limit to be equal to 1/2 for certain “good” points x, which we
hope are in some way typical. But typical in what sense?

Observe that a point x with periodic coding (i1, i2, . . . , iN , i1, i2, . . . )
has an asymptotic frequency of ones which is equal to kN/N ; for most such
points, this is not equal to 1/2, and since such points are dense in C, our set
of “bad” points (those which are somehow atypical) is topologically quite
large.

The precise statement, which we do not prove here, is that α(x) = 1/2
almost everywhere, or for almost every x with respect to µ, meaning that
the set

E =

{

x ∈ C
∣
∣
∣α(x) 6= 1

2

}

has measure zero, µ(E) = 0. This is a very common condition in measure
theory, where many properties can be shown to hold almost everywhere, but
not necessarily at all points.

Now we can complete the calculation in (57) for the case p = q = 1/2 to
obtain

dµ(x) =
log 2

− log λ
= dimH C

for almost every x ∈ C. In and of itself, this is not very helpful; after all, we
already saw in (54) that this is true for every x ∈ C. However, that result
did not generalise to other values of p and q, while this one does; it can be
shown that for any Bernoulli measure on C with p, q ≥ 0, p+q = 1, we have
α(x) = limn→∞ kn(x)/n = p almost everywhere. In particular, for almost
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every x ∈ C, (57) gives

(59) dµ(x) =
p log p+ q log q

log λ
.

It follows from Theorem 49 that this quantity gives a lower bound on the
Hausdorff dimension dimH C, and indeed one can check that the right hand
side of (59) takes its maximum value when p = q = 1/2, and we have
dµ(x) = dimH C almost everywhere.

The numerator in (59) is related to a very general concept in dynamical
systems, for which we will borrow the notation and terminology without
getting into the specifics of the general definition.

Definition 50. Let µ be a Bernoulli measure on C with probability
vector (p, q). The entropy of the map f : C → C with respect to µ is

hµ(f) = −(p log p+ q log q).

Now suppose that the basic intervals I1, I2 in the definition of f have
different lengths λ1 6= λ2. Then the length of the basic interval Ii1···in
depends on kn(x), and so in the calculation of the pointwise dimension
dµ(x), the denominator in (57) must be replaced by

log |Ii1···in | = log(λkn
1 λn−kn

2 ) = kn log λ1 + (n− kn) log λ2.

Thus we have, for almost every x ∈ C,

dµ(x) =
p log p+ q log q

p log λ1 + q log λ2
,

which we rewrite as

(60) dµ(x) =
hµ(f)

λµ(f)
,

where λµ(f) = −(p log λ1 + q log λ2) is the Lyapunov exponent of f with
respect to µ.

Like the entropy, the Lyapunov exponent can be defined for a much
broader class of maps than the piecewise linear ones we have been consid-
ering. In particular, both hµ(f) and λµ(f) can be defined for non-linear
maps f such as the one in Figure 17, and any invariant measure µ. If C
is the maximal repelling Cantor set for f , then the ratio coefficients change
at each step in the construction of C, and so Moran’s theorem is of no use
to us in determining the Hausdorff dimension of C. However, one can show
that (60) holds for almost every x ∈ C, and so by Theorem 49, we have

(61) dimH C ≥ hµ(f)

λµ(f)
.

That is, the Hausdorff dimension of the Cantor set is bounded below by the
ratio of the entropy and the Lyapunov exponent for any invariant measure
µ. Since this ratio depends on the particular choice of measure, (61) is really
a whole family of lower bounds on dimH C, and it is natural to ask if one
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can find an invariant measure µ for which equality is achieved, and the ratio
between the entropy and the Lyapunov exponent gives exactly the Hausdorff
dimension.

It turns out that this is in fact possible, and that one can use the en-
tropy and the Lyapunov exponent to determine the Hausdorff dimension for
a much broader class of Cantor-like sets than can be dealt with by Moran’s
theorem. The description given here is only the barest sketch of the ap-
proach, and the full argument is rather involved; however, this provides a
powerful approach to computing Hausdorff dimension in the general case.
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Lecture 19

a. More about the Lyapunov exponent. We now take a closer look
at the Lyapunov exponent λµ(f). In particular, we examine the interpre-
tation of this quantity in terms of the dynamics of the map f , and give a
more general definition which applies to any map f on the real line.

Consider a continuously differentiable map f : E → R, where E ⊂ R is
the domain of definition of f , and let x, y ∈ E be two points which are close
together. We want to compare their trajectories, to see how the distance
between fn(x) and fn(y) varies with n.

Taking the Taylor expansion of f around x gives

f(y) = f(x) + f ′(x)(y − x) + o(y − x),

and so the distance between f(x) and f(y) is given by

d(f(x), f(y)) = |f(x) − f(y)| ≈ |f ′(x)| d(x, y),
where the error term is negligible with respect to d(x, y). Thus the distance
between the trajectories is multiplied by a factor of approximately |f ′(x)|
when we pass from x and y to their images under f .

Passing to the second iterates, we have

d(f2(x), f2(y)) = d(f(f(x)), f(f(y)))

≈ |f ′(f(x))| d(f(x), f(y))

≈ |f ′(f(x))f ′(x)| d(x, y),
and in general, after n iterations the estimate is

(62) d(fn(x), fn(y)) ≈
(
n−1∏

i=0

|f ′(f i(x))|
)

d(x, y).

The error term in (62) is of order o(d(fn−1(x), fn−1(y))), and so if the
trajectories become far enough apart, the error term becomes large and the
estimate is no longer valid. However, the closer together we choose x and y
to be, the longer it takes for this to happen, and so we can make the estimate
valid for as long as we like by choosing x and y close enough together.

We are interested, then, in the behaviour of dn(x) =
∏n−1
i=0 |f ′(f i(x))|,

which gives the amount of expansion in a neighbourhood of x after n itera-
tions. In the case when f is piecewise linear as in Figure 11, the derivative
f ′ takes two values:

(63) f ′(x) =

{

λ−1
1 x ∈ I1,

λ−1
2 x ∈ I2.

Thus the rate of growth of dn(x) depends on whether the iterates f i(x) are
in I1 or in I2. We would like to have some information on this rate of growth
by finding some real number λ for which the product asymptotically behaves
like eλn. This is made precise by the following definition.
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Definition 51. The Lyapunov exponent of the map f at the point x is

(64) λ(x) = lim
n→∞

1

n
log

(
n−1∏

i=0

|f ′(f i(x))|
)

,

if the limit exists.

Thus the Lyapunov exponent tells us how quickly the distance between
two nearby points grows under repeated iterations of f ; it may be thought
of as the rate of expansion of the map.

Proposition 52. Let f : I1 ∪ I2 → [0, 1] be piecewise linear, as in Fig-
ure 11, with |I1| = λ1 and |I2| = λ2, and let µ be a Bernoulli measure on C
with probability vector (p, q). Then the Lyapunov exponent exists µ-almost
everywhere, and λ(x) = λµ(f) = −(p log λ1 + q log λ2).

Proof. The basic interval Ii1···in consists of precisely those points x for
which f j−1(x) ∈ Iij for each j = 1, . . . , n. Thus for x ∈ Ii1···in ,

(65) dn(x) =
n−1∏

i=0

|f ′(f i(x))| =
n∏

j=1

λ−1
ij

= λ−kn
1 λ

−(n−kn)
2 ,

where kn is the number of times the symbol “1” appears in i1, i2, . . . , in.
Recalling that kn(x)/n → p for µ-almost every point x, we may compute
the Lyapunov exponent λ(x) for such points:

λ(x) = lim
n→∞

1

n
log dn(x)

= lim
n→∞

1

n
log
(

λ
−kn(x)
1 λ

−(n−kn(x))
2

)

= lim
n→∞

−
(
kn(x)

n
log λ1 +

n− kn(x)

n
log λ2

)

= −(p log λ1 + (1 − p) log λ2) = λµ(f). �

b. Fractals within fractals. The definition of the Lyapunov expo-
nent in the previous section is more general than the definition given earlier
after (60); it extends that definition in the sense made precise in Proposi-
tion 52.

In fact, there are many important examples of maps f and invariant
measures µ for which the first part of Proposition 52 holds, and the Lyapunov
exponent λ(x) exists and is equal to a constant almost everywhere. Included
in this class are non-linear uniformly expanding maps f : I1 ∪ I2 → [0, 1] of
the sort shown in Figure 17, where f is continuously differentiable on I1 and
I2, is uniformly expanding (|f ′(x)| ≥ a > 1 for some a which is independent
of x), and f(I1) = f(I2) = [0, 1], and a broad class of invariant measures for
such maps.

When λ(x) is constant µ-almost everywhere, we denote the constant
value by λµ(f). The definition of hµ(f) can also be extended to measures



88 CONTENTS

which are not Bernoulli, and then it can be shown in many cases that the
pointwise dimension exists and is given by (60) almost everywhere.

In such cases, the Non-uniform Mass Distribution Principle (Theorem 49)
then gives the lower bound dimH C ≥ dµ; in fact, this is a whole family of
lower bounds, one for each measure µ. It is natural to ask if we can find
an “optimal” measure µ which gives the greatest of all such bounds; that
is, does there exists a measure µ such that the pointwise dimension dµ is
maximal?

φ
(x

)

0 1
x

(p0, φ(p0)) = (λα1 , α)

Figure 24. Pointwise dimension of the Bernoulli measures µp.

Let us consider this question in the particular setting of a piecewise
linear map f on two intervals, with the family of Bernoulli measures. Write
µp for the Bernoulli measure with probability vector (p, 1− p), and define a
function φ : [0, 1] → R by

φ(p) = dµp =
p log p+ (1 − p) log(1 − p)

p log λ1 + (1 − p) log λ2
;

the graph of a typical φ is shown in Figure 24. It follows from (60) and (61)
that dimH C ≥ φ(p) for all p ∈ [0, 1]; in order to find the best bound,
one solves for the critical point p0 at which φ′(p0) = 0 and the function φ
achieves its maximum.

Exercise 13. Show that the function φ achieves its maximum at the
point p0 = λα1 , where α is the unique solution of Moran’s equation λα1 +λα2 =
1, and that φ(p0) = α.

The result of Exercise 13 shows that the bound dimH C ≥ φ(p0) is
optimal, since we have dimH C = α = φ(p0) = supp φ(p). The probability
vector associated to the Bernoulli measure µp0 is (p0, 1−p0) = (λα1 , λ

α
2 ), and

µp0 itself turns out to be the Hausdorff measure mH(·, α).
Let us step back a moment to take stock of all this, and survey the picture

we have just painted. We begin with a Cantor set C, whose structure we
hope to understand by examining various invariant measures for the map
f . The Lebesgue measure of C is 0, so the measures which we use are very
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different from Lebesgue measure; to use the language of measure theory,
they are singular. To each p ∈ [0, 1] we can associate a Bernoulli measure
µp; upon throwing away a null set (a set of measure zero with respect to
µp), we are left with a set Cp ⊂ C of full measure, that is, µp(Cp) = 1, on
which the pointwise dimension dµp(x) is constant.

The fact that pointwise dimension exists and is constant everywhere on
Cp means that the measure of a small ball whose centre is in Cp scales as

(66) µp(B(x, r)) ≈ rdµp = rφ(p).

This exhibits a sort of measure-theoretic self-similarity on Cp, which is an
analogue of the geometric self-similarity possessed by certain very regular
fractals such as the middle-thirds Cantor set and the Sierpiński gasket, where
the geometric structure appears the same at every scale. Such geometric
regularity is not present in the Cantor-like sets generated by non-linear
expanding maps, but (66) displays the measure-theoretic regularity of µp
across all scales.

One may also recall the relationship between existence of the pointwise
dimension at x and the convergence of the ratio kn(x)/n, which measures
the relative amount of time the orbit of x spends in I1. While this ratio
approaches many different limits depending on x (and sometimes fails to
converge at all), the limit exists and is equal to p for every x ∈ Cp. Thus Cp
also has a very regular structure in terms of how the trajectories of points
in Cp apportion their time between I1 and I2.

These are some of the ways in which the set Cp is a better fractal set
than C itself, since all the points in Cp have more or less the same “average”
behaviour. For a given Bernoulli measure µp, Cp is the set of all points which
are “typical” with respect to µp, and so Cp depends on the choice of p. In
fact, if λ1 6= λ2, then one can show that these sets are pairwise disjoint;
Cp ∩ Cp′ = ∅ for p 6= p′. Thus {Cp | 0 ≤ p ≤ 1} gives a whole family
of “fractals within fractals”, illustrating the deeply complicated multifractal
structure of the Cantor set C. If we let C ′ be the set containing all points of
C which do not lie in any of the sets Cp, then we can write the multifractal
decomposition of C:

C =




⋃

p∈[0,1]

Cp



 ∪ C ′.

Furthermore, each Cp is f -invariant, and supports the measure µp in the
sense that µp(Cp) = 1. This is the beginning of what is known as multifractal
analysis.

c. Hausdorff dimension for Markov constructions. Returning to
the case where f is linear on each of I1 and I2, suppose further that λ1 =
λ2 = λ, and let C be the repelling Cantor set for f .

So far we have only considered Bernoulli measures on C, but there are
other invariant measures as well. In Lecture 16 we described the class of
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Markov measures on Σ+
2 , which are determined by a probability vector (p, q)

and a stochastic matrix P = ( p11 p12p21 p22 ); the coding map h : Σ+
2 → C lets us

turn each of these measures into a measure µ on C.
Now suppose we have a Markov measure for which p11 = 0. Because

the entries in each row of P must sum to 1, we have p12 = 1, and so the
stochastic matrix has the form P =

(
0 1
a 1−a

)
, where a = p21 ∈ [0, 1]. If

we interpret the entries of P as giving the probability of a transition from
one state to another, then the fact that p11 vanishes means that every time
we are in state 1, we must immediately return to state 2 at the next time
step, with zero probability of remaining in state 1. The associated transition
matrix is A = ( 0 1

1 1 ), and we recall from Lecture 16 that the support of m in
Σ+

2 is the set Σ+
A of admissible sequences, defined in (51).

I1 I2

I11 I12 I21 I22

I121 I122 I211 I212 I221 I222

Figure 25. A Markov construction.

The support of the Markov measure µ on C is the image h(Σ+
A) of the set

of admissible sequences under the coding map, whose construction is shown
in Figure 25; the only difference between this and the usual construction of
a Cantor-like set is that now we erase any basic interval whose associated
sequence is not admissible. So at the second step, I11 is erased, since every
x ∈ I11 has a coding which begins with 1, 1, . . . , and hence is not admissible,
so x /∈ suppµ. Similarly, I211 must be erased at the third step, and I1211
and I2211 are taken away at the fourth.

The result of this Markov construction is a Cantor-like set CM ⊂ C.
As always, we would like to characterise CM by determining its Hausdorff
dimension; the way to do this is to use the Non-uniform Mass Distribution
Principle, Theorem 49.

This requires us to exhibit an invariant measure (or measures) on CM .
We constructed CM as the support of one particular such measure, the
Markov measure with probability vector (p, 1 − p) and stochastic matrix
(

0 1
a 1−a

)
. In fact, since the construction of CM did not depend on the value

of a or p, it is the support of any such Markov measure, and so we have a
two-parameter family of measures µp,a for which µp,a(CM ) = 1.

It can be shown that for such Markov measures, the pointwise dimension
dµp,a exists almost everywhere and is given by (60) as the ratio of the entropy
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to the Lyapunov exponent, where the entropy of a Markov measure is

hµ(f) = −p(p11 log p11 + p12 log p12) − q(p21 log p21 + p22 log p22).

For the measure µp,a, the first half of this expression vanishes, and we have

hµp,a(f) = −(1 − p)(a log a+ (1 − a) log(1 − a)).

Observing that λ(x) = − log λ since f ′(x) = λ−1 for all x ∈ CM , we see that
the pointwise dimension is equal µp,a-almost everywhere to

φ(p, a) =
(1 − p)(a log a+ (1 − a) log(1 − a))

log λ
.

As before, Theorem 49 implies that dimH CM ≥ φ(p, a) for all p, a ∈ [0, 1],
and so we want to maximise φ in order to find the best bound.

Finding the critical points by setting ∂φ
∂p = ∂φ

∂a = 0, one can show that φ

achieves its maximum value when p = 0, a = 1/2, and we obtain

dimH CM ≥ φ

(

0,
1

2

)

=
log 2

log λ
.

Observing that CM ⊂ C and recalling Moran’s theorem, we also see that

dimH CM ≤ dimH C =
log 2

log λ
,

and so we actually have equality, dimH CM = log 2/ log λ. Thus despite the
fact that we discarded what seemed like relatively large chunks of C in the
construction of CM , we did not alter the Hausdorff dimension.
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Lecture 20

a. FitzHugh-Nagumo and you. And now, as they say, for something
completely different. Setting aside our discussion of Cantor-like sets for the
moment, we turn our attention to a model from biology, which attempts to
describe the propagation of an impulse through a neuron. The (functional)
structure of a neuron is shown in Figure 26; the neuron receives signals
along its dendrites, of which it may have up to several hundred, and after
processing these signals in the soma, sends a single output along its axon.

SomaDendrites
Axon

Figure 26. A schematic diagram of a neuron.

An axon can be thought of as a cable which transmits an electrical signal
via the flow of ions (usually sodium and potassium). We model the axon as
lying on the x-axis, and write u(x, t) for the electric potential at point x and
time t; the goal is to obtain an equation which will describe how u changes
as time passes.

A näıve idea of using the fundamental laws of physics which govern the
interaction and motion of single particles (i.e. molecules) is readily seen to
be a rather preposterous line of attack. This is due to the sheer scale of the
system, which has many levels of structure lying between the macroscopic
description we are interested in and the microscopic level of elementary
particles at which the fundamental laws apply. With billions upon billions
of ions moving in each axon, it is foolhardy to try to track each individual
particle.

Therefore, we should resort to a phenomenological approach, which uses
a great deal of knowledge about the system and relates various empirical
observations to each other in a way which is consistent with the fundamental
theory, but is not directly derived from it.

In the attempt to describe the propagation of an impulse along an axon,
one of the simplest models which still captures some of the essential qualita-
tive features of the process is the FitzHugh-Nagumo model, which was first
suggested by Richard FitzHugh in 1961, and was investigated by means of
electric circuits the following year by Jin-Ichi Nagumo. It is a simplified
version of the Hodgkin-Huxley model, which is designed to describe in a de-
tailed manner the activation and deactivation dynamics of a spiking neuron.



LECTURE 20 93

We first give the equations, then explain what they mean.

∂u1

∂t
= −au1(u1 − θ)(u1 − 1) − bu2 + κ1

∂2u1

∂x2
,(67)

∂u2

∂t
= cu1 − du2 + κ2

∂2u2

∂x2
.(68)

Here u1(x, t) is the potential u(x, t), and u2 is a quantity related to the
derivative ∂u1/∂t. Experimental observation is required to determine the
parameters a, b, c, d, κ1, κ2.

Where do these equations come from? The behaviour of a neuron is
typical for a type of circuit known as a spike generator ; when an external
stimulus reaches the neuron (via one or several of its dendrites) and exceeds
a certain threshold, the neuron reacts by generating and transmitting an
output signal (via its axon) before it relaxes back to its rest state. The
equations that govern such a process are known in physics as the Bonhoeffer–
van der Pol model :

v̇ = v − v3 − w + I,(69)

ẇ = av − b− cw.(70)

This system is based on the classical van der Pol oscillator, named after the
Dutch physicist Balthasar van der Pol, which describes a non-conservative
oscillator with non-linear damping:

(71) v̈ + µ(v2 − 1)v̇ + v = 0.

Observe that (69) and (70) are together equivalent to (71) in the particular
case b = c = 0.

To obtain the equations (67), (68) for the FitzHugh-Nagumo model, one

takes (69), (70) and adds the terms κi
∂2ui

∂x2 , which account for the diffusion of
ions during propagation of the impulse. Since the effect of diffusion is very
small, the numbers κ1 and κ2 are of higher order than the other parameters.

Equations (67) and (68) are still too complicated to be solved analyt-
ically; however, their study can be carried out numerically, with the help
of computer simulations. Once this is done, we are left with a whole slew
of numerical predictions which follow from the model, and which must be
compared somehow to observations of real, honest-to-goodness biological
neurons. It is in this process that fractal geometry will once again have a
role to play.
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Lecture 21

a. Numerical investigations. In the previous lecture, we introduced
the FitzHugh–Nagumo equations (67)–(68) for modelling the propagation
of an impulse along an axon. The terms in these equations can be split into
two groups; the main terms, which are polynomial expressions in u1 and u2,
and the diffusion terms, which depend on the second derivates of u1 and u2

with respect to x. The latter terms are small relative to the others, and so
as a first step to understanding the behaviour of the model, we drop the
diffusion terms and deal with the simplified equations

∂u1

∂t
= −au1(u1 − θ)(u1 − 1) − bu2,(72)

∂u2

∂t
= cu1 − du2.(73)

Given initial conditions (u0
1, u

0
2), it follows from the existence and unique-

ness theorem for ODEs that there exists a unique solution of (72)–(73) be-
ginning at (u0

1, u
0
2). However, these equations are analytically intractable,

and we cannot generally write down that solution in closed form. Thus we
must resort to a numerical analysis, and rely on a computer to compute the
trajectory of u1 and u2.

But what will the computer do? It will approximate the solution by dis-
cretising the problem: fixing some small value of h > 0, the time derivative
∂ui/∂t is approximately equal to

ui(t+ h) − ui(t)

h
,

and so (72)–(73) are approximated by the equations

u1(t+ h) = u1(t) − ahu1(t)(u1(t) − θ)(u1(t) − 1) − bhu2(t),

u2(t+ h) = u2(t)(1 − dh) + chu1(t).

This gives an iterative procedure to find u1 and u2; writing uni = ui(nh), we
have

un+1
1 = un1 −Aun1 (un1 − θ)(un1 − 1) − αun2 ,(74)

un+1
2 = βun1 + γun2 ,(75)

where α = bh, β = ch, γ = 1 − dh, and A = ah. For our purposes we
shall assume that α and β are small, θ is near 1/2, and γ is near 1. A is
referred to as the leading parameter, and a question of interest to us is how
the behaviour of the trajectories of (74)–(75) changes as A varies.

First, though, we observe that the result of iterating the discrete sys-
tem (74)–(75) is a sequence of points (un1 , u

n
2 ) ∈ R2; the idea is that these

points lie near the curve (u1(t), u2(t)) which defines the solution of (72)–
(73), but there will of course be some small error term. For many of the
parameter values in which we are interested, this error term increases rel-
atively quickly, so that the asymptotic behaviour of solutions of the two
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systems may be quite different. In particular, the behaviour of the discrete
system (which the computer calculates) is not necessarily a reliable guide to
the behaviour of the continuous system.

One response to this difficulty is to use a more sophisticated numeri-
cal method—the approach described is known as Euler’s method, and more
advanced methods are possible, which yield better approximations. How-
ever, these are still approximations, and over time, some accumulation of
the error term is unavoidable. Thus it is not clear just how one is to ex-
amine the asymptotic behaviour of even the simplified FitzHugh–Nagumo
model (72)–(73).

At this point we recall that what we are really interested in studying
is the physical phenomenon itself; thus the important question is not how
well the discrete model approximates the continuous model, but how well it
approximates the physical propagation of an impulse through a neuron. It
is possible to add the discrete analogue of the diffusion terms κi∂

2ui/∂x
2 to

the discrete model (74)–(75), and then compare the trajectories of the full
discrete system to the observed data. If this turns out to approximate the
real system as well as or better than the continuous model, then we may
simply consider the discrete model, rather than the continuous one.

The biological literature is divided over whether or not this is the case,
with both the discrete and the continuous FitzHugh–Nagumo models having
their advocates. For the time being, we will leave questions of biological
applicability in the background, and focus our attention on the mathematical
characteristics of the simplified discrete model (74)–(75), which occurs in
other situations as well—various problems in physics, chemistry, etc., lead
to equations of this form, and so it is worth understanding the general
behaviour of this system.

b. Studying the discrete model. The sequence of points (un1 , u
n
2 )

produced by the simplified discrete model (72)– (73) is exactly the trajectory
of the point (u0

1, u
0
2) under the action of the map f : R2 → R2 given by

f(u1, u2) = (f1(u1, u2), f2(u1, u2), where

(76)
f1(u1, u2) = u1 −Au1(u1 − θ)(u1 − 1) − αu2,

f2(u1, u2) = βu1 + γu2.

We examine the dynamics of f for different values of A, with the parameters
α, β, γ, θ fixed; thus we are actually studying a family of maps, one for each
value of A.

The first step in our analysis of the map (76) is to find the fixed points of
f by solving the equation f(u1, u2) = (u1, u2), which leads to the following
equations for the two coordinates:

u1 = u1 −Au1(u1 − θ)(u1 − 1) − αu2,

u2 = βu1 + γu2.
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From the second of these, we obtain

(77) u2 =
βu1

1 − γ
,

and then the first becomes

Au1(u1 − θ)(u1 − 1) +
αβ

1 − γ
u1 = 0.

Thus we have a fixed point at the origin, where u1 = u2 = 0, and any other
fixed point must satisfy

A(u1 − θ)(u1 − 1) +
αβ

1 − γ
= 0.

Solving this quadratic equation yields

(78) u1 =
1

2

(

θ + 1 ±
√

(θ − 1)2 − 4αβ

A(1 − γ)

)

.

The discriminant is non-negative if and only if

A ≥ A0 =
4αβ

(1 − γ)(1 − θ)2
,

and so we see that for 0 < A < A0, the origin is the only fixed point of f .
For A = A0, there is exactly one more fixed point, and for A > A0, there
are two more, given by (78) and (77); we will denote these by p1 and p2.

Thus A0 marks the boundary between two qualitatively different sorts
of behaviour. Imagine a tuning knob which controls the parameter A; if we
begin with the knob turned so that 0 < A < A0, then the system has only
one fixed point, and this general structure persists for a little while as we
turn the knob and increase A. However, when we turn the knob far enough
that A reaches A0, the system undergoes a bifurcation, and two new fixed
points appear.

In the next lecture, we will investigate the stability of the fixed points
0, p1, and p2, which tells us how orbits near these fixed points behave.
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Lecture 22

a. Stability of fixed points. In the previous lecture, we began ex-
amining the map f : R2 → R2 given by (76), paying particular attention to
how the behaviour of the dynamics of f changes as the parameter A varies.
We found a parameter value A0 such that for 0 < A < A0, the system has
only one fixed point, which is at the origin, while for A > A0, there are two
additional fixed points p1 and p2, which are given by (78) and (77).

The next step in the analysis of f is to determine the stability of these
fixed points; we want to know whether they attract or repel nearby trajec-
tories, and how that behaviour depends on the value of the parameter A.
The tool which we use for this purpose is the Jacobian derivative

(79) Df =

(
∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

)

=

(
1 −Aθ + 2A(1 + θ)u1 − 3Au2

1 −α
β γ

)

,

which describes the behaviour of f in a neighbourhood of a fixed point.
Specifically, we recall the following result from calculus:

Proposition 53. Let f : R2 → R2 be continuously differentiable in a
neighbourhood of p0. Then we have

(80) f(p) = f(p0) +Df(p0)(p− p0) + o(p− p0).

Heuristically, this says that in a small neighbourhood of p0, f behaves
like a linear map, with an error term that is small relative to p−p0. In partic-
ular, if p0 is a fixed point, then its stability is determined by the eigenvalues
of Df(p0); this is made precise by the Hartman–Grobman theorem, which
states that as long as none of the eigenvalues lie on the unit circle (that
is, |λ| 6= 1 for all eigenvalues λ of Df(p0)), then the restriction of f to a
neighbourhood of p0 is topologically conjugate to the linear map Df(p0).

Rather than proving the full Hartman–Grobman theorem here, we con-
tent ourselves with a particular case.

Proposition 54. Suppose that f : R2 → R2 has a fixed point at p0, and
that α < 1 is such that |λ| < α for all eigenvalues λ of Df(p0). Then
there exists ε > 0 such that for all p ∈ R2 with ‖p − p0‖ < ε, we have
limk→∞ fk(p) = p0.

Proof. Using (80) and the fact that p0 is fixed, we have

f(p) − p0 = Df(p0)(p− p0) + r(p),

where r(p) is the error term, which goes to zero more quickly than p − p0

does. Because all the eigenvalues have absolute value less than α, there
exists a norm ‖ · ‖ on R2 such that

‖Df(p0)‖ = sup
x∈R

n

‖x‖=1

‖Df(p0)x‖ < α,
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and since

lim
p→p0

‖r(p)‖
‖p− p0‖

= 0,

we can find ε > 0 such that ‖Df(p0)‖ + ‖r(p)‖/‖p− p0‖ < α for all p with
‖p− p0‖ < ε. In particular, we have

‖f(p) − p0‖ ≤ ‖Df(p0)(p− p0)‖ + ‖r(p)‖

≤
(

‖Df(p0)‖ +
‖r(p)‖
‖p− p0‖

)

(‖p− p0‖)

< α‖p− p0‖,
whence ‖fk(p) − p0‖ < αk‖p− p0‖ by induction. �

The case where one eigenvalue lies inside the unit circle and one lies
outside is harder to deal with, because one must first prove the existence of
stable and unstable manifolds. These are curves γs(t) and γu(t) through p0

such that:

(1) γs and γu are f -invariant.
(2) The tangent vector to γs at p0 points in the direction of the eigen-

vector corresponding to the eigenvalue inside the unit circle, and
similarly, the tangent to γu corresponds to the other eigenvector.

(3) Trajectories on γs approach p0, while trajectories on γu are repelled
from p0.

(a) (b) (c)

Figure 27. Trajectories near an attracting fixed point.

We briefly recall the possible qualitative behaviours for a linear map
A : R2 → R2; let λ and µ be the eigenvalues of A, with |λ| ≤ |µ|. Assuming
neither λ or µ lies on the unit circle, there are three possibilities for the fixed
point 0; when A = Df(p0) for a fixed point p0, these corresponds to three
different possibilities for the stability of p0.

(1) |λ| ≤ |µ| < 1: All trajectories of A converge to 0, and so p0 is an
attracting fixed point f , also called a node. The manner in which
trajectories converge depends on λ and µ. If λ and µ are com-
plex, then trajectories move along a logarithmic spiral, as shown
in Figure 27(a); if λ and µ are real, then trajectories move along
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the curves shown in Figure 27(b) (if Df(p0) is diagonalisable) or
in Figure 27(c) (if Df(p0) is similar to

(
λ 1
0 λ

)
).

(2) |λ| < 1 < |µ|: p0 is a hyperbolic fixed point, also called a sad-
dle, shown in Figure 28. From one direction (the stable direction,
horizontal in the figure), which corresponds to the eigenline for λ,
trajectories approach p0 as n→ +∞, while from another direction
(the unstable direction, vertical in the figure), corresponding to the
eigenline for µ, the backwards trajectories approach p0 as n→ −∞.
All other trajectories follow hyperbola-like paths, at first moving
closer to p0, and then moving away.

(3) 1 < |λ| ≤ |µ|: All trajectories of A move away from 0, and so p0 is
a repelling fixed point. Trajectories move along one of the curves
in Figure 27, but in the opposite direction.

Figure 28. Trajectories near a hyperbolic fixed point.

This approach allows us to classify the fixed points of the FitzHugh–
Nagumo map f for various values of the parameter A. However, finding the
eigenvalues of the matrix Df given by (79) involves a rather complicated
computation, which we would prefer to avoid.

Recall that the eigenvalues of a matrix are the roots of its characteristic
polynomial, and so they depend continuously on the coefficients of that
polynomial. Those coefficients in turn depend continuously on the entries of
the matrix (being sums of products of those entries), and so λ and µ depend
continuously on the entries of Df .

In particular, given ε > 0, there exists δ such that for α, β < δ, the
eigenvalues of Df are within ε of the eigenvalues of the diagonal matrix

(81) T = T (u1, u2) =

(
1 −Aθ + 2A(1 + θ)u1 − 3Au2

1 0
0 γ

)

.

Since T is diagonal, we can read off its eigenvalues directly. One eigenvalue
is γ, and for the parameters we consider, γ < 1; thus there is always at
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least one stable (contracting) direction. The other eigenvalue depends on
parameters and the fixed point, and so we consider these points separately.

For all values of A, the map f has a fixed point at the origin, and so
the second eigenvalue of T is 1 − Aθ. We have |1 − Aθ| < 1 if and only if
0 < A < 2/θ, and since λ and µ are close to 1 − Aθ and γ, there exists A1

near 2/θ such that the behaviour of f near the origin is as follows:

(1) For 0 < A < A1, both eigenvalues of Df(0, 0) lie inside the unit
circle, hence the origin is an attracting fixed point.

(2) For A > A1, one eigenvalue of Df(0, 0) lies inside the unit circle
(near γ), and the other lies outside the unit circle (near 1 − Aθ),
and so the origin is a hyperbolic fixed point for f .

One can show that A1 > A0, and hence by the time A reaches A1, there
are two more fixed points to keep track of, p1 and p2.

To determine the behaviour of f near the fixed points p1 and p2, we first
need to determine their location. Notice that the fixed points of f all lie
on the line with equation (77); indeed, this line consists of precisely those
points (u1, u2) for which f2(u1, u2) = u2. Similarly, the fixed points all lie
on the cubic polynomial with equation

u2 = −A
α
u1(u1 − θ)(u1 − 1);

this curve contains precisely those points for which f1(u1, u2) = u1. Thus
the fixed points of f are the points where this curve intersects the line (77),
as shown in Figure 29.

u2

0 1
u1

θ

Figure 29. Finding the fixed points of f .

Because β is small, the slope of this line is nearly horizontal, and so these
points of intersection are very near the points where the cubic intersects the
x-axis, which occurs at u1 = 0, u1 = θ, and u1 = 1. Thus p1 and p2 are
approximately (θ, 0) and (1, 0), respectively; we could also have seen this by
looking at the form (78) takes when α and β vanish.

Now we can use the approximation (81) for Df to estimate the eigen-
values of Df(p1) and Df(p2). At (u1, u2) = (θ, 0), the matrix T in (81) has
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λ1 = γ as one eigenvalue (as always), and the other eigenvalue is

λ2 = 1 −Aθ + 2A(1 + θ)θ − 3Aθ2 = 1 +Aθ −Aθ2.

Because 0 < θ < 1, we have λ2 = 1 + Aθ(1 − θ) > 1, and since λ1 = γ < 1,
we see that p1 is a hyperbolic fixed point for every value of the parameter
A, with one stable and one unstable direction.

The situation is different at p2, where we have the estimate

λ2 = 1 −Aθ + 2A(1 + θ) − 3A = 1 +Aθ −A,

and so |λ2| < 1 if and only if 0 < A < 2/(1 − θ). In particular, there is a
critical value A′

1 ≈ 2/(1 − θ) such that for A0 < A < A′
1, the fixed point p2

is attracting, while for A > A′
1, it is a saddle.

0
p1 p2

Figure 30. Orbits of f for A0 < A < min{A1, A
′
1}.

b. Things that don’t stand still, but do at least come back. The
ultimate goal of all the analysis in which we are presently embroiled is to
understand the dynamics of f by classifying the possible trajectories, and to
describe how the dynamics changes as A varies. By knowing the fixed points
of f and their stability, we gain information about the local behaviour of
the system; that is, how trajectories behave near the fixed points.

In general, it may be rather difficult to use this information to piece to-
gether a global picture, which describes how trajectories behave everywhere.
For the time being, we omit the details of this particular jigsaw puzzle, and
simply assert that for the map f in the parameter ranges we consider, there
are two sorts of trajectories: unbounded trajectories, which diverge to ∞,
and bounded trajectories, which converge to a fixed point (or possibly, as
we will soon see, to a periodic orbit).

Thus for parameter values A0 < A < min{A1, A
′
1}, we have three fixed

points; p1 is a saddle, while 0 and p2 are stable. The bounded trajectories of
f are as shown in Figure 30, and are of three sorts. There is a curve through
p1, called the stable manifold (or stable separatrix )of p1, which comprises all
points in R2 whose trajectory goes to p1 as n→ ∞. If a bounded trajectory
{fn(x)} begins to the left of this curve, then fn(x) → 0; if x lies to the right
of the curve, then fn(x) → p2.
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Note that whether A1 < A′
1 or A′

1 < A1 dependes on the values of the
parameters θ, α, β, and γ; for the sake of concreteness, we will assume that
A1 < A′

1, so that 0 changes behaviour before p2 does.
In fact, A1 is not the first time that the qualitative behaviour of tra-

jectories near 0 changes. For some value A = Ã1 < A1, the eigenvalue
λ2 ≈ 1 − Aθ is equal to 0. This eigenvalue governs the behaviour of points
which lie just to the left or right of 0; when it is positive, for A < Ã1, points
to the left remain on the left, and points to the right remain on the right.
For A > Ã1, on the other hand, we have λ2 < 0, and so points lying just to
the left of 0 are mapped to points lying just to the right, and vice versa; in
some sense, the orientation of the fixed point reverses at Ã1.

Now as A approaches A1 from below, the eigenvalue λ2 approaches −1
from above. As long as the eigenvalue is greater than −1, the image f(x) is
closer to 0 than x itself is, and so fn(x) → 0; however, the rate of convergence
becomes slower and slower as λ2 approaches −1. Finally, when λ2 < −1,
nearby points (in the horizontal direction) are mapped further away by f ,
and the fixed point 0 is now a saddle, with one stable and one unstable
direction.

This change in behaviour means that the current picture is incomplete.
Some trajectories leave 0 in a more or less horizontal direction; where do
they go? They cannot immediately go towards the next fixed point, p1, since
it is also a saddle which is repelling in the horizontal direction.

What is missing? We have found all the fixed points, which represent
the simplest possible orbits. The next simplest type of orbit is a periodic
orbit, for which the trajectory returns to the initial point after some finite
number of iterations.

In the present case, such an orbit appears around the fixed point 0 when
the stability changes at A1; for A > A1, there exist two points q1 and q2
(which depend on A) such that f(q1) = q2 and f(q2) = q1. This orbit is
the missing piece of the puzzle; trajectories which are repelled from 0 are
attracted to the nearby periodic orbit of period 2.

This behaviour is shown in Figure ??, which for simplicity of represen-
tation actually shows the action of f2, the second iterate of f . Both q1 and
q2 are mapped to themselves by f2, which is a manifestation of the general
fact that periodic points of f with period n correspond to fixed points of
fn. The stability of the periodic orbit for f is given by the stability of the
fixed point for fn, which in this case is determined by the eigenvalues of
Df2(qi). One may easily see that it does not matter whether we compute
the Jacobian at q1 or at q2, since by the chain rule,

Df2(q1) = Df(f(q1))Df(q1)

= Df(q2)Df(q1)

= (Df(q1))
−1Df(q1)Df(q2)Df(q1)

= Df(q1)
−1Df2(q2)Df(q1);
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it follows that Df2(q1) and Df2(q2) are similar matrices, and hence have
the same eigenvalues.

In order to compute, or even estimate, the eigenvalues of Df2(qi), we
would first need to find the points q1, q2, which involves solving the equation
f2(x, y) = (x, y). Even with the approximation α = β = 0, this leads to a
polynomial of degree nine, which is algebraically intractable.

Numerical evidence (for the two-dimensional system), along with some
geometric reasoning (which we give later for its one-dimensional approxi-
mation), indicates that the eigenvalue of Df2(qi) corresponding to the hor-
izontal direction is slightly smaller than 1 when A is just larger than A1.
Thus when it appears, the period-two orbit is attracting; as A increases, the
eigenvalue decreases, and the orbit becomes more strongly attracting. When
A increases to the point Ã2 where the eigenvalue passes 0 and becomes neg-
ative, the orientation of trajectories near the period-two orbit changes, just
as happened at Ã1 for the fixed point 0.

Beyond Ã2, the rate at which trajectories converge to the period-two
orbit decreases, until at some value A = A2, one of the eigenvalues ofDf2(qi)
passes −1; at this point, the orbit ceases to be attracting, and becomes
hyperbolic. The map f2, for which q1 and q2 are fixed points, behaves just
like f did, and spawns an attracting period-two orbit near each of the newly
unstable fixed points. Together, these two orbits form a period-four orbit
for the original map f , which has two points near each of q1 and q2.

This behaviour continues; the period-four orbit eventually becomes un-
stable, at which point a period-eight orbit is born, and so on. In fact, there
exists a sequence of parameter values A1 < A2 < A3 < · · · such that for
An−1 < A < An, f has a stable orbit of period 2n in the region to the left of
the stable manifold of p1, and unstable orbits of period 2k for all 0 ≤ k ≤ n.

Meanwhile, the same story is unfolding to the right of the stable mani-
fold; at A′

1 the fixed point p2 splits into an attracting period-two orbit, and
we have a sequence A′

1 < A′
2 < A′

3 < · · · such that for A′
n−1 < A < A′

n,
f has a stable orbit of period 2n in the region to the right of the stable
manifold of p1, and unstable orbits of period 2k for all 0 ≤ k ≤ n.

In the next lecture, we will introduce a graphical way of representing all
this information, the bifurcation diagram. For the time being, we note that
the bifurcation values An (and A′

n as well) get closer and closer together as
n grows, and in fact, converge to some value A∞, at which we have orbits
of period 2n for any natural number n. In particular, there are infinitely
many co-existing periodic orbits, which marks a fundamental change in the
behaviour of f .

Definition 55. A dynamical system f : X → X is called Morse–Smale
if it has finitely many periodic orbits, each of which is either attracting,
repelling, or a saddle, such that given any initial condition x, the trajectory
{fn(x)} approaches one of these orbits.
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For 0 < A < A∞, the simplified discrete FitzHugh–Nagumo system (76)
is Morse–Smale, and so the behaviour of the system is in some sense rela-
tively simple and easy to understand. For A ≥ A∞, the behaviour is much
more intricate, as we will see next time.
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Lecture 23

a. Down the rabbit hole. In the previous lecture, we described the
sequence of period-doubling bifurcations through which the simplified dis-
crete FitzHugh–Nagumo model (76) passes as A increases. In fact, we saw
that there were two such sequences, one corresponding to the fixed point 0,
for which the resulting periodic orbits lay to the left of the stable manifold
of p1, and one corresponding to p2, for which the periodic orbits lay to the
right of that curve.

In order to visualise these concurrent period-doubling cascades, and also
to get a sense of what lies beyond them, for A > A∞, we turn to the
bifurcation diagram of f , also sometimes called the orbit diagram, which is
shown in Figure 31 for a particular choice of parameters α, β, γ, θ.

The horizontal axis of the diagram represents the parameter A, and
the vertical axis represents the first coordinate u1 of the phase space R2;
the points on a vertical slice of the diagram are the u1-coordinates of the
attracting part of the phase space. The diagram is generated as follows: fix
a value of A, an initial condition (u1, u2), which is relatively arbitrary (but
should lie near enough the origin so that its orbit is bounded and to the
left of the stable manifold of p1), and then compute the iterates fn(u1, u2).
Ignore the first few iterations,14 to give the transient part of the orbit time
to die away; in the case A < A∞, for example, this gives the orbit time
to converge to a periodic orbit. Then writing the subsequent iterations as

(u
(n)
1 , u

(n)
2 ), plot the points (A, u

(n)
1 ) on the diagram.15 One then chooses a

new value of A and repeats the whole procedure, until enough points have
been filled in to give a sense of the structure of the bifurcation diagram.

Finally, the above procedure is repeated in its entirety, with initial condi-
tions this time chosen to the right of the stable manifold of p1; this generates
the top half of Figure 31.

We see that for A < A1, the points which are plotted are all quite close to
the fixed point; for A1 < A < A2, they are close to the period-two orbit, and
so on. This reflects the fact that the long-term behaviour of any trajectory
follows one of the periodic orbits, as is true of any Morse–Smale system.

For A ≥ A∞, the situation is quite different. There are values of A for
which the trajectory of a randomly chosen point fills out a Cantor set, or
even an entire interval, and the situation is quite chaotic. However, there are
also windows of stability, the most noticeable of which are the two period-
three windows which occur near A = 5.7 and A = 6 in Figure 31. In these
parameter ranges, we suddenly return from chaos to order; every orbit is
attracted to a cycle of period 3, and the system seems relatively simple
once again (although as we will see later, it is not Morse–Smale). There

14“First few” may mean several dozen, several hundred, or several thousand, depend-
ing on how refined a picture is desired.

15Again, how many of these points are plotted is in some sense a judgment call.
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Figure 31. The bifurcation diagram for the discrete
FitzHugh–Nagumo model (76) with θ = .51, α = .01,
β = .02, and γ = .8, as A varies from 3 to 7.
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are windows of stability with other orders as well, scattered throughout the
bifurcation diagram.

These moments of stability are transitory. As A increases, the attracting
periodic cycle of length n becomes repelling, and spawns an attracting peri-
odic cycle of length 2n. This too becomes repelling in its turn, shedding an
attracting cycle of length 4n, then 8n, and so on; the whole period-doubling
cascade is repeated, but over a much smaller range of the parameter A than
in its original incarnation.

This reappearance of the period-doubling cascade suggests a sort of self-
similarity of the bifurcation diagram, and indeed this diagram is self-similar
in an asymptotic sense. We will not make this statement precise here, be-
yond mentioning one striking manifestation of this self-similarity. Recall
that An−An−1 gives the length of the parameter interval for which the pe-
riodic orbit of length 2n is attracting; it turns out that this length decreases
exponentially in n, and so we write

λ = lim
n→∞

1

n
log(An −An−1).

Thus writing δ = e−λ, we have An − An−1 ≈ Cδn for some constant C. In
and of itself, this would not be cause for any special excitement. However,
we can do the same calculation for the period-doubling cascade A′

1 < A′
2 <

A′
3 < · · · , or for the period-doubling cascade in any of the windows of

stability, and the truly striking result is that we get the same value of δ in
every case!

Even that remarkable congruence is not the end of the story; there are in
fact many one-parameter families of maps which lead to similar bifurcation
diagrams, with period-doubling cascades, windows of stability, and so on.
Under relatively mild conditions on the family of maps, we find the same
old tale in each period-doubling cascade; the rate of decay of the lengths
An −An−1 exists, and what is more, is equal to δ.

The number δ is known as Feigenbaum’s constant, after Mitchell Feigen-
baum, who was the first to discover this example of quantitative universality.

b. Becoming one-dimensional. Despite the various heuristic justi-
fications which have been offered, our analysis of the FitzHugh-Nagumo
model, and in particular the bifurcation diagram in Figure 31, is based pri-
marily on numerical evidence. Many of our claims have been based on the
fact that f is a small perturbation of the map

f̃(u1, u2) = (u1 −Au1(u1 − θ)(u1 − 1), γu2),

and that since the u2-coordinate goes to 0 under repeated iteration of this
map, the essential behaviour is (or ought to be) given by the one-dimensional
map

g(x) = x−Ax(x− θ)(x− 1).
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A great deal of what we have said up until now has been proved for such
one-dimensional maps; however, very little of that theory has been rigor-
ously extended to the two-dimensional case. While most of the results are
believed to carry over, that belief is based on numerical evidence and com-
puter experiments rather than rigorous proofs.

Because the one-dimensional case is easier to deal with, we restrict our
attention for the next little while to that case, and consider continuous maps
f : R → R. This setting allows us to prove a number of results regarding the
orbit structure of the map f ; one of the most important of these is the fol-
lowing theorem, due to the Ukrainian mathematician Aleksandr Sarkovskii,
which places surprising restrictions on which combinations of periodic orbits
can exist in a given system.

Theorem 56 (Sarkovskii’s theorem). Place a non-standard ordering on
the set of positive integers N as follows: given two integers m and n, we say
that m precedes n (or equivalently, that n follows m), denoted m ≺ n, if m
appears before n in the following list:

3, 5, 7, 9, . . .

2 · 3, 2 · 5, 2 · 7, 2 · 9, . . .
22 · 3, 22 · 5, 22 · 7, 22 · 9, . . .
23 · 3, 23 · 5, 23 · 7, 23 · 9, . . .
· · ·
. . . , 2n, 2n−1, . . . , 22, 2, 1.

Then if f : R → R has a periodic orbit of period m, it also has a periodic
orbit of period n for every n which follows m, m ≺ n.

The key ingredient in the proof of Theorem 56 (which we omit at present)
is the Intermediate Value Theorem, which explains why it is crucial that the
domain of f be R. Indeed, if X = {z ∈ C | |z| = 1} is the unit circle, and

f : X → X is the map f(z) = e2πi/nz, then every periodic point of f has
period n, in sharp contrast to the situation described in Sarkovskii’s theorem;
this example also shows that the theorem fails in higher dimensions.

In R, however, the theorem gives a great deal of information about the
periodic orbit structure of a continuous map f . For example, if f has a
periodic point of period 2n, then it must have periodic points of period 2k

for every 0 ≤ k ≤ n, which is reminiscent of the behaviour we saw in the
period-doubling cascade earlier. Similarly, if f has a periodic point whose
period is not a power of two, then it must have periodic points of period 2n

for every n.
The following corollary of Theorem 56 is particularly important for his-

torical reasons:

Corollary 57. If a continuous map f : R → R has a period-three orbit,
then it has periodic points of all orders.
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Sarkovskii proved Theorem 56 in 1964; however, as a Ukrainian math-
ematician behind the Iron Curtain, he had little access to the West, and
so his result was not widely publicised until 1975, when Tien-Yien Li and
James Yorke published a paper entitled “Period Three Implies Chaos”, in
which they proved Corollary 57, which they had discovered independently
of Sarkovskii’s work.

Theorem 56 also has the following corollary, which applies to any Morse–
Smale system on the line:

Corollary 58. If a continuous map f : R → R has only finitely many
periodic points, then they all have a period which is a power of two.

Sarkovskii’s theorem leads us to suspect that even within the windows
of stability in the bifurcation diagram in Figure 31, there are some very
complicated dynamics going on. In the next lecture, we will turn our at-
tention to the family of logistic maps, which will yield a similar bifurcation
diagram, complete with period-doubling cascades, windows of stability, and
in the end, chaos.
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Lecture 24

a. Bifurcations for the logistic map. We return now to the logistic
map, or rather the family of logistic maps, which was first introduced in
Lecture 2; for a given parameter c ∈ R, the map is

fc(x) = x2 + c.

We have already seen that for c > 1/4, all trajectories of fc go to +∞; we
focus on what happens as c decreases. In particular, we make precise the
notion of bifurcation, which we have already discussed, and examine the
types of bifurcation which occur in the logistic family.

Recall that two continuous maps f : X → X and g : Y → Y are called
topologically conjugate if there exists a homeomorphism φ : Y → X such
that f ◦ φ = φ ◦ g; that is, the following diagram commutes:

Y
g−−−−→ Y



yφ



yφ

X
f−−−−→ X

For example, the maps fc : x 7→ x2+c and gλ : y 7→ λy(1−y) are topologically
conjugated by the homeomorphism φ : y 7→ λ

2 (1 − 2y), where c and λ are
related by 4c = λ(2 − λ) in the appropriate parameter ranges.

It is often useful to think of the conjugating homeomorphism φ as a
change of coordinates, under which f and g display the same dynamics,
just as two similar matrices A and B have the same action under a suitable
change of basis. We will often refer to two topologically conjugate maps as
having the same qualitative behaviour.

Exercise 14. Show that fc and fc′ are topologically conjugate for any
c, c′ > 1/4.

There are many cases in which changing the value of the parameter
slightly does not change the qualitative behaviour of the map; for example,
Exercise 14 shows that the logistic maps fc with c > 1/4 are all topologically
conjugate. Another way of putting this is to say that they all have the same
qualitative behaviour, even though the quantitative behaviour (in this case,
how quickly orbits go to +∞) varies with the map.

A bifurcation occurs when an arbitrarily small change in the value of
the parameter does change the qualitative behaviour of the map:

Definition 59. A one-parameter family of maps Fc : X → X has a
bifurcation at c0 if for all ε > 0, there exists a parameter value c ∈ (c0 −
ε, c0 + ε) for which Fc and Fc0 are not topologically conjugate.

One may easily show that the periodic orbit structure of a map is an
invariant of topological conjugacy; that is, two topologically conjugate maps
f and g must have the same numbers of fixed points, points of period two,
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period three, etc. Thus a change in this orbit structure, such as the ap-
pearance of any new periodic orbits, immediately heralds a bifurcation in
the system. Similarly, because stability is determined by where trajectories
converge, a change in the type of stability of a periodic orbit also indicates
a bifurcation.

For the logistic family fc, the first bifurcation occurs at c = 1/4; for
c > 1/4 there are no fixed points, while for c = 1/4 there is one, and for
c < 1/4 there are two, given by

p1 =
1 −

√
1 − 4c

2
, p2 =

1 +
√

1 − 4c

2
.

The stability of these fixed points is determined by the absolute value of the
derivative, and we see that

f ′c(p1) = 1 −
√

1 − 4c, f ′c(p2) = 1 +
√

1 − 4c.

Thus p2 is unstable for all values of c, while p1 is stable for a little while
after the bifurcation at c = 1/4. As long as this state of affair persists, any
trajectory which begins in the interior of the interval I = [−p2, p2] converges
to p1, the two trajectories which begin at the endpoints converge to p2, and
any trajectory which begins outside of I diverges to +∞.

So how long does this state of affairs persist? Observe that f ′c(p1) de-
creases as c decreases, and also that f ′c(p1) = −1 when c = −3/4. Thus
for −3/4 < c < 1/4, all trajectories in (−p2, p2) converge to p1, but for
c < −3/4, both fixed points are unstable. This implies that a bifurcation
occurs at −3/4, since the stability of p1 changes; to determine what trajec-
tories behave like for c < −3/4, we look for periodic orbits, since there are
no new fixed points.

Recall that a period-two orbit of fc corresponds to a fixed point of f2
c ,

and so we want to solve the equation

f2
c (x) = (x2 + c)2 + c = x,

which may be written as the quartic polynomial

x4 + 2cx2 − x+ c2 + c = 0.

This is made rather easier to solve by the observation that we already know
two of the roots; the fixed points p1 and p2 of the original map fc. In
particular, the polynomial fc(x) − x divides f2

c (x) − x, since a root of the
former is obviously a root of the latter. Dividing, we obtain

x4 + 2cx2 − x+ c2 + c

x2 − x+ c
= x2 + x+ 1 + c = 0,

which has solutions

q1 = −1

2
−
√

−3

4
− c, q2 −

1

2
+

√

−3

4
− c.

These are real numbers if and only if c ≤ −3/4; in other words, fc has a
period-two orbit if and only if the fixed point p1 is unstable! One may easily
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verify that fc(q1) = q2 and fc(q2) = q1, and that q1 and q2 lie on either side
of p1.

The stability of this period-two orbit is given by the derivative of the
map f2

c for which it is a fixed point; using the chain rule, we observe that

(f2
c )

′(q1) = f ′c(q2)f
′
c(q1)

= (−1 +
√
−3 − 4c)(−1 −

√
−3 − 4c)

= 1 − (−3 − 4c)

= 4 + 4c.

When the period-two orbit is born, at c = −3/4, we have (f2
c )

′(q1) = 1,
and this quantity decreases as c decreases, becoming equal to −1 when
c = −5/4. Thus for −5/4 < c < −3/4, the period-two orbit is stable,
and it is possible to show that every trajectory which begins in (−p2, p2)
asymptotically approaches the period-two orbit, in the sense that f2n(x) →
qi for either i = 1 or i = 2.

This pattern of behaviour continues as c decreases further, with suc-
cessive periodic orbits of length 2n becoming unstable and spawning stable
orbits of length 2n+1, which become unstable in their turn, and so on ad
infinitum. However, the algebraic approach we have been following becomes
increasingly messy, as we must deal with polynomials of higher and higher
degree.

b. Different sorts of bifurcations. Consider the parameter values
c0 = 1/4 and at c1 = −3/4. At both of these values, the periodic orbit
structure of the logistic map fc changes, and so a bifurcation occurs; how-
ever, the bifurcations are of different sorts. As c decreases through c0, we
go from having no fixed points to having two, one stable and one unstable.
At c1, on the other hand, there is a pre-existing fixed point, which persists
through the bifurcation; the change is in the stability of that fixed point and
in the appearance of an attracting period-two orbit.

These two types of bifurcations are common enough to merit their own
names; the bifurcation at c0 is an example of a saddle-node bifurcation
(sometimes called a tangent bifurcation), and the bifurcation at c1 is an
example of a period-doubling bifurcation (sometimes called a pitchfork bi-
furcation). The following definitions make these notions precise; in what
follows, Fλ : R → R is any one-parameter family of continuous maps of the
real line.

Definition 60. Fλ has a saddle-node (or tangent) bifurcation at λ0 if
there exists an open interval I ⊂ R and ε > 0 such that the following hold:

(1) For λ0 − ε < λ < λ0, the map Fλ has no fixed points in I.
(2) For λ = λ0, the map Fλ has one fixed point in I, which is neutral.
(3) For λ0 < λ < λ0 + ε, the map Fλ has two fixed points in I, one

attracting and one repelling.



LECTURE 24 113

Figure 32. Two examples of saddle-node bifurcations.

The conditions in the above definition imply that the fixed points appear
as λ increases through λ0. We also say that Fλ has a saddle-node bifurcation
at λ0 if the fixed points appear as λ decreases; that is, if the family {F−λ}
satisfies the above definition at −λ0.

A typical picture for a saddle-node bifurcation is shown in Figure 32;
note that at the value λ = λ0, the graph of Fλ is tangent to the bisectrix
y = x, hence the alternate name “tangent bifurcation”.

λ0 − ε

λ0

λ0 + ε
Fλ F 2

λ

Figure 33. A period-doubling bifurcation.

Definition 61. Fλ has a period-doubling (or pitchfork) bifurcation at
λ0 if there exists an open interval I ⊂ R and ε > 0 such that the following
hold:

(1) For all λ0 − ε < λ < λ0 + ε, the map Fλ has a unique fixed point
pλ in I.

(2) For λ0 − ε < λ < λ0, the fixed point pλ is attracting, and Fλ has
no period-two cycle in I.

(3) For λ0 < λ < λ0 +ε, the fixed point pλ is repelling, and there exists
a unique period-two cycle {q1λ, q2λ} in I, which is attracting.

(4) As λ converges to λ0, both points qiλ of the period-two cycle con-
verge to the fixed point pλ0 .

The above definition describes the process by which a stable fixed point
becomes unstable and sheds a stable orbit of period two as λ increases
through λ0; as before, we also call λ0 a period-doubling bifurcation point if
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this happens as λ decreases through λ0. We also allow the case in which a
repelling fixed point becomes stable and sheds an unstable period-two orbit.

Finally, we will be flexible enough with the terminology to say that Fλ
has a period-doubling bifurcation at λ0 if Fnλ satisfies the above criteria for
some n; that is, if some periodic orbit of Fλ with length n changes stability
at λ0 and sheds a new periodic orbit of length 2n with the original stability
properties.

A typical picture for a period-doubling bifurcation is shown in Figure 33,
in which the graph of Fλ shows the fixed point becoming unstable as F ′

λ(p)
passes −1, and the graph of F 2

λ shows the birth of a period-two orbit around
the fixed point. Figure 34 shows the cobweb diagram near the fixed point
for various parameter values near λ0.

λ0 − ε λ0 + ε

Figure 34. Orbits near a period-doubling bifurcation.
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Lecture 25

Figure 35. The bifurcation diagram for the family of logis-
tic maps.

a. The simple part of the bifurcation diagram. Figure 35 shows
the bifurcation diagram for the family of logistic maps fc : x 7→ x2 + c;
comparing this with Figure 31 for the FitzHugh-Nagumo model, we see
many of the same qualitative features.

In the previous lecture, we examined two sorts of bifurcations; the tan-
gent bifurcation at c0 = 1/4, where two fixed points are born, one sta-
ble and one unstable, and the period-doubling bifurcation at c1 = −3/4,
where the stable fixed point becomes unstable and an attracting period-
two orbit appears. Figure 35 shows further period-doubling bifurcations at
c2 > c3 > c4 > · · · ; for c ∈ (cn+1, cn), the map fc has an attracting periodic
orbit of length 2n.

It is apparent from the diagram that the distance between successive
bifurcations shrinks as n grows; indeed, it is possible to show that

lim
n→∞

cn − cn−1

cn+1 − cn
= δ ≈ 4.669 . . . ;

that is, the exponential rate of decay of this distance is Feigenbaum’s con-
stant, just as it was for the FitzHugh-Nagumo model.

Because cn − cn−1 decreases exponentially, the sequence {cn} converges
to a limit c∞, the Feigenbaum parameter. This parameter lies at the end of
the period-doubling cascade, and so for every c < c∞, the map fc has period
points of order 2n for every natural number n. In particular, it is no longer
Morse–Smale.

What do the dynamics of these maps look like? How do we describe
the structure of the bifurcation diagram in the regime c ≤ c∞? We begin
by jumping ahead a little ways, and examining what happens for c ≤ −2,
before returning to examine the truly intricate part of the picture.
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Figure 36. The map f = f−2 and its iterates.

b. The other end of the bifurcation diagram. To this end, con-
sider the parameter value c = −2, which is the smallest value of c shown
in Figure 35. We write f for the map f−2 : x 7→ x2 − 2, and observe that
f has fixed points at p1 = −1 and p2 = 2. Furthermore, if |x| > 2, then
fn(x) → +∞ as n → ∞, and so the only interesting trajectories are those
which remain within the interval [−2, 2].

Observe that f achieves its minimum value at f(0) = −2, and that if
x ∈ [−2, 2], then f(x) ∈ [−2, 2] as well. Thus we are really interested in the
dynamics of f : [−2, 2] → [−2, 2].

f is monotonic on each of the intervals [−2, 0] and [0, 2]; in fact, it maps
each of these intervals homeomorphically to the entire interval [−2, 2]. Thus
the action of f may be thought of as a combination of stretching and folding;
the interval [−2, 2] is first stretched out, and then folded in half, so that each
half of the original interval has been stretched out to cover the whole thing.

Upon iterating the map f , we see that if J is an interval whose image
under f covers [−2, 2] once (that is, f : J → [−2, 2] is a homeomorphism),
then the image of J covers [−2, 2] twice under the action of f2. In particular,
as shown in Figure 36, there are points −q < 0 < q such that each of the
intervals I1 = [−2,−q], I2 = [−q, 0], I3 = [0, q], and I4 = [q, 2] has f2(Ij) =
[−2, 2], and f2 is a bijection from each Ij to [−2, 2]. A similar observation
holds for f3, where we have eight intervals, and for higher iterates fn, where
we have 2n intervals which are mapped homeomorphically onto [−2, 2].

Exercise 15. Let g : R → R be continuous, and suppose that a ≤ a′ <
b′ ≤ b are such that g([a′, b′]) ⊃ [a, b] (we say that [a′, b′] g-covers [a, b]).
Show that g has a fixed point in [a′, b′].

It follows from Exercise 15 that the map fn has at least 2n fixed points,
and examination of the graph of fn shows that this number is exact. Thus
for every n ≥ 1, the map f has 2n period points of period n (of course, some
of these are also periodic points of period k for some k < n); this is a far
cry from the limited number of periodic orbits found in the Morse–Smale
case. Indeed, the exponential growth rate of the number of periodic orbits
of a period n as n increases in somehow indicative of the chaotic behaviour
of the map; this growth rate is in many cases related to a quantity known
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as the topological entropy, whose positiveness is often taken as an indicator
of chaos.

h
(z

)

z

Figure 37. The tent map h : [0, 1] → [0, 1].

Before leaving the parameter value c = −2, we observe that by some
felicitious alignment of the stars, the map f can be put into an rather simpler
form—indeed, a piecewise linear form—via a clever change of coordinates.
First, as a special case of the observation at the beginning of Lecture 24, f
is conjugated to the map g : y 7→ 4y(1− y) from [0, 1] to itself by the change
of coordinates

φ : [0, 1] → [−2, 2],

y 7→ 2 − 4y.

Then, using the further change of coordinates

ψ : [0, 1] → [0, 1],

z 7→ sin2
(πz

2

)

,

it turns out that the following diagram commutes:

[0, 1]
h−−−−→ [0, 1]



yψ



yψ

[0, 1]
g−−−−→ [0, 1]



yφ



yφ

[−2, 2]
f−−−−→ [−2, 2]

Here h : [0, 1] → [0, 1] is the tent map defined by

(82) h(z) =

{

2z 0 ≤ z ≤ 1/2,

2(1 − z) 1/2 ≤ z ≤ 1,

whose graph is shown in Figure 37.
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A simple computation verifies the above claim:

g(ψ(z)) = 4 sin2
(πz

2

)(

1 − sin2
(πz

2

))

= 4 sin2
(πz

2

)

cos2
(πz

2

)

=
(

2 sin
πz

2
cos

πz

2

)2

= sin2 πz,

while for 0 ≤ z ≤ 1/2,

ψ(h(z)) = sin2 π · 2z
2

= sin2 πz,

and for 1/2 ≤ z ≤ 1,

ψ(h(z)) = sin2(π − πz) = sin2 πz.

This conjugacy allows us to answer certain questions about the non-
linear map f by first answering them for the piecewise linear map h, in
which context they are often more tractable.

I1 I2

Figure 38. Trajectories escaping to infinity for c < −2.

c. The centre cannot hold—escape to infinity. What happens
when c < −2? We begin by recalling that as before, there are two fixed
points p1 < p2, and only the interval [−p2, p2] is of interest, since any tra-
jectory which leaves this interval diverges to infinity.

For −2 ≤ c ≤ 1/4, the interval [−p2, p2] is invariant; any trajectory which
begins there stays there, and so we only needed to exclude trajectories which
began outside the interval of interest. To see if this behaviour continues for
c < −2, we must examine fc(0) = c, since this is the minimal value assumed
by fc, and indeed, fc([−p2, p2]) ⊂ [−p2, p2] if and only if fc(0) = c ≥ −p2.

We compare these values by observing that c is the constant term in
the fixed point equation fc(x) − x = x2 − x + c = 0, which is a quadratic
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polynomial, and hence it is the product of the roots of that polynomial,
which are p1 and p2. The sum of the roots is the negative of the linear
coefficient, and so p1 + p2 = 1, whence c = p2(1 − p2). It follows that
[−p2, p2] is invariant if and only if p2(1 − p2) ≥ −p2; that is, if and only if
p2(2 − p2) ≥ 0.

The fixed point p2 is always positive, and so we see that the interval is
invariant for p2 ≤ 2, while for p2 > 2, some points in the interval [−p2, p2]
have images outside that interval, and thus have a trajectory which escapes
to infinity. This happens precisely when c < −2; thus for the parameter
range we are considering now, we have the picture shown in Figure 38,
where any point not in the intervals I1 or I2 is mapped outside of [−p2, p2]
by fc.

I12 I11 I21 I22

Figure 39. Finding an invariant set for a map with escape.

This should start to sound familiar by now; we have a map from an
interval to itself, but we can only start at points whose images remain in the
interval. The intervals I1 and I2 contain those points x for which fc(x) ∈
[−p2, p2]; Figure 39 shows the construction of four intervals Iij which contain
all points x for which f2

c (x) ∈ [−p2, p2]. Continuing in this manner, we have
exactly the same type of Cantor-like construction that we examined earlier
in the course, and one sees that the restriction of fc to I1 ∪ I2 is exactly the
sort of map shown in Figure 17.

Thus for fc with c < −2, the set of all points whose trajectories remain
bounded is a Cantor-like set; outside of this set, all trajectories diverge to
infinity. In particular, this set has Lebesgue measure zero, and so is “invis-
ible” to the bifurcation diagram in Figure 35; remember that the method
of constructing that diagram ensures that we only see sets in phase space
which attract nearby trajectories.
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Lecture 26

a. Some parts of phase space are more equal than others. In
our investigations of the logistic map fc for various values of the parameter
c, we have found that some parts of the phase space R are more interesting
than others, in the sense that they capture the essential long-term behaviour
of fc. For example, when c > c∞, almost every trajectory tends to the stable
periodic orbit, and so the points in that orbit are the most important part
of phase space for fc. When c = −2, the points in the interval [−2, 2] are
important, but those outside it are not so interesting, because their iterates
tend to infinity. Finally, when c < −2, there is a Cantor-like set C which
comprises points whose orbits remain bounded; this set C captures all the
interesting long-term behaviour of fc.

How do we formalise these ideas? How can we define what makes some
sets capture interesting aspects of the dynamics, while others are somehow
negligible? What properties should these “interesting” sets have?

The first important property is invariance; we want to consider a set
E ⊂ R which is mapped into itself by f , so that no trajectories escape
from E; otherwise E does not contain the long-term behaviour of all the
trajectories which begin in E.

Secondly, we want E to be minimal in some sense; for fc with c > c∞,
the interval [−p2, p2] is certainly invariant, but it is too big—given an initial
condition x ∈ [−p2, p2], there are many open sets in [−p2, p2] which the
trajectory of x never reaches, and which are therefore of no importance
in describing the long-term behaviour of that trajectory. In particular, we
would like the orbit of some well-chosen point x to be dense in E.

These considerations motivate the following definition.

Definition 62. Let f : X → X be continuous, and fix x ∈ X. The
ω-limit set of x is

ω(x) =
∞⋂

N=0

∞⋃

n=N

{fn(x)}.

Equivalently, a point y ∈ X is in the ω-limit set of x if and only if y
is in the closure of the forward trajectory of every iterate of x; that is, if
and only if there exists a sequence of natural numbers nk → ∞ such that
limk→∞ fnk(x) = y.

Example 63. If x is a periodic point with fp(x) = x, then ω(x) =
{x, f(x), . . . , fp−1(x)}. Similarly, if x approaches a periodic orbit, that
is, if there exists y = fp(y) such that limn→∞ fnp(x) = y, then ω(x) =
{y, f(y), . . . , fp−1(y)}.

Exercise 16. Consider the map f : C → C given by f(z) = e2πiαz,
where α is an irrational real number; f is the map which rotates the complex
plane by 2πα around the origin. Show that for every z0 ∈ C,

ω(z0) = { z ∈ C | |z| = |z0| }.
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Exercise 17. Consider the shift σ : Σ+
2 → Σ+

2 , and show that there
exists a sequence x = (i1, i2, . . . ) ∈ Σ+

2 such that ω(x) = Σ+
2 ; in particular,

x has dense orbit.

Recalling the construction of the bifurcation diagram, we see that it plots
approximations to the ω-limit set of a random point for each parameter value
c. Does it matter which point we choose? Of course, if we choose an unstable
periodic point x, then ω(x) will not capture the same information as ω(y),
where y is not on the periodic orbit, and one may find other cases where
ω(x) and ω(y) differ for x 6= y.

It turns out, though, that in many important situations, almost every
point x (with respect to Lebesgue measure) has the same ω-limit set; that
is, there exists a set E ⊂ R of Lebesgue measure zero such that ω(x) = ω(y)
for all x, y /∈ E. For example, in the family of logistic maps, almost every
initial condition x has ω-limit set equal to the unique stable periodic orbit
when c > c∞, and for c = −2, it is possible to show that almost every initial
condition x has ω(x) = [−2, 2].

Figure 40. The bifurcation diagram in the period-three window.

b. Windows of stability. Let us return to the bifurcation diagram
shown in Figure 35, and finally turn our attention to the truly interesting
part of the picture, the parameter values −2 ≤ c ≤ c∞. Within this range,
we find a number of windows of stability, intervals for c within which the
map fc suddenly has a stable periodic orbit once again, to which almost
every point is attracted.

The largest and most conspicuous of these windows of stability is the
period-three window between c ≈ −1.791 and c ≈ −1.748, which is shown in
Figure 40. Notice that while the period-three orbit is stable at the beginning
of this window (on the right), it eventually becomes unstable and gives birth
to a stable period-six orbit, and the whole period-doubling cascade occurs
here just as it did for c > c∞, leading to another occurrence of Feigenbaum’s
constant δ.
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Because the map has a period-three orbit in this range of parameters,
we can apply Corollary 57 of Sarkovskii’s Theorem. In lieu of proving the
theorem in its full generality, we will prove this special case, which uses the
same ideas, but for which the combinatorial argument is simpler.

Proof of Corollary 57. Let f : R → R be continuous, and let x0 =
f(x2), x1 = f(x0), and x2 = f(x1) be the three points in a period-three
orbit. By changing the numbering if necessary, we can assume that x0 <
min(x1, x2), and there are now two possibilities:

x0 < x1 < x2 or x0 < x2 < x1.

We prove the theorem in the case x0 < x1 < x2; the proof in the other case
is similar.

Let I1 = [x0, x1], and I2 = [x1, x2]. It follows immediately from the
Intermediate Value Theorem that

(83) f(I1) ⊃ [f(x0), f(x1)] = [x1, x2] = I2,

and also that

(84) f(I2) ⊃ [f(x2), f(x1)] = [x0, x2] = I1 ∪ I2.
Given n ≥ 1, we find a periodic orbit of period n as follows. If n = 1,

then we are after a fixed point of f , whose existence is guaranteed by the
result of Exercise 15 applied to I2.

An easy induction argument shows that fn(I1) ⊃ I2 for all n ≥ 1, and
hence fn(I1) ⊃ I1 for all n ≥ 2. Then the result of Exercise 15 applied to
I1 and fn shows that fn has a fixed point x in I1, which is almost enough
to complete the proof. However, we want to prove the slightly stronger
statement that n is the smallest period of x; that is, that fk(x) 6= x for
1 ≤ k ≤ n− 1. For this, we need the following lemma.

Lemma 64. If g : R → R is continuous and [a′, b′] g-covers [a, b] (that is,
g([a′, b′]) ⊃ [a, b]), then there exists a subinterval [a′′, b′′] ⊂ [a′, b′] such that
g([a′′, b′′]) = [a, b].

Proof. Let E = {x ∈ [a, b] | g(x) ≤ a} and F = {x ∈ [a, b] | g(x) ≥ b},
and consider a1 = supE, a2 = supF . Without loss of generality, suppose
that a1 < a2 (the proof in the other direction is similar). Then let a′′ = a1,
b′′ = inf E ∩ [a1, b

′], and the result follows. �

From the lemma and (83)–(84), it follows that there exist intervals I12 ⊂
I1 and I21, I22 ⊂ I2 such that f(Iij) = Ij . Continuing, we find nested
sequences of basic intervals Ii1···in such that f(Ii1···in) = Ii2···in . Because the
length of these intervals may not go to zero as n→ ∞, we cannot carry out
the full Cantor-like construction and obtain a conjugacy with the subshift
Σ+
A, A = ( 0 1

1 1 ); however, we can observe that for the particular sequence
i1 = 1, i2 = i3 = · · · = in = 2, we have fn(Ii1···in) = I1 ∪ I2 ⊃ Ii1···in ,
and so there exists x ∈ Ii1···in such that fn(x). Because fk(x) ∈ I2 for all
1 ≤ k ≤ n− 1, n must be the minimal period of x. �
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This result shows that despite the long-term stability of orbits in the
period-three window, the system is not Morse–Smale, because there are in-
finitely many periodic orbits. In fact, we observe what is known as transient
chaos in this parameter regime; the trajectory of a point x may follow an
unstable periodic orbit for quite some time before being repelled, at which
point it may follow some other unstable orbit for a spell, and may take a
very long time to actually settle down to the stable periodic orbit. Thus
the trajectory we observe may initially appear chaotic by spending a long
while wandering through the intricately intertwined tangle of periodic orbits
before it becomes regular.

c. Outside the windows of stability. We see a similar picture to the
one described above when we look at the windows of stability corresponding
to periodic orbits of other lengths; in the first place, Sarkovskii’s theorem
implies the existence of infinitely many periodic orbits, and prescribes which
lengths must appear, and in the second place, the stable periodic orbit
undergoes a period-doubling cascade as c decreases and eventually moves
out of the window of stability.

Let S be the set of parameter values c for which the map fc has a stable
periodic orbit; S is the union of all the windows of stability. It has been
shown that S is open (which is not too hard to prove) and dense in [−2, 1/4]
(which is quite hard to prove). So in some sense, the set S is quite large;
indeed, topologically speaking, it is as large as it can be.

However, there are other sorts of behaviour possible for the logistic map
fc. It turns out that these are epitomised by the two cases c = −2 and
c = c∞. In the first case, the ω-limit set ω(x) contains an interval (and in
particular, has Hausdorff dimension equal to 1) for almost every x; denote
by A the set of parameter values c such that fc has this behaviour. In the
second case, we find that ω(x) is a Cantor set for almost every x (and hence
has Hausdorff dimension less than 1); denote by C the corresponding set of
parameter values.

How big are the sets A and C? We have already said that S is open
and dense, and these three sets are disjoint; thus A and C are both nowhere
dense sets. However, a celebrated result due to Michael Jakobson shows
that A has positive Lebesgue measure, and so the set of parameter values
for which the trajectory of a randomly chosen point fills out an interval is
non-negligible.
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Lecture 27

a. Chaos in the logistic family. One of the most remarkable results
to date concerning the family of logistic maps fc : x 7→ x2 + c is Jakobson’s
theorem, which describes a set A ⊂ [−2,−2 + ε] of parameter values with
Leb(A) > 0 such that for every c ∈ A, the trajectories of the map fc are
chaotic; that is, there exists a symbolic coding of the map such that all
possible sequences of symbols appear as codes of actual trajectories.

While the set A for which such behaviour can be rigorously proven to
occur is confined to parameter values near −2, computer simulations sug-
gest that this behaviour actually occurs for a non-negligible proportion of
parameter values all the way up to c∞, the end of the period-doubling cas-
cade.

b. Attractors for the FitzHugh–Nagumo model. The chasm be-
tween what has been proved and what is believed to be true based on nu-
merical results is even wider when we consider the FitzHugh–Nagumo sys-
tem (76). In the first place, the interval map on which the model is based
is a cubic polynomial, rather than quadratic, and much less is known about
such maps. Furthermore, because the map has been perturbed into two
dimensions, many of the rigorous results no longer apply, particularly those
which depend on properties unique to the one-dimensional case, such as the
Intermediate Value Theorem.

Despite the lack of rigorous results, the empirical evidence overwhelm-
ingly suggests that the results which have been proved in very restricted cir-
cumstances (one-dimensional quadratic maps in a limited parameter range)
hold much more generally, as is suggested, for example, by the bifurcation
diagram in Figure 31. We see a period-doubling cascade leading to the onset
of chaos at A∞, beyond which there are windows of stability surrounded by
maps with chaotic behaviour.

Throughout all this, the map f : R2 → R2 has three fixed points, 0, p1, p2,
two of which began life as stable fixed points, and then lost their stability at
the bifurcation points A1 and A′

1. During the period-doubling cascade, all
trajectories wind up approaching a stable periodic orbit of length 2n; after
the onset of chaos, however, there are no stable periodic orbits to approach,
except in the windows of stability. So where do the orbits go?

It turns out that one can find a rectangle R, as shown in Figure 41, which
contains the fixed points 0, p1, p2, and which is mapped into itself by f ; that
is, f(R) ⊂ R. The picture shows how R is squeezed in the vertical direction,
stretched in the horizontal direction, and then folded over on itself so that
it fits in R. The ‘S’ shape of f(R) is due to the fact that the coordinate
function f1 contains a cubic polynomial in u1.

A region R such that f(R) ⊂ R is known as a trapping region for the map
f ; once a trajectory enters this region, it will never leave it. Furthermore,
f(R) is also a trapping region; given x ∈ f(R) ⊂ R, we have f(x) ∈ f(R),
and hence f2(R) ⊂ f(R) ⊂ R. Continuing in this way, we obtain a nested
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0

p1

p2

R

f(R)

Figure 41. A trapping region for the FitzHugh–Nagumo map.

sequence of trapping regions:

R ⊃ f(R) ⊃ f2(R) ⊃ · · · ⊃ fn(R) ⊃ fn+1(R) ⊃ · · · .
We may “take the limit” of this sequence by taking the intersection of all
these trapping regions, and obtain

(85) Λ =
⋂

n≥0

fn(R).

The intersection Λ is an attractor for the map f ; every trajectory which
enters the trapping region R not only stays in R, but approaches Λ. In
particular, ω(x) ⊂ Λ, and Λ has the following properties:

(1) Λ is closed and bounded, hence compact.
(2) Λ is f -invariant; f(Λ) = Λ.
(3) Λ is the largest invariant subset of R.
(4) Λ contains the three fixed points 0, p1, p2.

0

p1

p2

A = 6.1

0

p1

p2

A = 6.4

Figure 42. The attractor for the FitzHugh–Nagumo map
with α = .01, β = .02, θ = .51, γ = .2, and varying A.

Figure 42 shows the attractor Λ for two different parameters of A; notice
that as A changes, the attractor may move to different locations within R.
As A continues to increase, the attractor “grows”, as shown in Figure 43.

For the values of A where the attractor shown in Figures 42 and 43 ap-
pears, all three fixed points are hyperbolic; that is, they have one expanding
and one contracting direction. It can be shown that for each such fixed
point p there exists a smooth curve γ : (−ε, ε) → R2 such that γ(0) = p and
γ′(0) is the eigenvector corresponding to the larger eigenvalue, and which is
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0

p1

p2

A = 6.7

0

p1

p2

A = 7.5

Figure 43. Changes in the attractor as A increases.

expanding in the following sense; writing Γε = {γ(t) | −ε < t < ε} for the
local unstable manifold, the image f(Γε) is a curve which contains Γε.

It follows that f2(Γε) ⊃ f(Γε), and indeed, we get a nested sequence of
increasing curves

Γε ⊂ f(Γε) ⊂ · · · fn(Γε) ⊂ · · · .
Taking the union of all these, we obtain the global unstable manifold

Γ =
⋃

n≥0

fn(Γε).

It follows that Γ is f -invariant and contained in R; from the properties of
the attractor Λ, this implies that Γ ⊂ Λ.

In fact, it is conjectured (and widely believed) that Γ is dense in Λ;
however, no rigorous proof is known.

c. The Smale–Williams solenoid. As we have seen, the FitzHugh–
Nagumo model, while very rich in intricate and interesting behaviour, is
quite difficult to analyse. We thus turn our attention to simpler examples,
which exhibit a similar richness of behaviour but are rather more tractable.

Our first such example is a map from the solid torus to itself. Abstractly,
the solid torus is

P = D2 × S1,

the direct product of a disc and a circle. It is embedded in R3 as the standard
torus of revolution together with the region it encloses;

ρ(P ) = { (x, y, z) ∈ R3 | (
√

x2 + y2 − 2)2 + z2 ≤ 1 }.
Here ρ : D2 × S1 → R3 is the map given by

ρ(x, y, θ) = ((2 + x) cos θ, (2 + x) sin θ, y),

where (x, y) are coordinates on the disc D2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1},
and θ is the angular coordinate on the circle S1 = R/2πZ; we will use the
coordinates (x, y, θ) on P , as they are more natural for our purposes.

Fixing parameters λ1, λ2, a such that 0 < a < 1 and 0 < λi < min(a, 1−
a), we define a map f : P → P by

(86) f(x, y, θ) = (λ1x+ a cos θ, λ2y + a sin θ, 2θ).
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Figure 44. A map from the solid torus to itself.

The image of P under f is the shape shown in Figure 44. One way of
visualising the way in which f(P ) is obtained by the action of f is to take
the torus and slice it along a disc so that it becomes a tube; f squeezes this
tube so that its cross-sections are no longer circles of radius 1, but ellipses
with axes of length λ1 and λ2, and then proceeds to stretch it along its axis
by a factor of two, and finally to wrap the resulting longer, skinnier tube
twice around the z-axis within the original solid torus.

In particular we have f(P ) ⊂ P , and so we may repeat the procedure
in the previous section, obtaining an attractor by taking the intersection of
all images of P :

(87) Λ =
⋂

n≥0

fn(P ).

The attractor Λ is known as the Smale–Williams solenoid, and turns out to
have a fractal structure, which we will examine in the next lecture.
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Lecture 28

a. The Smale–Williams solenoid. The map f from the solid torus
P to itself, which was defined in (86), has an attractor Λ, determined as
in (87). In order to investigate the structure of Λ, we look at a cross-section
of the solid torus P = D2 × S1, which corresponds to fixing the angular
coordinate θ and considering the disc D2 × {θ}.

From Figure 44, it is clear that the image f(P ), which is a long skinny
tube wrapped twice around the z-axis, intersects this disc in two ellipses,
whose axes have length λ1 and λ2. The second image f(P ) is an even
longer and skinnier tube which is wrapped four times around the z-axis,
and intersects the disc in four ellipses, whose axes have lengths λ2

1 and λ2
2.

Figure 45. A cross-section of the Smale–Williams solenoid.

Continuing in this manner, we see that fn(P )∩ (D2 ×{θ}) is the union
of 2n ellipses; the first few steps of the construction are shown in Figure 45.
By now the reader should not be too shocked to discover that this is yet
another example of a Cantor-like construction;16 the basic sets at each step
are the ellipses just mentioned, and the cross-section C = Λ∩ (D2 × {θ}) is
the intersection of the basic sets at all levels.

Each basic set is the intersection of a tube with the disc D2 × {θ}; as
n increases, the diameters of the tubes decrease exponentially, and so upon
passing to the limit set C, we see that each point in C is contained in
precisely one curve which meets D2 × {θ} transversely. Thus in a neigh-
bourhood of each cross-section (a slice out of the torus), the attractor is the
direct product C × (−ε, ε). This product structure is only local, however; if
we go far enough around the torus, the curves through different points of C
may be connected.

The local product structure of the attractor Λ has more than just a
geometric significance; it also helps us describe the dynamics of the map f .
Through each point A = (x, y, θ) ∈ Λ, we have a disc D2 × {θ} and a curve
{(x, y)} × (−ε, ε); the former is contracting, while the latter is repelling, as
follows. Given B ∈ D2 × {θ}, we have

d(f(A), f(B)) = max{λ1, λ2}d(A,B),

16Indeed, one could obtain the exact construction shown in Figure 14 by modifying
f so that f(P ) wraps around the z-axis three times, and λ1 = λ2 depend on θ.
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while for B′ ∈ {(x, y)} × (−ε, ε), the orbits are driven further apart;

d(f(A), f(B′)) = 2d(A,B′).

Thus every point looks like a saddle; it has two stable directions (forming
the disc) and one unstable direction (the curve). Notice, however, that this
applies not only to fixed points, but to any point in Λ; in general, then, the
reference to which or from which the orbit {fn(B)} is attracted or repelled
is not the point A itself, but its trajectory.

The set Λ is an important example of a uniformly hyperbolic attractor ;
it is hyperbolic because every point is hyperbolic (roughly, all directions
are contracting or expanding), and it is uniformly so because the ratio of
contraction or expansion can be bounded away from 1 independently of
which point in Λ we consider. This respresents a fundamentally new type of
behaviour compared with the Morse–Smale systems we found for the logistic
map in the period-doubling cascade, where there were only a finite number of
hyperbolic points, which were all fixed. Here, by contrast, the hyperbolicity
is ubiquitous.

What does this pervasive hyperbolicity mean for the dynamics of f? If
A and B are two points in Λ which do not lie on the same disc (stable
manifold) or transversal curve (unstable manifold), then repeated iteration
by f will decrease the distance between fn(A) and fn(B) in the stable
direction (corresponding to the coordinates x and y) but will increase it in
the unstable direction (corresponding to θ). In particular, the trajectory of
B is repelled from the trajectory of A.

So almost every pair of trajectories moves apart under the action of f ;
however, Λ is bounded, so they cannot move too far apart. Indeed, the
trajectory of B is constantly being repelled from whatever trajectories it
finds itself near at any given time, and eventually is repelled back towards
the trajectory of A; at this point it is once again repelled from the trajectory
of A, and the whole cycle repeats itself.

This behaviour, this unending dispersal and return, is characteristic of
hyperbolic dynamics. If we plot the x-coordinate of the trajectory of a
point A ∈ Λ as a function of n, we see a chaotic signal, without periodicity
or pattern, as shown in Figure 46.

x

n

Figure 46. The x-coordinates of a trajectory as a chaotic signal.
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There is another, terribly important, way in which the map f : Λ → Λ
is chaotic. If we partition Λ into disjoint sets Λ1, . . . ,Λk, then we can code
trajectories of f by recording which partition element the iterate fn(x) lands
in. Thus to a trajectory {fn(x)} we associate the sequence

ω = (. . . , i−2, i−1, i0, i1, i2, . . . ) ∈ Σk,

where ij is such that f j(x) ∈ Λij . This is very similar to our coding of

Cantor-like sets with the symbolic space Σ+
k ; the primary difference here

is that since the map f is invertible, we consider pre-images as well, and
obtain a doubly infinite sequence (ij)j∈Z.

What sequences in Σk do we obtain as codings of trajectories in Λ? The
answer depends on which partition we choose; for example, if ij and ij′ are
such that f(Λij ) ∩ Λij′ = ∅, then no sequence ω which contains the symbol

ij followed by the symbol ij′ can correspond to a trajectory in Λ. In general,
it is not possible to find a partition such that all sequences are admissible;
however, for a uniformly hyperbolic system such as f , it is possible to find
a partition {Λ1, . . . ,Λk} such that for some k × k transition matrix A, the
admissible sequences are precisely those which lie in ΣA.

Thus while a uniformly hyperbolic map f cannot usually be described
as a Bernoulli process (Σk), it can always be described as a Markov process
(ΣA). This fact can be used to derive various properties which are charac-
teristic of chaos; for example, f has infinitely many periodic orbits, the set
of periodic orbits is dense in Λ, almost every point x ∈ Λ has a trajectory
which is dense in Λ. . . the list goes on.

b. Quantifying the attractor. Having discussed some of the quali-
tative properties of the attractor Λ and its implications for the dynamics
of f , we turn our attention to quantitative questions. In particular, having
obtained a set Λ which has a fractal structure, we ask the natural question:
what is the Hausdorff dimension of Λ?

Intuitively, we expect dimension to be additive with respect to direct
products; after all, the direct product of Rm and Rn is Rm+n, and so it
seems natural to conjecture that in general,

(88) dimH(A+B) = dimH A+ dimH B.

If (88) holds when A is the Cantor-like set C = Λ ∩ (D2 × {θ}) and B
is the interval (−ε, ε), then it follows that

(89) dimH Λ = (dimH C) + 1,

since Λ can be decomposed into finitely many pieces, each of which is
strongly equivalent to C × (−ε, ε).

Exercise 18. Using the product measures mH(·, α) × mH(·, β), show
that dimH(A+B) ≥ dimH A+ dimH B in general.

Exercise 18 establishes one half of (88). However, the reverse inequality
is not true in general; a counterexample to this effect was first produced by
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Besicovitch, who also proved that equality does hold under slightly stronger
assumptions.

Theorem 65. If A,B ⊂ Rn are such that dimH A = dimBA = dimBA,
then equality holds in (88).

Note that we only require coincidence of the Hausdorff and box dimen-
sions for one of the two sets A and B. In particular, since the three dimen-
sional quantities coincide for the interval (−ε, ε), Theorem 65 establishes the
expression (89) for the Hausdorff dimension of the Smale–Williams solenoid.

Of course, we still need to compute dimH C. In the simplest case where
λ1 = λ2 = λ, the construction of C is exactly of the sort dealt with by
Moran’s theorem, and we have

dimH C =
log 2

− log λ
.

In particular, we get

(90) dimH Λ = 1 +
log 2

− log λ
= log 2

(
1

log 2
− 1

log λ

)

,

where the reasons for the seemingly unusual form of this expression will soon
be made clear. Indeed, we observe that log λ is nothing but the Lyapunov
exponent in the contracting direction (the stable plane corresponding to the
discs D2 × {θ}), while log 2 is the Lyapunov exponent in the expanding
direction (the unstable line corresponding to {(x, y)} × (−ε, ε)); thus the
denominators of the terms in (90) are the Lyapunov exponents in various
directions along the attractor. One can also define the entropy in this case,
and for an appropriate measure µ, it turns out to be log 2; thus (90) is remi-
niscent of our earlier expression (61), which related the Hausdorff dimension
of a set to the entropy of a measure and the Lyapunov exponent of a map.

Although we do not give further details here, one can rigorously establish
various relationships in the spirit of (90) which connect dimension, entropy,
and Lyapunov exponents. The relatively simple form of this expression for
the Smale–Williams solenoid is due to the linearity of the map f ; in the non-
linear case, the expressions quickly become more complicated. One could
also attempt to use this approach to study the case where λ1 6= λ2, in which
Moran’s theorem cannot be used to calculate dimH C; a complete analysis
of this case is still elusive, and the problem remains open.
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Lecture 29

a. The non-conformal case. In the specific case λ1 = λ2, the map
f given in (86) is conformal ; the amount of contraction along the stable
manifold (the disc) is the same in all directions, as is the amount of expansion
along the unstable manifold (which in this case is only one-dimensional, so
there can only be one rate of expansion). In this case, we saw last time that
the Hausdorff dimension of the attractor Λ is given by (90).

For λ1 6= λ2, we are in the non-conformal case, which is much more
difficult. This case was studied by the German mathematician Hans Bothe,
who considered a more general class of maps f , in which the functions cos θ
and sin θ in (86) are replaced by arbitrary periodic functions z1(θ) and z2(θ),
which changes the geometry of how the image f(P ) wraps around the z-axis.
Bothe obtained a general result for “typical” functions z1 and z2, but it was
not until 1997 that the Hungarian mathematician Károly Simon proved
that sin and cos belong to this “typical” class, and established that for the
Smale–Williams solenoid Λ with λ1 < λ2 < 1/8, we have17

dimH Λ = 1 +
log 2

− log λ2
.

Somewhat surpisingly, the smaller value λ1, which corresponds to a direc-
tion of faster contraction, does not affect the Hausdorff dimension of the
attractor!

b. The attractor for the FitzHugh–Nagumo map. Returning to
the FitzHugh–Nagumo map (76), we recall that for a particular range of
values of A, the map f has a trapping region R, as shown in Figure 41. This
ensures the existence of an attractor Λ ⊂ R as in (85), and it is natural to
ask what features Λ shares with the Smale–Williams solenoid, since both
are attractors.

For example, we mentioned at the end of Lecture 28(a) that the Smale–
Williams solenoid contains infinitely many periodic points, and what is more,
the set of periodic points is dense in the attractor. In some sense, this runs
parallel to the fact that for a Morse–Smale system, the set of periodic points
(which in that case is finite) attracts all orbits, and hence all long-term
behaviour takes place near periodic points. Does this also hold true for the
attractor for the FitzHugh–Nagumo map?

Or we may recall the hyperbolic structure found at each point of the
Smale–Williams solenoid, and ask if a similar structure can be found at each
point of the attractor for the FitzHugh–Nagumo map. Is it true that for
every x ∈ Λ there exist vectors v1 and v2 such that the map f is asymptoti-
cally expanding in the direction given by v1, and asymptotically contracting
in the direction given by v2?

Computer simulations suggest that both of the above questions are an-
swered in the affirmative; however, no rigorous proofs are known.

17This was later extended to include all λ2 < 1/2 by Jörg Schmeling.
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Figure 47. Escape from the trapping region.

c. From attractors to horseshoes. Figure 47 shows how the image
f(R) of the trapping region changes as A increases. The “arms” of the image
become longer and longer, until when A is large enough, f(R) is no longer
contained in R, as in the third picture. Thus R is no longer a trapping
region, and the closest we have to an anologue of the attractor Λ is the set
of all points whose trajectories remain within R.

Rather than try to describe this set for the FitzHugh–Nagumo map,
which leads to rather complicated geometric considerations, we begin by
considering a model case in which the picture is much cleaner. Consider a
map f in R2 which acts on the square R = [0, 1]×[0, 1] as shown in Figure 48;
first the square is squeezed in the vertical direction by a factor of λ < 1/2
and stretched in the horizontal direction by a factor of µ > 2, after which
it is bent so that f(R) ∩ R consists of two rectangles, each of width 1 and
height λ.

µ

λ

Figure 48. A horseshoe.

Notice that significant portions of the square R are mapped to the area
outside R; this is reminiscent of the interval maps we considered in the first
few lectures, under which some points could only be iterated a few times
because their trajectories were carried outside the domain of definition of
the map. It is also similar to the behaviour we observed in Lecture 25(c) for
the family of logistic maps with c < −2, for which some (indeed, almost all)
trajectories escape to infinity, and where we were able to describe the set of
points with bounded trajectories as a Cantor set in the interval [−p2, p2].

Thus we ask the same question for the horseshoe map f shown in Fig-
ure 48; which points in R can be iterated infinitely often? That is, what is
the set of points with trajectories which remain in R for all time?

Figure 49 duplicates Figure 48, but highlights the parts of R whose
image lies in R; in particular, we see that the set of points for which f can
be iterated at least twice is the union of the two rectangles R1 and R2, each
of which has height 1 and width µ−1.
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µ

λR1 R2

f(R1)

f(R2)

Figure 49. Points with two iterates.

So which points can be iterated three times? In order to have f2(x) ∈ R,
we must have f(x) ∈ R1∪R2; Figure 50 shows the set of points whose image
lands in R1 or R2. Observe that

f−1(R1) = R11 ∪R21,

f−1(R2) = R12 ∪R22,

and that Ri1i2 ⊂ Ri1 for all i1, i2 ∈ {1, 2}. Continuing this process, we see
that the set of points which have n images in R is the union of 2n rectangles
Ri1···in , each of width µ−n and height 1, which are characterised by

(91) Ri1···in = Ri1 ∩ f−1(Ri2) ∩ · · · ∩ f−(n−1)(Rin).

µ

λ

f(R11) f(R12)

f(R22)f(R21)

R11

R12

R22

R21

Figure 50. Points with three iterates.

Letting n go to infinity, we see that the non-escaping set is given by

(92) Γ+ = {x ∈ R | fn(x) ∈ R ∀n ≥ 0} = Cµ−1 × [0, 1],

where Cµ−1 ⊂ [0, 1] is a Cantor set with both ratio coefficients equal to µ−1;
in particular, this implies that

dimH Γ+ = dimH Cµ−1 + 1 =
log 2

logµ
+ 1.

The story so far has largely been a retelling of a familiar tale from two
earlier examples, the piecewise linear interval maps and the logistic maps
with escape. There is a twist in the plot, however; unlike either of those two
maps, the horseshoe map f is one-to-one, and hence invertible on its image.
Consequently, we are interested in points for which both the forward and
backward trajectories remain in R. That is, we are also interested in

Γ− = {x ∈ R | fn(x) ∈ R ∀n ≤ 0}.
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Since f(R) does not cover the entire square R, we see that the only
points in R with any pre-images at all are those which lie in f(R1) or f(R2)
(see Figure 49). Write Si = f(Ri); then the set of points in R with one
backwards iterate is the union of the two rectangles S1 and S2, each of
which has width 1 and height λ.

The set of points with two backwards iterates is

f(f(R) ∩R) ∩R = f(S1 ∪ S2) ∩R = S11 ∪ S12 ∪ S22 ∪ S21,

as shown in Figure 51, where Si1i2 = Si1 ∩ f(Si2). Continuing, we obtain
rectangles Si1···in of width 1 and height λn characterised by

(93) Si1···in = Si1 ∩ f(Si2) ∩ · · · ∩ f (n−1)(Sin),

and we see that
Γ− = [0, 1] × Cλ,

where Cλ ⊂ [0, 1] is a Cantor set with both ratio coefficients equal to λ;
hence

dimH Γ− = 1 +
log 2

− log λ
.

S1

S2

S11

S12

S21

S22

Figure 51. Points with two backwards iterates.

Now we can describe the set of points for which all forward and backward
iterates remain in R; this set is given by

Γ = {x ∈ R | fn(x) ∈ R ∀n ∈ Z }
= Γ+ ∩ Γ−

= (Cµ−1 × [0, 1]) ∩ ([0, 1] × Cλ)

= Cµ−1 × Cλ,

and we have

(94)

dimH Γ = dimH Cµ−1 + dimH Cλ

= log 2

(
1

logµ
+

1

− log λ

)

.

Observe that log λ is the Lyapunov exponent in the vertical (contracting)
direction, and that logµ is the Lyapunov exponent in the horizontal (ex-
panding) direction; the notion of entropy can also be defined in this case,
and is equal to log 2. Thus we have another example of the relationship
between dimension, entropy, and Lyapunov exponents.



136 CONTENTS

The set Γ is known as the Smale horseshoe; it is a better-behaved relative
of the non-escaping set for the FitzHugh–Nagumo map with large A. It has
many important dynamical properties, among them the fact that periodic
points of f are dense in Γ, and that every point of Γ is hyperbolic.

Perhaps even more important than these properties is the following: if
we perturb the map f slightly, and consider a map g in the plane which is
“close to” f in some appropriate sense, then the entire qualitative description
we have given remains true for g as well. The rectangle R and the basic sets
Ri1···in , Si1···in will be replaced with slightly less regular regions (“distorted”
rectangles), but Γ will still be the direct product of two Cantor sets, and
will lie in a neighbourhood of the original Γ. In particular, the map g is still
chaotic, just as f is.
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Lecture 30

a. Symbolic dynamics on the Smale horseshoe. In the previous
lecture, we described the geometry of the set Γ of points which do not escape
from R, by observing that Γ is the direct product of the Cantor sets Cλ and
C1/µ. The considerations which led us to this conclusion can also be used
to obtain information about the dynamics of the map f : Γ → Γ.

Recall that the set of points in R whose image is also in R is R1 ∪ R2,
where R1 and R2 are the rectangles shown in Figure 49. It follows that
Γ ⊂ R1 ∪ R2, and so given a point x ∈ Γ, we have fn(x) ∈ R1 ∪ R2 for all
n. Define a sequence ω+ = (i1, i2, i3, . . . ) ⊂ Σ+

2 such that fn−1(x) ∈ Rin for
all n ≥ 1; in this manner we can associate to each point x ∈ Γ a sequence
in the symbolic space Σ+

2 .

Upon the further observation that f (n−1)(f(x)) = fn(x) ∈ Rin+1 , we see
that the point f(x) is coded by the sequence σ(ω+) = (i2, i3, i4, . . . ), and
it looks like we are well on our way to establishing a topological conjugacy
between the map f : Γ → Γ and the shift σ : Σ+

2 → Σ+
2 .

Once again, however, there is a twist in the plot. If we follow the recipe
from our previous encounters with symbolic dynamics, then the sequence
ω+ should determine the point x uniquely as the only point in the infinite
intersection

E+(ω+) = Ri1 ∩Ri1i2 ∩ · · · ∩Ri1···in ∩ · · · .
However, as Figures 49 and 50 suggest, each rectangle Ri1···in has width
µ−n and height 1; this means that the intersection E+(ω+) is a vertical
line, rather than a single point! In fact, any point on the vertical line
E+(x) = E+(ω+) passing through x has a forward trajectory which is coded
by the same sequence ω+.

We see, then, that the coding of the forward trajectory is not enough
to determine x uniquely. We also need to code the backward trajectory
{f−n(x)}∞n=0, which we do via the sets Si1···in , as indicated in (93). Thus

we obtain a sequence ω− = (j1, j2, . . . ) such that f−(n−1)(x) ∈ Sjn for all
n ≥ 1. Once again, ω− does not determine x uniquely; we have

E−(ω−) = Sj1 ∩ Sj1j2 ∩ · · · ∩ Sj1···jn ∩ · · · ,
where each rectangle Sj1···jn has width 1 and height λn, and so the intersec-
tion E−(x) = E−(ω−) is the horizontal line through x.

Although neither the forward itinerary ω+ nor the backward itinerary
ω− of x is by itself enough to determine x uniquely, the combination of the
two does suffice. Indeed, the vertical line E+(x) and the horizontal line
E−(x) meet in a single point, x itself. Thus if we denote by Σ2 = {1, 2}Z

the space of all doubly infinite sequences of ones and twos, we can define a
coding map

h : Σ2 → Γ,

ω = (ω−, ω+) 7→ E−(ω−) ∩ E+(ω+),
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where (ω−, ω+) denotes the concatenation (. . . , j2, j1, i1, i2, . . . ).
Evaluating the coding map h for a given doubly infinite sequence ω =

(. . . , i−2, i−1, i0, i1, i2, . . . ) requires us to decide where the “centre” of the
sequence is; that is, we must decide once and for all which integer k will be
such that ω+ = (ik, ik+1, . . . ) and ω− = (ik, ik−1, . . . ). If we take k = 0,
then ω+ = (i0, i1, . . . ) and ω− = (i−1, i−2, . . . ), so x is the unique point in
Γ for which fn(x) ∈ Rin for all n ∈ Z.

Applying the shift map σ : Σ2 → Σ2 to a sequence ω shifts the “centre”
to the right by one; it is common to demarcate ω+ and ω− with a dot, so
that we may write

σ(. . . i−2i−1.i0i1i2 . . . ) = . . . i−2i−2i0.i1i2 . . . ;

in particular, the construction of the coding map h makes it transparent
that the following diagram commutes:

(95)

Σ2
σ−−−−→ Σ2



yh



yh

Γ
f−−−−→ Γ

The horizontal lines E−(x) and the vertical lines E+(x) have a dynamical
meaning. f contracts each vertical line uniformly by a factor of λ, and so
given y ∈ E+(x), we have

d(fn(x), fn(y)) = λnd(x, y)
n→+∞−−−−−→ 0.

Thus E+(x) is the stable direction through x for the map f . Similarly,
observe that f−1 contracts horizontal lines uniformly by a factor of 1/µ,
and so for y ∈ E−(x), we have

d(f−n(x), f−n(y)) = µ−nd(x, y)
n→+∞−−−−−→ 0.

Thus E−(x) is the stable direction through x for the map f−1, and the
unstable direction through x for the map f .

We see from all this that the dynamics of the symbolic space encode
the hyperbolic structure of the horseshoe map; the stable direction for f
through a point x consists of those points whose forward itineraries eventu-
ally agree with the forward itinerary of x, as given by the sequence ω+, and
the unstable direction is given similarly, as those points whose backwards
itineraries eventually agree with ω−.

Exercise 19. Using the fact that f : Γ → Γ is conjugate to σ : Σ2 → Σ2,
show that f has 2n points of period n (that is, fixed points of fn) lying in
Γ, for all n ≥ 1.

b. Variations on the horseshoe map. One can show that the coding
map h is a homeomorphism, and so the symbolic space Σ2 captures the
topology of Γ as well as the dynamics of f . However, as was the case with
the interval maps we discussed at the beginning of the course, the symbolic
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approach does not capture all the quantitative geometric information about
the horseshoe Γ. In the first place, neither Σ2 nor the map σ depends on the
value of the parameters λ, µ, while varying these quantities certainly changes
the set Γ, and in particular, changes its Hausdorff dimension. Furthermore,
as we mentioned at the end of the previous lecture, we can perturb the map
f slightly and still carry out the whole procedure, obtaining a non-linear
horseshoe which is still modeled by Σ2.

Nevertheless, in each of these cases, the fact that the map f : Γ → Γ is
modeled by the two-sided shift σ : Σ2 → Σ2 still gives us some tools with
which to work. For example, the Non-Uniform Mass Distribution Principle
allows us to get information about dimH Γ by examining various measures
on Γ; the conjugacy with the symbolic case means that any shift-invariant
measure on Σ2 determines an f -invariant measure on Γ. Thus we have
Bernoulli measures, Markov measures, etc. even on a non-linear horseshoe.

The conjugacy with the shift also lets us find many other interesting
f -invariant subsets of the horseshoe Γ; in particular, given a 2×2 transition
matrix A, the subshift of finite type ΣA is shift-invariant, and so h(ΣA) ⊂ Γ
is f -invariant. Thus the horseshoe contains all manner of intricate fractals
which are preserved by the dynamics of f .

Finally, we can consider the horseshoe-like map g : R→ R2 which maps
the square R to the region shown in Figure 52. Following the same line of
argument as for f , one finds that the set of non-escaping points Γ′ is home-
omorphic to Σ3 = {1, 2, 3}Z, and so the restriction of f to Γ′ is conjugate to
the full shift on three symbols. If λ and µ are the contraction and expansion
ratios in the vertical and horizontal directions, respectively, then Γ′ is the
direct product of Cantor sets in the interval with ratio coefficients λ and
µ−1, and so

dimH Γ′ =
log 3

− log λ
+

log 3

logµ
= log 3

(
1

− log λ
+

1

logµ

)

.

This has the same form as (94), giving Hausdorff dimension in terms of en-
tropy and Lyapunov exponents, but the entropy term has been replaced by
log 3. In general, we could consider a horseshoe-like map with n branches,
and would find the same formula, with the entropy replaced by log n. This
reflects the fact that entropy somehow measures the complexity of the sys-
tem; for these maps, the system is entirely linear on the invariant horseshoe,
and so all the complexity comes from how many times that set is folded
back into itself by the map.
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Figure 52. A horseshoe with three branches.
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Lecture 31

a. Transient and persistent chaos. If we choose a typical point
x = (x1, x2) in the Smale horseshoe Γ and observe its trajectory fn(x) =

(x
(n)
1 , x

(n)
2 ) by plotting either x

(n)
1 or x

(n)
2 as a function of n, we see a chaotic

signal which persists as n → ∞, without ever settling down into periodic
behaviour.

However, even though the Smale horseshoe Γ is the largest f -invariant
set in the square R, it has zero Lebesgue measure, and so if we simply
choose a point from the square R “at random”, it will lie outside of Γ with
probability 1. In particular, after some number of iterations, the trajectory
will leave the square; as long as it remains in the square, it appears chaotic,
but once it leaves R, all bets are off.

We have not defined the map f outside of R, and there are various
ways in which it could be extended. Depending on how f is extended to R2

and where the trajectory leaves the square, there are a number of possible
behaviours we might observe; for example, it might be attracted to a fixed
point outside R, or approach a periodic orbit outside R, or it might follow
such an orbit for a while (and hence appear quite regular) before re-entering
R and going through a period of apparent chaos as it follows the horseshoe
again and is eventually repelled. These all fall under the general heading of
intermittent chaos (or transient chaos); such behaviour is characteristic of
typical trajectories in the neighbourhood of a horseshoe.

Thus there are two general sorts of chaotic behaviour that we may ob-
serve, which more or less correspond to the last two examples we have stud-
ied. Persistent chaos, in which the trajectory never settles down to a periodic
orbit, is indicative of the presence of an attractor, and hence of a trapping
region containing the trajectory’s starting point. In intermittent chaos, on
the other hand, the chaotic period eventually ends and the trajectory be-
comes more regular; this is indicative of the presence of a horseshoe, and
occurs when the trajectory enters a region R which is mapped into itself in
a manner resembling the horseshoe map.

b. Continuous-time systems. Up to this point, all the systems we
have studied have been given in terms of a map from some domain to itself.
Such systems are known as discrete-time systems, since “time” moves in
discrete increments, corresponding to how many times the map has been
iterated. For the remainder of this course, we will focus our attention on
continuous-time systems, which are specified by ordinary differential equa-
tions (ODEs) rather than maps. Before examining the connections between
the discrete and continuous-time cases, we will point out a striking differ-
ence between the two—for discrete-time systems, we were able to produce
chaotic behaviour in maps of any dimension, while continuous-time systems
cannot be chaotic in fewer than three dimensions.
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We begin by recalling some of the basic notions regarding differential
equations. The system of ODEs specifying a continuous-time system may
be written as a single ODE for a vector-valued function x. That is, we
consider functions x : (a, b) → Ω ⊂ Rn which solve the following equation:

(96) ẋ(t) = F(x(t)),

where F : Ω → Rn is the function defining the ODE on the domain18 Ω. For
the time being, we consider the case n = 2; if we write x = (x1, x2) and
F(x) = (F1(x), F2(x)), then (96) may be written coordinate-wise as

ẋ1(t) = F1(x1(t), x2(t)),(97)

ẋ2(t) = F2(x1(t), x2(t)).(98)

If the function F is continuously differentiable—that is, if all the partial
derivatives ∂Fi

∂xj
exist and are continuous—then the standard existence and

uniqueness theorem from the theory of ODEs implies that the system has
a unique solution on some interval −ε < t < ε. By gluing together the
solutions on these small intervals, the solution may be extended to some
maximal interval a < t < b; the endpoints a and b are either infinite or the
points at which x(t) reaches the boundary of Ω. If Ω is unbounded, then it is
possible for a solution x(t) to reach infinity in finite time; this phenomenon
can be avoided by requiring, for example, that ‖F(x)‖ be bounded.

Figure 53. Some integral curves for a vector field.

The ODE (96) can also be given a geometric interpretation. The vector
F(x) specifies a direction and length; placing this vector so that it originates
at the point x, we obtain a vector field in the plane. Solutions of the
ODE (96) correspond to integral curves of the vector field; that is, curves
whose tangent vector at each point is exactly the element of the vector field
at that point, as shown in Figure 53.

Interpreting an ODE in terms of its associated vector field can be of
great utility when it comes to answering certain global questions regarding
fixed points, as results from index theory, etc. can be brought into play.

The integral curves γ : (a, b) → R2 which represent solutions of the ODE
admit various parametrisations, as do all curves; however, the requirement

18To be precise, we take our domain Ω to be a simply connected open subset of Rn,
that is, an open subset such that every loop in Ω can be contracted to a point without
ever leaving Ω.
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that the tangent vector γ′(t) have the same length as the vector F(γ(t))
fixes a unique natural parametrisation. Writing γx for the unique curve
with γx(0) = x, we see that γx(t) is the point in R2 which the system
reaches after time t, if the initial condition at time 0 was given by x. The
map which takes x to γx(t) is called the time-t map of the system, and is
denoted ϕt.

This defines a one-parameter family of maps ϕt : Ω(t) → Ω, where Ω(t)
consists of the points x ∈ Ω such that γx(τ) remains in Ω for 0 ≤ τ ≤ t. If
Ω = R2 and ‖F(x)‖ is bounded, then ϕt is defined on all of R2.

Each of these maps corresponds to evolving the system forward (or back-
ward) by the appropriate amount of time, and they are related to each other
by the group property

(99) ϕt+s = ϕt ◦ ϕs = ϕs ◦ ϕt;
that is, ϕt+s(x) = ϕt(ϕs(x)) = ϕs(ϕt(x)) for all x ∈ R2 and t, s ∈ R.

Definition 66. A flow on Rn is a one-parameter family of one-to-one
differentiable maps ϕt : Rn → Rn such that ϕ0(x) = x for all x ∈ Rn and (99)
holds for all s, t ∈ R.

Flows provide the third way of looking at continuous-time systems; the
three descriptions of such a system in terms of an ODE, a vector field, and
a flow are all equivalent, and which one is most suitable depends on the
circumstances.19

To describe the trajectories of the solutions to an ODE, we begin (as
always), by finding the fixed points. In the algebraic language of the flow
ϕt, these are the points x such that ϕt(x) for all t ∈ R; in the geometric
language of vector fields, these are the points at which the vector fields
vanish; and in the language of ODEs, these are the zeros of the function F,
the points at which F(x) = 0, or in terms of the coordinate functions,

(100) F1(x1, x2) = F2(x1, x2) = 0.

Suppose for the present that (100) has only finitely many solutions

x(1), . . . ,x(n). Then near the fixed point x(i), we have

(101) F(x) = F(x(i)) +DF(x(i))(x − x(i)) + r(x),

where r(x) is an error term of order o(‖x− x(i)‖). Because x(i) is fixed, the
ODE (96) becomes

ẋ(t) = F(x(t)) = DF(x(i))(x(t) − x(i)) + r(x),

and in the new coordinates v = x − x(i), we have

v̇(t) = DF(x(i))v(t) + o(‖v‖).
19The relationship between discrete-time and continuous-time systems is clearest

when we consider the latter in terms of flows. If we restrict our attention to integral
values of s and t, then (99) reduces to (1), which reflects the fact that for a fixed value of
t, say t = 1, the time-t map of a continuous-time system defines a discrete-time system.
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Since the perturbation from the linear case is small in a neighbourhood of
the fixed point, we may hope to describe the solutions of (96) near the fixed
points—and in particular, determine the stability of those fixed points—by
first describing the solutions of the linear system

v̇(t) = DF(x(i))v(t),

which depend on the real part20 of the eigenvalues of DF(x(i)). In two
dimensions, there are only three non-degenerate possibilities:

(1) Both eigenvalues have negative real part, in which case the trajec-
tories v(t) are the curves shown in one of the three phase portraits
in Figure 27. If the trajectories are those shown in Figure 27(a),
the fixed point is called an attracting focus; if they are the curves
shown in Figure 27(b) or (c), the fixed point is called a attracting
node.

(2) Both eigenvalues have positive real part, in which case the trajec-
tories are the same curves as in the previous case, but move in the
opposite direction, away from the fixed point instead of towards it.
In this case the fixed point is either a repelling focus or a repelling
node.

(3) One eigenvalue is negative and the other positive; in this case the
trajectories follow the curves shown in Figure 28, and the fixed
point is called a saddle. The attracting and repelling directions
(horizontal and vertical in the picture) correspond to the eigenvec-

tors of DF(x(i)).

In each of these cases, the behaviour of the non-linear system is qualita-
tively the same as the behaviour of the linear system, provided we consider
a small enough neighbourhood of the fixed point. However, there are also
various degenerate cases which may occur; for example, if both eigenvalues
are purely imaginary, then the trajectories of the linear system are concen-
tric circle around the fixed point, as shown in Figure 54. In this case, the
non-linear effects may (or may not) qualitatively change the behaviour of
the system in an arbitrarily small neighbourhood of the origin, and so we
gain no information about the stability of the fixed point.

20This is in contrast to the criteria for linear maps, where it was the absolute value
of the eigenvalues which determined the stability. In fact, the eigenvalues of the time-1
map ϕ1 are of the form eλ, where λ is an eigenvalue of DF, and we observe that eλ lies
on the unit circle if and only if λ lies on the imaginary axis.
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Figure 54. Trajectories around a centre.
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Lecture 32

θ

Figure 55. A pendulum.

a. The pendulum. One of the standard examples of a non-linear dif-
ferential equation is the pendulum, a massless rod with one end fixed and a
point mass at the other end. We let θ denote the angle by which the rod is
displaced from the vertical, as shown in Figure 55. Neglecting effects of air
resistance, the equation governing the motion of the pendulum is

(102) θ̈ + a sin θ = 0,

where a > 0 is a parameter which depends on the length of the rod, the
mass on the end, and the force of gravity.

We require two initial conditions, θ and θ̇, in order to specify a particular
solution of (102). Thus the phase space of the pendulum is two-dimensional;

if we write x1 = θ and x2 = θ̇, then (102) may be rewritten as

(103)
ẋ1 = x2,

ẋ2 = −a sinx1,

or even more succinctly as ẋ = F(x), where F(x1, x2) = (x2,−a sinx1),
which allows us to use the language of the previous lecture.

The fixed points of (103) occur at (kπ, 0) for k ∈ Z; however, since
adding 2π to x1 does not change the physical state of the system, there are
actually only two fixed points. One of these corresponds to a pendulum
hanging motionless, pointing straight down (when k is even); the other cor-
responds to a pendulum balancing on its pivot, pointing straight up (when
k is odd).

Intuitively, we feel that the first of these is “stable”, while the second is
“unstable”; we may attempt to confirm and clarify this intuition by linearis-
ing around the fixed points, as in the previous lecture. Upon doing so, we
discover that at x = (0, 0), both eigenvalues of DF(x) are purely imaginary,
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and so the linearised system is a rotation, while at x = (π, 0), one eigenvalue
is positive and one is negative, and so (π, 0) is a saddle.

x2

x1

−π π

Figure 56. The phase portrait for a pendulum.

These results on the stability of the fixed points are reflected in Figure 56,
which shows the phase portrait for (103). Observe that near (0, 0), the
phase portrait is as shown in Figure 54, while near (π, 0) (equivalently,
near (−π, 0)), it looks like Figure 28, although now the stable and unstable
directions are no longer horizontal and vertical.

What do the various trajectories in the phase portrait correspond to
in the physical system? Note that every trajectory intersects the vertical
axis, which corresponds to the configuration where the pendulum is pointed
straight down. The height at which the trajectory intersects the axis cor-
responds to the speed with which the pendulum is moving when it reaches
this configuration.

If this speed is relatively small, then the pendulum will rise a litle ways,
eventually reach a maximum height (equivalently, a maximum angle of dis-
placement), and then fall again, passing back through the line x1 = 0 with
the same speed it initially had, but in the other direction, and so on; this
corresponds to the closed nearly-elliptical orbits around the origin in Fig-
ure 56. After some finite time T , the system is back where it started, and
so for these trajectories we have x(t + T ) = x(t) for all t ∈ R; these are
periodic orbits.

If we start the pendulum off with a greater initial speed, then it will
reach a greater height before reversing direction; it will also take longer to
reach its maximum angle, and so the period T increases. At some critical
initial speed, the maximum angle will be equal to π; that is, the pendulum
has enough energy that gravity will not pull it back before it reaches the
top.21

In fact, if the pendulum reaches the top in finite time, then it will have
some momentum left over (even if only a very small amount), which will be
enough to carry it over the top, and into another complete rotation, so that it
eventually reaches the bottom again, at which point it has exactly the same
speed it began with. Thus there is some T such that x(t+T ) = x(t)+(2π, 0)

21Many of us have tried to accomplish this on a swing set as a child.
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for all t ∈ R; these orbits are not periodic from the point of view of the
system in the plane, but since changing x1 by 2π does not change the physical
system, they are periodic in terms of the pendulum itself.22

What happens, though, if the pendulum has exactly enough energy to
reach the top; enough that gravity will not stop it short, but not enough
that it will have any momentum left over? Then it will move more and more
slowly as time goes on, but will never stop (in which case it would reverse
direction) or reach the top (in which case it would have some momentum
left and would keep going). In a manner of speaking, it reaches the top, but
in infinite time.

There are two trajectories in Figure 56 which correspond to this situa-
tion; one runs from (−π, 0) to (π, 0), passing through a point on the positive
x2-axis, while the other runs from (π, 0) to (−π, 0), passing through a point
on the negative x2-axis. Each of these curves is the unstable manifold for
one fixed point, and the stable manifold for the other. Although both of
these curves have finite length as curves in R2, as trajectories it takes a
solution of (103) an infinite amount of time to move the entire length of
either one.

Trajectories such as these, which both originate and terminate in a fixed
point, are known as homoclinic (if they begin and end in the same fixed
point) or heteroclinic (if they begin and end in different fixed points), and
often act as separatrices between regions of different qualitative behaviour.
In this case, the two trajectories just described separate the orbits which
“oscillate” (as we usually expect a pendulum to do) from the orbits which
“spin”.

b. Two-dimensional systems. We now turn our attention to general
two-dimensional continuous-time systems; as with discrete-time systems, a
useful first step in analysing any given system is to find its fixed points
and periodic orbits, and then classify them by stability. Fixed points were
discussed in the previous lecture, so we now consider periodic orbits.

In a discrete-time system, a periodic orbit is just a finite collection of
points, and it could have any of the stabilities available to a fixed point; sta-
ble, unstable, saddle, etc. In a continuous-time system, on the other hand, a
periodic orbit is a closed curve, and so is of higher dimension than a periodic
orbit for a map. This seemingly innocuous distinction is largely responsible
for the absence of chaos in two-dimensional continuous-time systems, as we
shall now see.

Proposition 67. Let γ : R → R2 be a periodic solution of the ODE (96),
and suppose that γ is isolated; that is, that there exists some open neighbour-
hood U ⊂ R2 containing the curve γ such that U contains no other periodic
orbits. Then γ is either stable and attracts every nearby trajectory, or it is
unstable and repels every nearby trajectory.

22A more satisfactory model takes the phase space to be not R2, but the cylinder;
that is, R2 wrapped up so that the x1-axis becomes a circle.



LECTURE 32 149

η

γ

x rη(x)

Figure 57. The Poincaré section for a transversal curve η.

Proof. Fix a curve η which intersects the curve γ transversally, as
shown in Figure 57. Then we define a map rη which acts on η, called the
Poincaré section for η, as follows: each point x ∈ η defines a unique solution
of (96), which remains near γ, and so eventually intersects η again; rη(x) is
defined to be the first point at which this intersection occurs.

Now suppose that rη(x) is closer to γ than x is. We iterate the Poincaré
section by continuing the solution curve through rη(x); this curve lies closer
to γ than the solution curve through x does, and in particular, r2

η(x) lies
closer to γ than rη(x) does. This follows because solutions of (96) are unique,
and so no two solution curves can cross each other; thus the second curve
(starting at rη(x)) cannot cross the first curve (starting at x) and escape.
This is the piece of the argument which makes explicit use of the fact that
we are working in two dimensions.

Observe that fixed points of the Poincaré section correspond to periodic
solutions of the ODE; thus because γ is an isolated periodic orbit, the map rη
has no fixed points except the intersection of γ and η. Since the trajectory of
x under the Poincaré section moves monotonically along η, it must converge
to a fixed point of rη, which shows that the solution curve beginning x
approaches the periodic orbit γ. Similarly, any trajectory beginning close
enough to γ approaches γ, and so the periodic orbit is stable.

A similar argument applies if rη(x) is further away from γ than x is, in
which case γ is unstable, and these are the only two options. �

One consequence of Proposition 67 is that a periodic orbit for a two-
dimensional continuous-time system cannot be a “saddle”, and so the menagerie
of possible local behaviours is tamer than it was for discrete-time systems.

There are a number of other results which hold in the two-dimensional
continuous-time case, which are of a more global character.

Proposition 68. If γ is a periodic solution of (96), then the region
enclosed by γ contains a fixed point of the system.

Sketch of proof. One shows that this region is homeomorphic to a
disc (this is the Schoenflies Theorem, a stronger version of the Jordan Curve
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Theorem), and then applies the Brouwer Fixed Point Theorem to the time-1
map. �

Proposition 69. Suppose that F : Ω → R2 is divergence-free; that is,

(104)
∂F1

∂x1
+
∂F2

∂x2
6= 0

for every x = (x1, x2) ∈ Ω. Then Ω contains no periodic orbits.

Proof. Suppose γ is a periodic orbit in Ω, and let Ω′ ⊂ Ω be the region
enclosed by γ, so that γ = ∂Ω. Then applying Stokes’ Theorem, we have
∫∫

Ω′

∂F1

∂x1
+
∂F2

∂x2
dx1 dx2 =

∫

γ
F1 dx2 − F2 dx1

=

∫ T

0
F1(x(t))ẋ2(t) − F2(x(t))ẋ1(t) dt

=

∫ T

0
F1(x(t))F2(x(t)) − F2(x(t))F1(x(t)) dt

= 0.

However, since the original integrand is continuous and non-vanishing on Ω′,
it must be either positive everywhere or negative everywhere, and hence the
integral cannot be zero. This contradiction implies that no periodic orbits
exist in Ω. �

In order to state the general result regarding the absence of chaos in two
dimensions, we adapt the notion of an ω-limit set to the continuous-time
case.

Definition 70. If γ : R → R2 is a trajectory in R2 with γ(0) = x, then
the ω-limit set of x is

(105) ω(x) = {p ∈ R2 | p = lim
n→∞

x(tn) for some sequence tn → ∞}.

The α-limit set α(x) is defined similarly, but with the requirement that
tn → −∞ instead.

Exercise 20. Show that each ω-limit set ω(x) is closed and ϕt-invariant
for all t, and that the same is true of the set Ω =

⋃

x∈R2 ω(x) of all points

in R2 which lie in some ω-limit set.

A complete description of the possible ω-limit sets for flows in R2 is given
by the following theorem, whose proof we omit.

Theorem 71 (Poincaré–Bendixson). If γ is a bounded trajectory of a
flow ϕt with initial condition γ(0) = x, then one of the following occurs:

(1) ω(x) is a union of fixed points and heteroclinic (or homoclinic)
orbits.

(2) γ is a periodic orbit.
(3) ω(x) is a periodic orbit to which γ converges.



LECTURE 32 151

The Poincaré–Bendixson theorem rules out the existence of chaos for
two-dimensional flows by completely describing all the possible asymptotic
behaviours, all of which are quite regular. Thus in order to observe chaos
in a continuous-time system, we must look to higher dimensions, which we
now proceed to do.

c. The Lorenz equations. For flows on R3, we do not have the proper
topological context to make the theorems in the previous section work; in
particular, a periodic orbit γ does not need to be the boundary of a ϕt-
invariant region homeomorphic to a disc. Thus life can be much more in-
teresting in higher dimensions; to illustrate this fact, we study a particular
system of ODEs in R3, the Lorenz equations

(106)

ẋ = −σx+ σy,

ẏ = rx− y − xz,

ż = xy − bz.

Here r (called the Reynolds number) is the leading parameter, while σ and b
will be fixed at σ = 10 and b = 8/3. In the next lecture, we will examine the
behaviour of solutions of (106) as r ranges from 0 to some number R > 25.

But first, a little history. The equations (106) were first considered in
1963 by Edward Lorenz, a meteorologist at M.I.T. who was studying the
motion of the atmosphere. To a good approximation, the atmosphere is
governed by the Navier–Stokes equations of fluid motion; however, these
are enormously difficult to solve, and even an approximate numeric solution
requires a powerful computer.

Four years earlier, Lorenz had begun using one of the more powerful com-
puters available at that time23 to simulate the motion of the atmosphere.
More precisely, he considered a layer of fluid between two horizontal plates,
where the lower plate is heated and the upper one is cooled. If the differ-
ence in temperature ∆T between the plates is small, then heat will flow by
conduction from the bottom plate to the top plate, and the fluid will remain
motionless, and this is a stable equilibrium configuration; as ∆T increases,
this equilibrium configuration becomes unstable, and a small disturbance
is enough to cause convection cells to form in the fluid, rotating vortices
of fluid carrying warm fluid from the bottom plate to the top plate, and
cooler fluid back down. As ∆T increases even further, these convection cells
become unstable, and the fluid flow eventually becomes turbulent—that is,
chaotic.

Initially, Lorenz considered a system of twelve equations in twelve vari-
ables, which were obtained as Fourier coefficients of the functions in the
Navier–Stokes equations; upon being given the initial conditions, the com-
puter would calculate the (approximate) trajectory of the system. One day,
Lorenz wanted to take a closer look at a part of the previous day’s simu-
lation, and so he entered as the initial condition the output from midway

23Sixty computations a second!
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through the calculated trajectory. To his surprise, the results of this simula-
tion, which should have matched perfectly with the previous results, instead
diverged quite quickly!

Lorenz soon realised what the problem was; the computer stored all
initial data and intermediate calculations to an accuracy of 6 digits, but
only printed out the first 3 digits. Thus when Lorenz entered the previous
day’s results, he unknowingly introduced a small error term, on the order
of 10−4. Rather than dying away or at least remaining small as the system
evolved in time, this error term grew exponentially, until it became large
enough to make the two trajectories appear completely unrelated.

After further investigation, Lorenz was able to replace the system of
twelve ODEs with the system (106) of three ODEs which now bears his
name; although this system does not capture all the details of the original
system, it displays the same behaviour. The leading parameter r plays the
role of ∆T ; for small values of r, as we will see, trajectories of the system are
quite simple. However, when r becomes sufficiently large, (106) displays one
of the hallmarks of chaos, sensitive dependence on initial conditions at every
point; that is, any two nearby trajectories eventually diverge exponentially,
as described above.
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Lecture 33

a. Beyond the linear mindset. One of the simplest ODEs is the
one-dimensional equation

(107) ẋ = ax,

where a ∈ R is a constant; one quickly learns in any introductory course
in differential equations that solutions of (107) have the form x(t) = eatx0,
where x0 ∈ R is the initial condition at t = 0. One later learns that this
solution generalises to higher dimensions, and that for an n × n matrix A,
the vector ODE

(108) ẋ = Ax

is solved by trajectories of the form

(109) x(t) = eAtx0,

where the exponential of a matrix X is defined by

eX =
∞∑

n=0

An

n!
= I +X +

X2

2
+
X3

6
+ · · · .

This allows us to solve an arbitrary linear ODE; however, non-linear
ODEs are much more difficult to deal with, and explicit closed-form solutions
such as (109) are not generally available. Certain special cases do admit
such solutions—for example, the equations of celestial mechanics derived
from Newton’s law of universal gravitation can be solved explicitly (one
often says they can be integrated)—and until the mid-twentieth century, the
primary goal in the study of non-linear ODEs was to find clever solutions
to particular equations, or classes of equations.

All systems for which explicit solutions could be found turned out to
be Morse–Smale, and the prevailing philosophy held that this was the only
possible sort of behaviour. Thanks to the work of Jacques Hadamard, Heinz
Hopf, and Gustav Hedlund, geometers knew that the geodesic flow on a
negatively curved manifold gave rise to a chaotic system; however, among
physicists and mathematicians working in the field of differential equations,
it was believed that a chaotic signal, such as that observed by Lorenz in
the solution of (106), could only be the result of a random noise from the
external environment of the system.

Lorenz’s examination of the system (106) demonstrated that a chaotic
signal could be produced by a completely deterministic process; because he
published his results in the Journal of Atmospheric Science, it took some
time for the mainstream of the mathematics and physics communities to
become aware of them. However, the word eventually spread, and the phe-
nomenon of deterministic chaos is now an integral part of our understanding
of the natural world.
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b. Examining the Lorenz system. To begin our analysis of the sys-
tem (106), we first find the fixed points at which ẋ = ẏ = ż = 0 and
determine their stability via the Jacobian determinant DF. It is helpful to
observe that the system is invariant under the reflection in the z-axis given
by

x 7→ −x, y 7→ −y, z 7→ z,

and so solutions away from this axis come in symmetric pairs. In particular,
any fixed point with x 6= 0 or y 6= 0 has a twin on the other side of the
z-axis.

For σ, b 6= 0, the fixed point conditions ẋ = 0 and ż = 0 imply that y = x
and z = x2/b. Thus the condition ẏ = 0 may be written as

rx− x− x3

b
= 0.

Thus the system always has a fixed point at (0, 0, 0), and any other fixed
point must satisfy

x2

b
= r − 1.

Hence for 0 < r < 1, the only fixed point is the origin; at r = 1, a pitchfork
bifurcation occurs, and two more fixed points appear:

p1 =
(√

b(r − 1),
√

b(r − 1), r − 1
)

,

p2 =
(

−
√

b(r − 1),−
√

b(r − 1), r − 1
)

.

To check the stability of these fixed points, we find the eigenvalues of
the Jacobian matrix

DF(x) =





−σ σ 0
r − z −1 −x
y x −b



 .

At the origin, we have x = y = z = 0, and so

DF(0) =





−σ σ 0
r −1 0
0 0 −b





has −b as one eigenvalue, and the other two eigenvalues are the roots of

λ2 + (σ + 1)λ+ σ(1 − r) = 0,

which is the characteristic polynomial of the 2 × 2 matrix in the upper-left
corner of DF(0). The constant negative eigenvalue −b with eigenvector
(0, 0, 1) indicates that the vertical direction is always contracting at the ori-
gin. For 0 < r < 1, the other two eigenvalues are also negative, and the
origin is an attracting fixed point; for r > 1, one of these eigenvalues is neg-
ative and the other is positive, and so the origin is a hyperbolic fixed point,
with two contracting directions and one expanding direction. Trajectories
moving along the latter direction are attracted to one of the two fixed points
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p1 and p2, which exist precisely when r > 1; this is the situation shown in
Figure 58.

0
p1

p2

Figure 58. The fixed points for the Lorenz system when
r − 1 is small.

Initially, all the eigenvalues of DF(p1) and DF(p2) are real and negative;
as r increases, two of the eigenvalues become complex. p1 and p2 remain
stable, and in particular, still attract the trajectory along the unstable man-
ifold from the origin, but now trajectories approach these fixed points along
the spirals shown in Figure 59.

Figure 59. Changes in the behaviour of orbits as r increases.

As r increases still further, the spirals enlarge, and the trajectory along
the unstable manifold from the origin takes longer and longer to approach
p1 or p2, as shown in Figure 60.

Through all of this, the system defined by (106) is Morse–Smale; all
trajectories which begin on the stable separatrix approach the origin, and
all other trajectories approach either p1 or p2, depending on which side of
the stable separatrix they begin on.
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Figure 60. Weaker attraction and larger spirals as r in-
creases still further.

Finally, at some critical value r = r0 ≈ 13.926, things change.24 For
r < r0, the two halves of the unstable manifold from the origin are hete-
roclinic orbits which approach 0 as t → −∞ and p1 or p2 as t → ∞; as
r approaches r0, the spirals widen and these trajectories come closer and
closer to the stable manifold from the origin, which is shown as a vertical
plane in Figure 60.

Figure 61. Appearance of homoclinic orbits at r = r0 ≈ 13.926.

For r < r0, the trajectories along the unstable manifold come close to
the stable manifold, but are eventually attracted to the fixed point p1 or p2.
When r reaches r0, this changes, and the trajectories become homoclinic;
rather than spiraling in to p1 or p2, they approach the origin from the
vertical direction, as shown in Figure 61. For r > r0, a completely new
picture emerges; after circling one fixed point, the trajectories along the

24Because r0 is found as a result of numerical computations, we can only give an
approximate value.
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unstable manifold from the origin return past the stable separatrix25 and
approach the other fixed point, as shown in Figure 62. The fixed points p1

and p2 are still stable, but now an unstable periodic orbit appears around
each one, separating trajectories which spiral in from trajectories which pass
the separatrix and approach the other fixed point.

Figure 62. A change in behaviour when r > r0.

Although this simplified picture suggests that the system may be Morse–
Smale at this point, things are actually rather more complicated than that.
We will see in the next lecture that there is a horseshoe hidden in this
picture, and that as a result, the system is no longer Morse–Smale (since it
has infinitely many periodic points) and in fact exhibits intermittent chaos.

25Without intersecting it, which suggests that the geometry of the stable manifold is
quite complicated, as indeed it is.
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Lecture 34

a. Homoclinic orbits and horseshoes. Setting aside the Lorenz sys-
tem for the moment, we examine some of the concepts introduced in the last
few lectures in the discrete-time setting. In particular, we can define homo-
clinic and heteroclinic orbits for a discrete-time system just as we did for a
flow; we will focus our attention on the former, for it turns out that the exis-
tence of a homoclinic orbit has striking consequences for the dynamics near
the corresponding fixed point. In particular, such a fixed point is contained
in a horseshoe, a closed invariant set on which the dynamics are topologi-
cally conjugate to the Smale horseshoe, or to the full shift on a two-sided
symbolic space.

To see why this is so, let us first consider the Smale horseshoe itself, the
maximal invariant set Γ for the map f : R→ R2 shown in Figure 48. As we
saw in (95), the map f : Γ → Γ is topologically conjugate to the full shift
σ : Σ2 → Σ2. This implies that it has two fixed points, corresponding to the
sequences ω1 = (. . . 1.11 . . . ) and ω2 = (. . . 2.22 . . . ).

x

(a)

x

y

(b)

Figure 63. Finding a homoclinic orbit in a horseshoe.

Write x = h(ω1), and recall that the (local) stable and unstable mani-
folds at x are the vertical and horizontal lines, respectively, passing through
x, shown in Figure 63(a). Because these are invariant under the action of f
(being defined in terms of asymptotic behaviour of trajectories), the unstable
manifold contains the entire image of the horizontal line through x, which
is the sideways “U”-shaped curve shown in Figure 63(b). In particular, it
contains the point y, which therefore lies on both the stable and unstable
manifolds of x; it follows that the trajectory of y approaches x in both the
forward and backward directions, and hence is a homoclinic orbit.26

The situation here differs from the continuous-time case discussed in
the previous lecture; here the intersection between the stable and unstable
manifolds is transversal and happens in finite time, away from the fixed
point, rather than being tangent and happening asymptotically as t → ∞,
as we saw for the Lorenz system.

26This establishes the existence of a homoclinic orbit for both fixed points of f ; in fact,
every periodic point also has stable and unstable manifolds, whose points of intersection
lie on homoclinic orbits. Since periodic points are dense in the horseshoe, we see that
homoclinic orbits are really quite ubiquitous.
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This relationship between horseshoes and homoclinic orbits might re-
main a mere curiosity, were it not for the fact that the implication actually
runs both ways. Setting aside the particular form of the map defining the
Smale horseshoe, let us consider an arbitrary map f with a transverse ho-
moclinic point y for a hyperbolic fixed point x, as shown in Figure 64(a).

x

y

(a)
x

y

f(y)

(b)
x

y

f(y)
f 2(y)

(c)

Figure 64. Consequences of a homoclinic point.

The unstable manifold is invariant, and so it also passes through f(y),
which lies on the stable manifold between y and x; as Figure 64(b) shows,
this forces the unstable manifold to fold back on itself. A similar argument
applies to f2(y), as Figure 64(c) shows, and indeed to any fn(y); thus the
unstable manifold folds back on itself infinitely often, and is stretched further
and further between successive intersections with the unstable manifold. Not
only that, but the stable manifold is left invariant by the action of f−1, and
must pass through all the points fn(y) for n < 0, so it folds back on itself
infinitely often as well. The resulting picture is known as a homoclinic
tangle, part of which is shown in Figure 65 (with slightly different notation
– a better picture will follow eventually).

Observe that the picture in Figure 64 is somewhat idealised, and that
the intersections between the stable and unstable manifolds may not be
orthogonal initially; however, as n→ ±∞, the angle of intersection at fn(y)
goes to π/2.

One sees immediately from Figure 65 that the geometric stucture of the
stable and unstable manifolds, and hence of the orbits of the system, is
fantastically complicated; Henri Poincaré, who first discovered this picture
in 1889 in conjunction with his work on the three-body problem, remarked,

One must be struck by the complexity of this shape, which
I do not even attempt to illustrate. Nothing can give us a
better idea of the complication of the three-body problem,
and in general of all problems of dynamics for which there
is no uniform integral.

The fundamental result which ties all this together is due to Smale him-
self, who showed that given a transverse homoclinic intersection for a fixed
point x, one can find a rectangle R containing x and an integer n such
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Figure 65. The homoclinic tangle.

that fn acts on R in a manner similar to the canonical horseshoe map; in
particular, there exists a Cantor-like set Γ which is closed and invariant.27

Recalling our previous discussion of horseshoes and transient chaos, we
may summarise all this by the statement that the existence of a transversely
homoclinic point implies the existence of a horseshoe, which in turn implies
the existence of transient chaos; on the face of it, this is quite a powerful
result given the simplicity of the assumption!

b. Horseshoes for the Lorenz system. The method just described
for finding a horseshoe does not work in the continuous-time case, where
the stable and unstable manifolds cannot intersect transversally due to the
uniqueness of solutions through a given point. While there is no universal
mechanism for constructing a horseshoe in continuous-time systems, there
are certain techniques which work in particular cases; thus we turn our
attention back to the Lorenz system, and demonstrate the existence of a
horseshoe for r > r0.

Observe that the fixed points p1 and p2 both lie in the plane z = r − 1;
by considering the Poincaré section through this plane, we may pass from a
three-dimensional flow to a two-dimensional map, just as in Lecture 32 we
obtained information about flows in R2 by considering maps of R. To wit,

27In fact, Γ is the closure of the set of intersections of the stable and unstable manifolds
at x.
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we choose a section of the plane z = r − 1 as shown in Figure 66; having
fixed

E ⊂ { (x, y, z) ∈ R3 | z = r − 1 },
we define a map T : E → E by

T (x) = ϕτ(x)(x),

where τ(x) > 0 is minimal such that ϕτ(x)(x) ∈ E.28 If x is a fixed point of
the flow, then set T (x) = x.

Figure 66. Defining the Poincaré section on E.

Since the domain of T is a two-dimensional space, the map T is in some
ways simpler than the flow ϕt; however, because not all trajectories which
begin in E necessarily return to E, the return map T may not be defined on
all of E. In particular, it may not be a continuous map on all of E, and so we
pay a price for the simplification. We immediately encounter this difficulty
when we consider points in the intersection of E with the stable manifold
through the origin. These are both two-dimensional surfaces, which intersect
in a curve ℓ, shown schematically in Figure 66 as a line; if x is any point
on ℓ, then the trajectory ϕt(x) approaches 0, and never crosses E again, so
T (x) is undefined.

Consider then a point x ∈ E which lies just to the left of ℓ; the trajectory
ϕt(x) will follow the stable manifold towards the origin for some ways before
diverging and following the unstable manifold out towards near the edge of
its range, eventually passing outside the edge of E, and then intersecting E
again on the other side of ℓ, as shown in Figure 66.

As x approaches ℓ, T (x) approaches p2, and so any continuous extension
of T to the line ℓ must have T (x) = p2 for all x ∈ ℓ; however, an identical

28We remark in passing that the same construction may be used for discrete time
maps; given a map f : X → X and a subset A ⊂ X, we can define the Poincaré first
return map fA : A → A in an analogous fashion.
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argument requires T (x) = p1, and so the return map has no continuous
extension to the line ℓ.

Despite this complication, James Kaplan and James Yorke were able to
demonstrate the existence of a horseshoe-like structure for the map T . They
showed that for carefully chosen regions A,B,C,D ⊂ E, the map acts as
shown in Figure 67, and so one may once again carry out the procedure in
the construction of the Smale horseshoe and obtain a Cantor-like set as the
maximal invariant set for T . As trajectories of the Lorenz system come near
this horseshoe, they exhibit chaotic behaviour for a finite period of time
before being repelled, and so the system displays transient chaos.

A

B

C

D

ℓ

p1

p2

ℓ

T (B)

T (D)

T (C)

T (A)
p1

p2

Figure 67. A horseshoe-like structure in the Poincaré section.
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Lecture 35

A

B

C

D

p1

p2

T (A) T (C)

T (B) T (D)

RB RD

RCRA

Figure 68. Points with one pre-image.

a. More about horseshoes in the Lorenz system. Let us take a
closer look at Figure 67 and the associated Poincaré section T : E → E.
We are interested in the set of points whose trajectories remain in R =
A ∪ B ∪ C ∪ D; Figure 68 shows the topological structure of the part of
the map which is significant for our purposes. The four darker trapezoids
RA, RB, RC , and RD make up f(R) ∩ R, the set of points in R with one
pre-image in R; these pre-images are shown in Figure 69, where the union
of the four rectangles is the set of points in R with one forward image in R.

A

B

C

D

T−1(RA)

T−1(RB)

T−1(RC)

T−1(RD)

Figure 69. Points with one forward image.

This figure is schematic rather than quantitatively correct; it captures
the topological behaviour which is observed in numerical simulations, even
though the true regions do not have linear edges.
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Taking the intersection of the four sets in Figure 69 with the four sets
in Figure 68, we obtain eight trapezoids, whose union is the set of points
in R with one forward and one backward image still in R. If we write, for
example,

RA.CD = T (A) ∩ C ∩ T−1(D)

for the set of all points lying in C whose first iterate is in D and which are
the image of some point in A, then the set of points with one forward and
backward image in R is

⋃

(i−1.i0i1)

Ri−1.i0i1 ,

where the ij range over the alphabet {A,B,C,D}. Similarly, the set of
points with two forward and backward iterates is

⋃

(i−2i−1.i0i1i2)

Ri−2i−1.i0i1i2 ,

and we may once again write the set of all points whose entire trajectories
remain in R as

Λ =
⋂

n≥1

⋃

(i−n...i−1.i0i1...in)

Ri−n...i−1.i0i1...in .

The invariant set Λ has many of the features of the Smale horseshoe.
Topologically, both are totally disconnected maximal invariant set for the
relevant map.29 Dynamically, in both cases we have a stable and an unstable
direction through each point x ∈ Λ (in fact, through each point in R),
which for the Lorenz horseshoe may be seen as follows. Each of the regions
A,B,C,D is contracted horizontally and expanded vertically, and so there
exist two curves through x, one stable and one unstable, with the following
properties:

(1) If y and z lie on the stable curve of some point x, then their orbits
are asymptotic in positive time:

lim
n→+∞

d(Tn(y), Tn(z)).

(2) If y and z lie on the unstable curve of some point x, then their
orbits are asymptotic in negative time:

lim
n→−∞

d(Tn(y), Tn(z)).

(3) The tangent vectors to the stable and unstable curves at x lie close
to the horizontal and vertical directions, respectively.

29The careful reader will observe, however, that the set Λ we consider here is not
closed, due to the presence of the line of discontinuity ℓ. We may carry out the geometric
construction described above to obtain a closed Cantor-like set, but this line, along with
all its (countably many) pre-images under T , must be removed from that set to obtain Λ.
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As always, the hyperbolic structure given by the existence of stable and
unstable directions leads to chaos in one of its incarnations. This can be
seen more explicitly by considering the symbolic dynamics associated to the
map T ; encoding a trajectory by its itinerary through the regions A,B,C,
and D, we have a correspondence between points in Λ and sequences in the
symbolic space

Σ4 = {A,B,C,D}Z.

As usual, the dynamics of T are modeled by the dynamics of the shift
σ : Σ4 → Σ4. However, not all sequences in Σ4 correspond to points in Λ;
for example, we see from Figure 68 that T (A) ⊂ C ∪D, and so every time a
point in Λ has an itinerary which includes the symbol A, it must be followed
by either C or D. Thus what we have here is actually a Markov shift, a
subshift of finite type with the following transition matrix:







0 0 1 1
1 1 0 0
0 0 1 1
1 1 0 0







The map T : Λ → Λ is topologically conjugate to this subshift of finite type,30

and so all admissible itineraries for the subshift are encodings of trajectories
of T .

This implies that T has a great many trajectories which appear random.
However, because Λ is a horseshoe and has zero Lebesgue measure, the
set of such trajectories is invisible from the point of view of the original
system, since with probability 1, an arbitrarily chosen point will lie outside
the horseshoe, and hence will eventually leave the region R in which chaotic
behaviour is observed. Thus the chaos implied by the hyperbolic structure
in this case is transient chaos, which is visible and occurs for a set of initial
conditions with positive measure. With non-zero probability, a randomly
chosen trajectory will appear chaotic for some period of time before leaving
R and becoming more regular.

Finally, we may return to the Lorenz system itself by drawing the tra-
jectories in R3 which connect each x ∈ Λ to its image T (x); the resulting set
is a filled-in horseshoe, which locally is homeomorphic to the direct prod-
uct of R and Λ. This filled-in horseshoe plays the same role for the flow
of the Lorenz system as Λ did for the Poincaré section; trajectories which
venture near the horseshoe follow apparently chaotic trajectories for some
finite period of time before wandering away and settling down.

30Or rather, to this subshift with certain trajectories removed, corresponding to the
line ℓ and its preimages.
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Lecture 36

a. The Lorenz attractor. The scenario illustrated in Figures 67 and 68
occurs for a broad range of parameter values; the precise locations of the
regions A,B,C,D depend on the value of the leading parameter r, but the
same topological outcome is observed, and the system has a horseshoe. At
some value r1 ≈ 24.05, everything changes; as r increases beyond this value,
the region R = A ∪ B ∪ C ∪ D becomes large enough to contain the fixed
points p1 and p2, and indeed, to contain its own image T (R); it becomes a
trapping region. Taking the intersection of all the images of R, we obtain
an attractor Λ for the map T ; the dynamics of T : Λ → Λ are chaotic, and
because Λ attracts nearby trajectories, this chaotic behaviour is observed
for a set of initial conditions of positive measure, in contrast to the case in
the previous lecture.

In fact, we must be slightly more careful, since T is not defined on the
line ℓ, and so strictly speaking, R is not a trapping region in the original
sense. However, we do have

T (R \ ℓ) ⊂ R,

and so we may define a nested sequence of sets Rn by R0 = R, Rn+1 =
T (Rn \ ℓ); we have

R0 ⊃ R1 ⊃ R2 ⊃ · · · ,
and the attractor is given by

(110) Λ =
⋂

n≥1

Rn.

Connecting each point x ∈ Λ to its image T (x) by the corresponding
trajectory in R3 gives an attractor for the Lorenz system itself; this was
the object discovered by Lorenz, who originally studied the parameter value
r = 28.

b. The geometric Lorenz attractor. Although the Poincaré map
T is, conceptually speaking, a relatively simple object, any attempts to do
actual calculations with it are quickly stymied by the fact that we do not
have a convenient formula for T , but must rather integrate the original
system for some variable period of time before obtaining T (x). In order to
bypass this difficulty, one approach is to study the geometric Lorenz map,
which shares (or appears to share) many topological properties with the
original Poincaré map, but which is given by an explicit set of formulae and
thus is more amenable to concrete analysis.

The geometric Lorenz map T takes the square R = [−1, 1]× [−1, 1] into
itself as follows:

(111) T (x, y) = ((−B|y|ν0 +Bx sgn y|y|ν+1) sgn y, ((1+A)|y|ν0−A) sgn y),



LECTURE 36 167

where sgn y = y/|y| denotes the sign of y, and the parameters lie in the
following ranges:

0 < A ≤ 1, 0 < B ≤ 1

2
, ν > 1,

1

1 +A
< ν0 < 1.

(−1,−1)

(1, 1)

(−1, A)

(1,−A)

(2B − 1,−1)

(1 − 2B, 1)

Figure 70. The geometric Lorenz map.

Figure 70 shows the image of R under the action of T ; several features
are immediately apparent. The two corners (−1,−1) and (1, 1) are fixed
by T , and since the y-coordinate of T (x, y) does not depend on x, T maps
horizontal lines into horizontal lines. In particular, the lines y = 1 and
y = −1 are mapped into themselves as follows:

T (x, 1) = (1 −B +Bx, 1),

T (x,−1) = (B − 1 +Bx,−1).

The map is continuous everywhere except along the x-axis; the continu-
ation of the map from the lower half of the square would take the x-axis to
the point (−1, A), while the continuation from the upper half would take it
to (1,−A).

Since 0 < B ≤ 1/2, the map is contracting in the horizontal direction;
as long as A > 1/2, it is expanding in the vertical direction, and so exhibits
the same sort of hyperbolic structure at every point which we have already
seen in the Smale–Williams solenoid, the Smale horseshoe, and so on. In
both those cases, we found an maximal invariant set for the map on which
the dynamics appear chaotic, and the same is true here. This set is referred
to as the geometric Lorenz attractor, and because T (R \ ℓ) ⊂ R, where ℓ is
the x-axis, we may construct Λ explicitly as in (110).

Figure 71 shows the first two steps in the construction of Λ. R1 = T (R\ℓ)
is the union of two triangles with curved sides; the image of R1 \ ℓ comprises
one triangle (lighter in the picture) and one biangle (skinnier and darker)
inside each of these, for a total of four regions, whose union is R2.

One might expect, then, that R3 would be the union of eight regions,
with one triangle and three biangles in each half of R1, that R4 will have
one triangle and seven biangles in each half of R1, and so on, always forming
two “fans” with hinges at (1,−A) and (−1, A). Indeed, this is the general
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x

R1 R2

Figure 71. Constructing the geometric Lorenz attractor.

structure of the attractor, but things are not quite so cut and dry. Consider
the biangle with one vertex at the point x in Figure 71. The bottom half
of this biangle will be mapped to a biangle in the left half of R1 with one
vertex at (−1, A), while the top half will be mapped to a biangle in the right
half with one vertex at (1,−A) and the other at T (x), and so R3 will have
one triangle and seven biangles, as expected.

However, because the map is expanding in the vertical direction, the
point T (x) will lie somewhere below x, and may actually lie below ℓ; if
this is the case, then we have a biangle which does not split into two upon
passing from R3 to R4, and so in general, Rn may not have 2n− 2 biangles,
as näıve reasoning would suggest.

Another way of analysing the structure of Λ is to consider its cross-
section on a horizontal line ℓa = {(x, y) | y = a}. We see from Figures 70
and 71 that R0 ∩ ℓa is the entire interval [−1, 1], while R1 ∩ ℓa is the union
of two disjoint closed subintervals, and R2 ∩ ℓa is the union of one, three, or
four disjoint closed subintervals, depending on the value of a. Thus for each
fixed a, the cross-section Λ ∩ ℓa is the result of a Cantor-like construction
from which certain basic intervals have been deleted, corresponding to those
steps in which one of the “fingers” of the fan does not cross ℓa (at the present
step) or did not cross ℓ (at the previous step).

Ideally, we would like to have a rule which determines which basic inter-
vals are deleted and which remain; for example, such a construction could
conceivably be the result of a Markov rule with a particular transition ma-
trix. However, it turns out that there is no simple rule in the present
case. We may gain some perspective on this fact by considering a one-
dimensional factor of the geometric Lorenz map; since T maps horizontal
lines to horizontal lines, we can factor out the x-coordinate and consider the
one-dimensional map

f : [−1, 1] → [−1, 1],

y 7→ ((1 +A)|y|ν0 −A) sgn y,
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whose graph is shown in Figure 72. This map is reminiscent of the piecewise
continuous interval maps we have already discussed at length. However, this
is not a Markov map, because the image of an interval of continuity is not a
union of such intervals; f([−1, 0)) contains part, but not all, of (0, 1]. Thus
while we can pass to symbolic dynamics via the partition {[−1, 0), (0, 1]}
and obtain a topological conjugacy between f : [−1, 1] → [−1, 1] and the
shift σ on some invariant subset A ⊂ Σ+

2 , the invariant subset A will have
a quite complicated topological structure which is not given by any Markov
rule.

f
(y

)

y

Figure 72. A one-dimensional factor of the geometric
Lorenz map.
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Lecture 37

a. Random fractals. Let us return momentarily to the penultimate
idea in the previous lecture, in which we considered the cross-sections Λ∩ ℓa
of the geometric Lorenz attractor. We found these to be Cantor-like sets
with certain basic intervals deleted; however, because the intervals to be
deleted are not specified by any sort of Markov rule, many of the tools we
have used thus far to study the geometry of Cantor-like no longer hold any
utility.

We encounter a similar situation if we consider random fractals; for
example, we may consider a Cantor-like construction in which the basic
intervals to be deleted at each step are chosen at random, or in which either
the lengths or placements (or both) are chosen at random, or any number of
other possibilities (we prorogue for the time being any discussion of just how
these things are to be “randomly” chosen). How are we to determine the
Hausdorff dimension of the resulting Cantor-like set? There is no Moran-
type argument available in these cases, and the direct approach appears to
be impotent.

An effective way of analysing such sets is to return to the approach we
took with the Non-uniform Mass Distribution Principle, and consider the
class of probability measures supported on the fractal set of interest. In
many cases, certain geometric properties of this set can be deduced from a
variational principle involving dynamical and measure-theoretic properties
of the various measures; the latter has connections to what is known as
ergodic theory, and the whole enterprise is a part of the thermodynamic
formalism.

b. Back to the Lorenz attractor, and beyond. As was mentioned
at the end of Lecture 36(a), connecting the points of the attractor for the
Poincaré section of the Lorenz equations with the corresponding trajecto-
ries yields an attractor for the Lorenz system itself, which is pictured in
Figure 73. This image has become iconic for chaos theory both because of
its historic significance and because of the mathematical concepts it embod-
ies.

Despite the seminal role that it played in the study of chaos, interest in
the Lorenz system began to wane in the 1980’s, for a number of reasons.
For example, it turns out that interesting behaviour is observed only for a
narrow range of values of the parameter r; furthermore, given the origins of
the model, the question of its relevance naturally arises. How well do these
equations approximate what actually occurs at the onset of turbulence?
The Lorenz system (106) was obtained by restricting our attention to three
particular terms in a more complicated system; if we add some of the other
terms back into the model, do we still see the same sort of behaviour?

As it happens, the particular choice of x, y, and z in (106) was somewhat
serendipitous; studies of various other approximations to the Navier–Stokes
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Figure 73. The Lorenz attractor in R3.

equations failed to observe chaotic behaviour, which cast doubt on the re-
lationship between (106) and the actual physical phenomenon. Neverthe-
less, the Lorenz system was the first example of “deterministic chaos”—the
term coined by Jim Yorke, which is now commonly used to describe such
bevaiour—and as such was tremendously important in its own right, what-
ever its relationship to a physical system.

Since Lorenz’s original work, many other examples of deterministic chaos
have been studied, and the mechanisms which produce it are now better un-
derstood. A typical chaotic system contains either a horseshoe (resulting
from a homoclinic point) or an attractor (resulting from a trapping region);
each of these is a fractal which is invariant under the action of the system,
which is internally unstable (hence the chaotic behaviour), and which has
zero volume (Lebesgue measure). Despite this last point, both horseshoes
and attractors are observable via their effect on nearby trajectories; in the
former case, this effect lasts for a finite period of time, producing intermit-
tent chaos, while in the latter, the effect persists for all time, as nearby
trajectories approach the attractor.

Depending on the context, one may see the Lorenz attractor and its
many relatives referred to as “strange attractors”, emphasising their fractal
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geometry, or as “chaotic attractors”, emphasising the unpredictable nature
of the observed dynamics, or as “hyperbolic attractors”, emphasising the
underlying dynamical instability of the attractor at each point. This final
moniker has the advantage of giving pride of place to the force which drives
both the fractal structure and the apparent randomness displayed by the
attractor; namely, the presence at every point on the attractor of both stable
and unstable directions, so that a saddle-like structure is ubiquitous. This
is necessary because a trajectory with only stable directions will attract
nearby trajectories, and hence cannot display chaotic behaviour, while a
trajectory with only unstable directions will repel all nearby trajectories,
and hence such trajectories cannot be tightly intertwined, and cannot have
the complicated geometric structure we observe in fractal sets.

Furthermore, the understanding of hyperbolicity (which may be uniform
or non-uniform) as the driving impulse behind chaos makes it clear that in
many cases, topological and geometrical considerations alone are enough to
describe a chaotic system, without the need for an explicit formula, which
greatly extends the theory’s generality. For example, the geometric Lorenz
map (111) can be generalised in a number of ways, such as choosing a line of
discontinuity which is no longer horizontal; the resulting attractor is called a
Belych attractor, and comes up in the study of certain non-linear electrical
circuits, a far cry from the study of the atmosphere which motivated the
original system!

Indeed, the real significance of Lorenz’s work is not in its contribution
to atmospheric science, but in the fact that it helped fling open the doors to
whole new areas of mathematics, which have since found applications across
the entire spectrum of scientific research. In the process, many strands of
topology, geometry, and dynamics have been woven into a single fabric. The
fractal sets first introduced by Cantor and studied by Besicovitch to answer
questions in classical set and function theory were conscripted by Smale to
serve a key role in a particular type of dynamical system; eventually, through
the work of Mandelbrot, Lorenz and others, it became apparent that far from
being pathologies with limited interest, and that only for mathematicians,
these “fractals” in fact lie at the heart of many important phenomena in
the natural world, and still hold many deep mysteries which we have yet to
understand.


