SRB measures without symbolic dynamics or dominated splittings

Vaughn Climenhaga University of Maryland

May 16, 2011

Joint work with Dmitry Dolgopyat and Yakov Pesin

- Introduction and classical results
 - Definition of SRB measure
 - Examples, known and otherwise
- Quantification
 - Decomposing the space of invariant measures
 - Recurrence to compact sets
- 3 Recurrence to $S_n(K)$
 - Sequences of local diffeomorphisms
 - Frequency of large admissible manifolds
 - Existence of an SRB measure
- 4 Applications
 - Maps on the boundary of Axiom A: Slowdown, no shear
 - Maps on the boundary of Axiom A: Slowdown and shear

Physically meaningful invariant measures

- M a compact Riemannian manifold
- $f: M \to M$ a $C^{1+\varepsilon}$ local diffeomorphism
- ullet ${\cal M}$ the space of Borel measures on ${\cal M}$
- $\mathcal{M}(f) = \{ \mu \in \mathcal{M} \mid \mu \text{ is } f\text{-invariant} \}$

- M a compact Riemannian manifold
- $f: M \to M$ a $C^{1+\varepsilon}$ local diffeomorphism
- ullet ${\cal M}$ the space of Borel measures on ${\cal M}$
- $\mathcal{M}(f) = \{ \mu \in \mathcal{M} \mid \mu \text{ is } f\text{-invariant} \}$

Birkhoff ergodic theorem. If $\mu \in \mathcal{M}(f)$ is ergodic then it describes the statistics of μ -a.e. trajectory of f: for every integrable φ ,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\varphi(f^k(x))=\int\varphi\,d\mu$$

- M a compact Riemannian manifold
- $f: M \to M$ a $C^{1+\varepsilon}$ local diffeomorphism
- ullet ${\cal M}$ the space of Borel measures on ${\cal M}$
- $\mathcal{M}(f) = \{ \mu \in \mathcal{M} \mid \mu \text{ is } f\text{-invariant} \}$

Birkhoff ergodic theorem. If $\mu \in \mathcal{M}(f)$ is ergodic then it describes the statistics of μ -a.e. trajectory of f: for every integrable φ ,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\varphi(f^k(x))=\int\varphi\,d\mu$$

To be "physically meaningful", a measure should describe the statistics of *Lebesgue*-a.e. trajectory.

SRB measures

• Smooth/absolutely continuous invariant measures are physically meaningful, but. . .

- Smooth/absolutely continuous invariant measures are physically meaningful, but...
- ... many systems are not conservative.
- Interesting dynamics often happen on a set of Lebesgue measure zero.

Smooth/absolutely continuous invariant measures are physically meaningful, but...

- ... many systems are not conservative.
- Interesting dynamics often happen on a set of Lebesgue measure zero.

"absolutely continuous" \iff "a.c. on unstable manifolds"

 $\mu \in \mathcal{M}(f)$ is an SRB measure if

- all Lyapunov exponents non-zero;
- $\ \ \ \ \mu$ has a.c. conditional measures on unstable manifolds.

SRB measures are physically meaningful. Goal: Prove existence of an SRB measure.

Examples, known and otherwise

Uniform geometric structure

SRB measures are known to exist in the following settings.

- Uniformly hyperbolic f (Sinai, Ruelle, Bowen)
- Partially hyperbolic f with positive/negative central exponents (Alves-Bonatti-Viana, Burns-Dolgopyat-Pesin-Pollicott)

Key tool is a dominated splitting $T_x M = E^s(x) \oplus E^u(x)$.

- E^s , E^u depend continuously on x.

Both conditions fail for non-uniformly hyperbolic f.

Non-uniformly hyperbolic maps

The Hénon maps $f_{a,b}(x,y) = (a-x^2-by,x)$ are a perturbation of the family of logistic maps $g_a(x) = a-x^2$.

- **1** g_a has an absolutely continuous invariant measure for "many" values of a. (Jakobson)
- **②** For b small, $f_{a,b}$ has an SRB measure for "many" values of a. (Benedicks-Carleson, Benedicks-Young)
- Similar results for "rank one attractors" small perturbations of one-dimensional maps with non-recurrent critical points. (Wang-Young)

Genuine non-uniform hyperbolicity, but only one unstable direction, and stable direction must be strongly contracting.

Other examples:

- **1** Hénon $f_{a,b}(x,y) = (a x^2 by, x)$ for $b \gg 0$.
- ② Generalised Hénon $f_{a,b}(x,y,z) = (a-y^2-bz,x,y)$: expect to have two unstable directions, so not rank one.
- Large perturbations of Axiom A maps: Katok construction (slowdown near hyperbolic fixed point), no dominated splitting; slowdown + shear, no continuous splitting.
- Small perturbations of maps with SRB measures: either local or global.

Goal: Develop a method for establishing the existence of an SRB measure that can be applied to these and other examples.

Constructing invariant measures

- f acts on \mathcal{M} by $f_*: m \mapsto m \circ f^{-1}$.
- Fixed points of f_* are invariant measures.
- Césaro averages + weak* compactness ⇒ invariant measures:

$$\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} f_*^k m$$
 $\mu_{n_j} \to \mu \in \mathcal{M}(f)$

Constructing invariant measures

- f acts on \mathcal{M} by $f_*: m \mapsto m \circ f^{-1}$.
- Fixed points of f_* are invariant measures.
- Césaro averages + weak* compactness \Rightarrow invariant measures:

$$\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} f_*^k m$$
 $\mu_{n_j} \to \mu \in \mathcal{M}(f)$

Idea: $m = \text{volume} \Rightarrow \mu$ is an SRB measure.

$$H = \{x \in M \mid \text{all Lyapunov exponents non-zero at } x\}$$

 $S = \{\nu \in M \mid \nu(H) = 1, \nu \text{ a.c. on unstable manifolds}\}$

- $S \cap \mathcal{M}(f) = \{SRB \text{ measures}\}\$
- S is f_* -invariant, so $m \in S \Rightarrow \mu_n \in S$ for all n.
- S is *not* compact. So why should μ be in S?

Non-uniform hyperbolicity in ${\cal M}$

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V:

$$d(f^{-k}(x), f^{-k}(y)) \le Ce^{-\lambda k} d(x, y)$$
 for all $0 \le k \le n$ and $x, y \in V$.

Non-uniform hyperbolicity in ${\mathcal M}$

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V:

$$d(f^{-k}(x), f^{-k}(y)) \le Ce^{-\lambda k} d(x, y)$$
 for all $0 \le k \le n$ and $x, y \in V$.

 $S_n = \{ \nu \text{ supp. on and a.c. on } n\text{-admissible manifolds, } \nu(H) = 1 \}.$ This set of measures has various non-uniformities.

• Value of C, λ in definition of n-admissibility.

Non-uniform hyperbolicity in \mathcal{M}

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V:

$$d(f^{-k}(x), f^{-k}(y)) \le Ce^{-\lambda k} d(x, y)$$
 for all $0 \le k \le n$ and $x, y \in V$.

 $S_n = \{ \nu \text{ supp. on and a.c. on } n\text{-admissible manifolds, } \nu(H) = 1 \}.$ This set of measures has various non-uniformities.

- Value of C, λ in definition of *n*-admissibility.
- 2 Size and curvature of admissible manifolds.

Applications

Non-uniform hyperbolicity in ${\mathcal M}$

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V:

$$d(f^{-k}(x), f^{-k}(y)) \le Ce^{-\lambda k} d(x, y)$$
 for all $0 \le k \le n$ and $x, y \in V$.

 $S_n = \{ \nu \text{ supp. on and a.c. on } n\text{-admissible manifolds, } \nu(H) = 1 \}.$ This set of measures has various non-uniformities.

- **1** Value of C, λ in definition of n-admissibility.
- 2 Size and curvature of admissible manifolds.

n-uniform hyperbolicity in M

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V:

$$d(f^{-k}(x), f^{-k}(y)) \le Ce^{-\lambda k} d(x, y)$$
 for all $0 \le k \le n$ and $x, y \in V$.

 $S_n = \{ \nu \text{ supp. on and a.c. on } n\text{-admissible manifolds, } \nu(H) = 1 \}.$ This set of measures has various non-uniformities.

- **1** Value of C, λ in definition of n-admissibility.
- ② Size and curvature of admissible manifolds.
- $||\rho||$, where ρ is density wrt. leaf volume.

Given K > 0, let $S_n(K)$ be the set of measures for which these non-uniformities are all controlled by K.

large $K \Rightarrow$ worse non-uniformity

 $S_n(K)$ is compact, but not f_* -invariant.

Non-uniformities controlled by *K*

Admissible manifold V near x defined by

- decomposition $T_x M = G \oplus F$ with $\alpha = \measuredangle(G, F)$,
- $C^{1+\varepsilon}$ function $\psi \colon G \cap B(0, r) \to F$ with $||D\psi|| \le \gamma$ and $|D\psi|_{\varepsilon} \le \kappa$ such that $V = \exp_{\kappa}(\operatorname{graph} \psi)$.

Density $ho \in C^{arepsilon}(V)$ and backwards dynamics satisfy

- $L^{-1} \le \rho(x) \le L$ and $\|\rho\|_{C^{\varepsilon}} \le L$,
- $d(f^{-k}(x), f^{-k}(y)) \leq Ce^{-\lambda k}d(x, y)$.

K controls all the quantities $\alpha, r, \gamma, \kappa$ (geometry of the admissible manifold), L (density function), and C, λ (dynamics).

Conditions for existence of an SRB measure

- M be a compact Riemannian manifold, $U \subset M$ open, $f: U \to M$ a local diffeomorphism with $\overline{f(U)} \subset U$.
- Let μ_n be a sequence of measures whose limit measures are all invariant. (In applications, $\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} f_*^k \text{ Leb.}$)
- Fix K > 0, write $\mu_n = \nu_n + \zeta_n$, where $\nu_n \in \mathcal{S}_n(K)$.

Theorem (C.–Dolgopyat–Pesin 2011)

If $\overline{\lim}_{n\to\infty} \|\nu_n\| > 0$, then some limit measure of $\{\mu_n\}$ has an ergodic component that is an SRB measure for f.

Conditions for existence of an SRB measure

- M be a compact Riemannian manifold, $U \subset M$ open, $f: U \to M$ a local diffeomorphism with $\overline{f(U)} \subset U$.
- Let μ_n be a sequence of measures whose limit measures are all invariant. (In applications, $\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} f_*^k \text{ Leb.}$)
- Fix K > 0, write $\mu_n = \nu_n + \zeta_n$, where $\nu_n \in \mathcal{S}_n(K)$.

Theorem (C.–Dolgopyat–Pesin 2011)

If $\overline{\lim}_{n\to\infty} \|\nu_n\| > 0$, then some limit measure of $\{\mu_n\}$ has an ergodic component that is an SRB measure for f.

The question now becomes: How do we obtain recurrence to the set $S_n(K)$?

Coordinates in TM

We use local coordinates to write the map f along a trajectory as a sequence of local diffeomorphisms.

- $\{f^n(x) \mid n \ge 0\}$ is a trajectory of f
- $U_n \subset T_{f^n(x)}M$ is a neighbourhood of 0 small enough so that the exponential map $\exp_{f^n(x)}: U_n \to M$ is injective
- $f_n \colon U_n \to \mathbb{R}^d = T_{f^{n+1}(x)} M$ is the map f in local coordinates

Coordinates in TM

We use local coordinates to write the map f along a trajectory as a sequence of local diffeomorphisms.

- $\{f^n(x) \mid n \ge 0\}$ is a trajectory of f
- $U_n \subset T_{f^n(x)}M$ is a neighbourhood of 0 small enough so that the exponential map $\exp_{f^n(x)}: U_n \to M$ is injective
- $f_n \colon U_n \to \mathbb{R}^d = T_{f^{n+1}(x)}M$ is the map f in local coordinates

Suppose $\mathbb{R}^d = T_{f^n(x)}M$ has an invariant decomposition $E_n^u \oplus E_n^s$ with asymptotic expansion (contraction) along E_n^u (E_n^s).

$$Df_n(0) = A_n \oplus B_n$$

$$f_n = Df_n(0) + s_n$$

$$f_n(v, w) = (A_n v + g_n(v, w), B_n w + h_n(v, w))$$

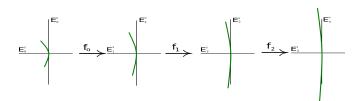
Controlling hyperbolicity and regularity

$$\mathbb{R}^d = E_n^u \oplus E_n^s \qquad f_n = (A_n \oplus B_n) + s_n$$

Recurrence to $S_n(K)$

000000000

Start with an admissible manifold V_0 tangent to E_0^u at 0, push it forward and define an invariant sequence of admissible manifolds by $V_{n+1} = f_n(V_n).$



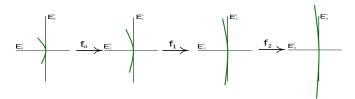
Controlling hyperbolicity and regularity

$$\mathbb{R}^d = E_n^u \oplus E_n^s$$
 $f_n = (A_n \oplus B_n) + s_n$

Start with an admissible manifold V_0 tangent to E_0^u at 0, push it forward and define an invariant sequence of admissible manifolds by $V_{n+1} = f_n(V_n)$.

$$V_n = \operatorname{graph} \psi_n = \{v + \psi_n(v)\}$$
 $\psi_n \colon B(E_n^u, r_n) \to E_n^s$

Need to control the size r_n and the regularity $||D\psi_n||$, $|\psi_n|_{\varepsilon}$.



Controlling hyperbolicity and regularity

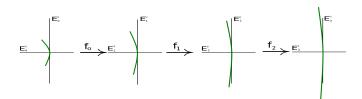
Consider the following quantities:

$$\lambda_n^u = \log(\|A_n^{-1}\|^{-1}) \qquad \qquad \lambda_n^s = \log\|B_n\|$$

$$\alpha_n = \measuredangle(E_n^u, E_n^s) \qquad \qquad C_n = \|s_n\|_{C^{1+\varepsilon}}$$

$$V_n = \operatorname{graph} \psi_n = \{ v + \psi_n(v) \}$$
 $\psi_n \colon B(E_n^u, r_n) \to E_n^s$

Need to control the size r_n and the regularity $||D\psi_n||$, $||\psi_n||_{\varepsilon}$.

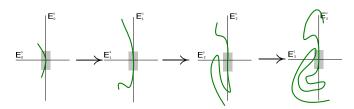


Classical Hadamard-Perron results

Uniform case: Constants such that

- $\lambda_n^s < \bar{\lambda}^s < 0 < \bar{\lambda}^u < \lambda_n^u$
- $\alpha_n \geq \bar{\alpha} > 0$
- $C_n \leq \bar{C} < \infty$

Then V_n has uniformly large size: $r_n \ge \bar{r} > 0$.



Recurrence to $S_n(K)$

000000000

Classical Hadamard-Perron results

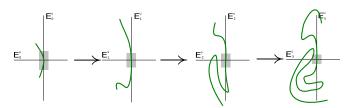
Uniform case: Constants such that

- $\lambda_n^s \leq \bar{\lambda}^s < 0 < \bar{\lambda}^u < \lambda_n^u$
- $\alpha_n \geq \bar{\alpha} > 0$
- $C_n \leq \bar{C} < \infty$

Then V_n has uniformly large size: $r_n \ge \overline{r} > 0$.

Non-uniform case: $\lambda_n^s, \lambda_n^u, \alpha_n$ still uniform, but C_n not.

 C_n grows slowly $\Rightarrow r_n$ decays slowly



Classical Hadamard-Perron results

Uniform case: Constants such that

- $\lambda_n^s \leq \bar{\lambda}^s < 0 < \bar{\lambda}^u < \lambda_n^u$
- $\alpha_n \geq \bar{\alpha} > 0$
- $C_n \leq \bar{C} < \infty$

Then V_n has uniformly large size: $r_n \ge \overline{r} > 0$.

Non-uniform case: λ_n^s , λ_n^u , α_n still uniform, but C_n not.

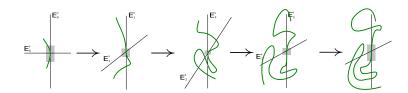
 C_n grows slowly $\Rightarrow r_n$ decays slowly

We want to consider the case where

- $\lambda_n^s < 0 < \lambda_n^u$ may fail (may even have $\lambda_n^u < \lambda_n^s$)
- α_n may become arbitrarily small
- C_n may become arbitrarily large (no control on speed)

Usable hyperbolicity

In order to define ψ_{n+1} implicitly, we need control of the regularity of ψ_n . Control $||D\psi_n||$ and $|D\psi_n|_{\varepsilon}$ by decreasing r_n if necessary. So how do we guarantee that r_n becomes "large" again?



Usable hyperbolicity

In order to define ψ_{n+1} implicitly, we need control of the regularity of ψ_n . Control $||D\psi_n||$ and $|D\psi_n|_{\varepsilon}$ by decreasing r_n if necessary. So how do we guarantee that r_n becomes "large" again?

$$\beta_n = C_n(\sin \alpha_{n+1})^{-1}$$

Fix a threshold value $\bar{\beta}$ and define the usable hyperbolicity:

$$\lambda_n = \begin{cases} \min\left(\lambda_n^u,\, \lambda_n^u + \frac{1}{\varepsilon} \big(\lambda_n^u - \lambda_n^s\big)\right) & \text{if } \beta_n \leq \bar{\beta}, \\ \min\left(\lambda_n^u,\, \lambda_n^u + \frac{1}{\varepsilon} \big(\lambda_n^u - \lambda_n^s\big),\, \frac{1}{\varepsilon} \log \frac{\beta_n}{\beta_{n+1}}\right) & \text{if } \beta_n > \bar{\beta}. \end{cases}$$

A Hadamard-Perron theorem

Write $F_n = f_{n-1} \circ \cdots \circ f_1 \circ f_0 \colon U_0 \to \mathbb{R}^d = T_{f^n(x)}M$. Let $V_0 \subset \mathbb{R}^d$ be a $C^{1+\varepsilon}$ manifold tangent to E_0^u at 0, and let $V_n(r)$ be the connected component of $F_n(V_0) \cap (B(E_n^u, r) \times E_n^s)$ containing 0.

Theorem (C.–Dolgopyat–Pesin 2011)

Suppose $\bar{\beta}$ and $\bar{\chi} > 0$ are such that $\varliminf_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \lambda_k > \bar{\chi} > 0$. Then there exist constants $\bar{\alpha}, \bar{\gamma}, \bar{\kappa}, \bar{r} > 0$ and a set $\Gamma \subset \mathbb{N}$ with positive lower asymptotic frequency such that for every $n \in \Gamma$,

- ② $V_n(\bar{r})$ is the graph of a $C^{1+\varepsilon}$ function $\psi_n \colon B_{E_n^u}(\bar{r}) \to E_n^s$ satisfying $||D\psi_n|| \le \bar{\gamma}$ and $|D\psi_n|_{\varepsilon} \le \bar{\kappa}$;
- ③ if $F_n(x)$, $F_n(y) \in V_n(\bar{r})$, then for every $0 \le k \le n$, $\|F_n(x) F_n(y)\| \ge e^{k\bar{\chi}} \|F_{n-k}(x) F_{n-k}(y)\|$.

Idea of proof

- Start with V_0 , study $V_n = F_n(V_0)$.
- Choose r_n, γ_n, κ_n such that V_n has a piece of size r_n that is (γ_n, κ_n) -admissible.

Can improve γ_n , κ_n at the cost of reducing r_n , or vice versa. Give conditions on "goodness parameters" r_n , γ_n , κ_n ; inequalities in terms of λ_n^u , λ_n^s , and β_n .

Idea of proof

- Start with V_0 , study $V_n = F_n(V_0)$.
- Choose r_n, γ_n, κ_n such that V_n has a piece of size r_n that is (γ_n, κ_n) -admissible.

Can improve γ_n , κ_n at the cost of reducing r_n , or vice versa. Give conditions on "goodness parameters" r_n , γ_n , κ_n ; inequalities in terms of λ_n^u , λ_n^s , and β_n .

• Need to truncate parameters at threshold values $\bar{r}, \bar{\gamma}, \bar{\kappa}$.

positive rate of usable hyperbolicity

- ⇒ non-thresholded parameters improve asymptotically
- ⇒ thresholded parameters spend positive proportion of time at threshold

Key consequence

- $\mu_0 = \text{Leb} \,|_{V_0}$
- $\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} f_*^k \mu_0|_{V_k(r_k)}$ (normalised)
- positive asymptotic rate of usable hyperbolicity $\Rightarrow \mu_n \in \mathcal{S}_n(K)$ for positive frequency of times n

Key step for applications: Show that the set of points with positive rate of usable hyperbolicity has positive Lebesgue measure. (Either on M or on V_0 .)

Cone families

Return to a local diffeomorphism $f: U \to M$. Given $x \in M$, a subspace $E \subset T_x M$, and an angle θ , we have a cone

$$K(x, E, \theta) = \{ v \in T_x M \mid \measuredangle(v, E) < \theta \}.$$

If E, θ depend measurably on x, this defines a measurable cone family. Suppose $A \subset U$ has positive Lebesgue measure, is forward invariant, and has two measurable cone families $K^s(x), K^u(x)$ s.t.

Usable hyperbolicity (again)

Measurable transverse cone families $K^s(x), K^u(x) \subset T_x M$.

$$\lambda^{u}(x) = \inf\{\log \|Df(v)\| \mid v \in K^{u}(x), \|v\| = 1\},\ \lambda^{s}(x) = \sup\{\log \|Df(v)\| \mid v \in K^{s}(x), \|v\| = 1\}.$$

Let $\alpha(x) = \measuredangle(K^s(x), K^u(x))$. Fix $\bar{\alpha} > 0$ and consider

$$\zeta(x) = \begin{cases} \frac{1}{\varepsilon} \log \frac{\alpha(f(x))}{\alpha(x)} & \text{if } \alpha(x) < \bar{\alpha}, \\ +\infty & \text{if } \alpha(x) \ge \bar{\alpha}. \end{cases}$$
$$\lambda(x) = \min \left\{ \lambda^{u}(x), \ \lambda^{u}(x) + \frac{1}{\varepsilon} (\lambda^{u}(x) - \lambda^{s}(x)), \ \zeta(x) \right\}$$

An existence result

Consider points with positive asymptotic usable hyperbolicity:

$$S = \left\{ x \in A \, \Big| \, \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \lambda(f^k(x)) > 0 \text{ and } \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \lambda^s(f^k(x)) < 0 \right\}$$

An existence result

Consider points with positive asymptotic usable hyperbolicity:

$$S = \left\{ x \in A \, \Big| \, \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \lambda(f^k(x)) > 0 \text{ and } \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \lambda^s(f^k(x)) < 0 \right\}$$

Theorem (C.–Dolgopyat–Pesin 2011)

If there exists $\bar{\alpha} > 0$ such that Leb S > 0, then f has a hyperbolic SRB measure supported on Λ .

An existence result

Consider points with positive asymptotic usable hyperbolicity:

$$S = \left\{ x \in A \, \Big| \, \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \lambda(f^k(x)) > 0 \text{ and } \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \lambda^s(f^k(x)) < 0 \right\}$$

Recurrence to $S_n(K)$

000000000

Theorem (C.–Dolgopyat–Pesin 2011)

If there exists $\bar{\alpha} > 0$ such that Leb S > 0, then f has a hyperbolic SRB measure supported on Λ .

Theorem (C.–Dolgopyat–Pesin 2011)

Fix $x \in U$. Let V be an embedded submanifold such that $T_x V \subset K^u(x)$, and let m_V be leaf volume on V. Suppose that there exists $\bar{\alpha} > 0$ such that $\lim_{r \to 0} m_V(S \cap B(x,r)) > 0$. Then f has a hyperbolic SRB measure supported on Λ .

Large perturbations: an indifferent fixed point

 $f: U \to M$ an Axiom A local diffeomorphism, f(p) = p.

- f has an SRB measure.
- Small perturbations of f are Axiom A.
- Consider perturbation on boundary of "small".

Large perturbations: an indifferent fixed point

 $f: U \to M$ an Axiom A local diffeomorphism, f(p) = p.

- f has an SRB measure.
- Small perturbations of f are Axiom A.
- Consider perturbation on boundary of "small".

Near fixed point, f is time-1 map of $\dot{x}=Ax$, where A has no eigenvalues on imaginary axis. Let $\psi\colon [0,1]\to [0,1]$ be such that

- ψ is C^{∞} on (0,1);
- $\psi(0) = 0$; $\psi' > 0$ on $(0, r_0)$; $\psi \equiv 1$ on $[r_0, 1]$;
- $\psi(r) \approx r^{\alpha}$ near 0, for some $\frac{1}{2} < \alpha < 1$.

Near fixed point, let g = time-1 map for $\dot{x} = \psi(\|x\|^2)Ax$, with g = f outside of $V = B(p, r_0)$.

Theorem (C.-Dolgopyat-Pesin 2011)

g has an SRB measure.

Usable hyperbolicity for g

- If f has a smooth invariant measure μ , then $\psi(\|x\|^2)^{-1}d\mu$ defines a smooth invariant measure for g.
- If the SRB measure for f is not smooth, then the attractor for f is not g-invariant.

f is Axiom A $\Rightarrow f$ has invariant cone families $K^u(x)$ and $K^s(x)$

Usable hyperbolicity for g

- If f has a smooth invariant measure μ , then $\psi(\|x\|^2)^{-1}d\mu$ defines a smooth invariant measure for g.
- If the SRB measure for f is not smooth, then the attractor for f is not g-invariant.

f is Axiom A $\Rightarrow f$ has invariant cone families $K^u(x)$ and $K^s(x)$

- $K^u(x)$ and $K^s(x)$ are g-invariant.
- $\lambda^u(x) \ge 0 \ge \lambda^s(x)$ and $\alpha(x) \gg 0$ for every x.
- $\lambda(x) = \lambda^u(x) \ge \chi > 0$ for every $x \notin V$.

$$\frac{1}{n} \sum_{k=0}^{n-1} \lambda(g^k(x)) \ge \chi \cdot \frac{1}{n} \# \{ 0 \le k < n \mid g^k(x) \notin V \}$$

Average sojourn times

- $\tau(x) = \min\{t \mid g^t(x) \notin V\}$
- $G(x) = g^{\tau(x)}(x)$
- $\tau_n(x) = \tau(G^{n-1}(x))$

Claim: there exists R > 0 such that $\overline{\lim} \frac{1}{n} \sum_{k=1}^{n} \tau_k(x) \leq R$ for Leb-a.e. x.

Average sojourn times

- $\tau(x) = \min\{t \mid g^t(x) \notin V\}$
- $G(x) = g^{\tau(x)}(x)$
- $\bullet \ \tau_n(x) = \tau(G^{n-1}(x))$

Claim: there exists R > 0 such that $\overline{\lim} \frac{1}{n} \sum_{k=1}^{n} \tau_k(x) \leq R$ for Leb-a.e. x.

- $\Omega(t_1, \ldots, t_n) = \{x \mid \tau_k(x) = t_k \text{ for } 1 \le k \le n\}$
- Leb $\Omega(\vec{t}) \leq C^n \prod_{k=1}^n t_k^{-\gamma}$ with $\gamma > 2$
- Model (τ_k) with i.i.d. (T_k) such that $P(T_k = t) = Ct^{-\gamma}$
- Claim holds using fact that $E(T_k) < \infty$

An indifferent fixed point with a shear

 $f: U \to M$ an Axiom A diffeomorphism, f(p) = p. Near fixed point, f is time-1 map of $\dot{x} = Ax$, where A has no eigenvalues on imaginary axis. Let ψ be as before, so that $\psi(\|x\|^2)Ax$ is the slowed-down vector field.

Applications

Introduction

An indifferent fixed point with a shear

 $f: U \to M$ an Axiom A diffeomorphism, f(p) = p. Near fixed point, f is time-1 map of $\dot{x} = Ax$, where A has no eigenvalues on imaginary axis. Let ψ be as before, so that $\psi(||x||^2)Ax$ is the slowed-down vector field.

Recurrence to $S_n(K)$

Let $N: \mathbb{R}^d \to \mathbb{R}^d$ be linear such that

- $N(\mathbb{R}^d) \subset \{0\} \times \mathbb{R}^u \subset \ker N$,
- and $\xi \colon [0,1] \to [0,1]$ such that
 - ξ is C^{∞} on (0,1):
 - $\xi(0) = 1$; $\xi \equiv 0$ on $[r_0, 1]$.

Near fixed point, let g = time-1 map for

$$\dot{x} = (\psi(\|x\|^2)A + \xi(\|x\|^2)N)x$$
, with $g = f$ outside of $V = B(p, r_0)$.

Theorem (C.-Dolgopyat-Pesin 2011)

g has an SRB measure.

Stable cones for g

Shear \Rightarrow stable cone for f is no longer g-invariant. Need to

- establish existence of stable invariant cones $K^s(x)$ for g;
- **2** estimate $\alpha(x) = \measuredangle(K^s(x), K^u(x))$.

Stable cones for g

Shear \Rightarrow stable cone for f is no longer g-invariant. Need to

- establish existence of stable invariant cones $K^s(x)$ for g;
- estimate $\alpha(x) = \measuredangle(K^s(x), K^u(x))$.

Claim: This boils down to estimating average sojourn times.

- $A = V \setminus g(V)$ (just entered neighbourhood of p)
- $B = g(V) \setminus V$ (just left the neighbourhood of p)
- Let $G: A \rightarrow B$ and $F: B \rightarrow A$ be the induced maps

Need to understand action of DG and DF on the space of s-dimensional subspaces of \mathbb{R}^d transverse to $\mathbb{R}^u \times \{0\}$.

Stable cones for g

Shear \Rightarrow stable cone for f is no longer g-invariant. Need to

- establish existence of stable invariant cones $K^s(x)$ for g;
- estimate $\alpha(x) = \measuredangle(K^s(x), K^u(x))$.

Claim: This boils down to estimating average sojourn times.

- $A = V \setminus g(V)$ (just entered neighbourhood of p)
- $B = g(V) \setminus V$ (just left the neighbourhood of p)
- Let $G: A \rightarrow B$ and $F: B \rightarrow A$ be the induced maps

Need to understand action of DG and DF on the space of s-dimensional subspaces of \mathbb{R}^d transverse to $\mathbb{R}^u \times \{0\}$.

- Identify this space with $(\mathbb{R}^u)^s$
- DG acts as a translation (parabolically)
- DF acts as multiplication (hyperbolically)

Stable cones for g (ctd.)

$$\{E \subset \mathbb{R}^d \mid E \text{ transverse to } \mathbb{R}^u \times \{0\}\} \qquad \leftrightarrow \qquad (\mathbb{R}^u)^s$$
 $E \to \mathbb{R}^u \times \{0\} \qquad \leftrightarrow \qquad \vec{v} \to \infty$

Stable cones for g (ctd.)

$$\{ E \subset \mathbb{R}^d \mid E \text{ transverse to } \mathbb{R}^u \times \{0\} \} \qquad \leftrightarrow \qquad (\mathbb{R}^u)^s$$

$$E \to \mathbb{R}^u \times \{0\} \qquad \leftrightarrow \qquad \vec{v} \to \infty$$

Goal: \vec{v} such that

$$\vec{v}$$
, $DG(\vec{v})$, $DF \circ DG(\vec{v})$, $DG \circ DF \circ DG(\vec{v})$, ...

does not go to ∞ . This corresponds to $E \subset \mathbb{R}^d$ such that

$$E, DG(E), DF \circ DG(E), DG \circ DF \circ DG(E), \dots$$

does not go to $\mathbb{R}^u \times \{0\}$.

Stable cones for g (ctd.)

$$\{ E \subset \mathbb{R}^d \mid E \text{ transverse to } \mathbb{R}^u \times \{0\} \} \qquad \leftrightarrow \qquad (\mathbb{R}^u)^s$$

$$E \to \mathbb{R}^u \times \{0\} \qquad \leftrightarrow \qquad \vec{v} \to \infty$$

Goal: \vec{v} such that

$$\vec{v}$$
, $DG(\vec{v})$, $DF \circ DG(\vec{v})$, $DG \circ DF \circ DG(\vec{v})$, ...

does not go to ∞ . This corresponds to $E \subset \mathbb{R}^d$ such that

$$E, DG(E), DF \circ DG(E), DG \circ DF \circ DG(E), \dots$$

does not go to $\mathbb{R}^u \times \{0\}$. Given $\vec{v} = (v_1, \dots, v_s) \in (\mathbb{R}^u)^s$, we have

- $||DG_x(\vec{v})_i|| \ge ||v_i|| C\tau(x),$
- $||DF_x(\vec{v})_i|| \ge \lambda ||v_i||$, where $\lambda > 1$.

$$R_n(x) := \sum_{k=0}^{\infty} C \lambda^{-k} \tau_{n+k+1}(x)$$

- $(DF \circ DG)B(R_n(x)) \supset B(R_{n+1}(F \circ G(x)))$
- $B(R_n(x))$ contains some \vec{v} whose iterates do not go to ∞

$$R_n(x) := \sum_{k=0}^{\infty} C \lambda^{-k} \tau_{n+k+1}(x)$$

- $(DF \circ DG)B(R_n(x)) \supset B(R_{n+1}(F \circ G(x)))$
- $B(R_n(x))$ contains some \vec{v} whose iterates do not go to ∞
- This shows the existence of $E^s(x)$
- $\alpha_k = \angle(E^s(g^k(x)), E^u(g^k(x)))$ is controlled by R_n

$$R_n(x) := \sum_{k=0}^{\infty} C \lambda^{-k} \tau_{n+k+1}(x)$$

- $(DF \circ DG)B(R_n(x)) \supset B(R_{n+1}(F \circ G(x)))$
- $B(R_n(x))$ contains some \vec{v} whose iterates do not go to ∞
- This shows the existence of $E^s(x)$
- $\alpha_k = \measuredangle(E^s(g^k(x)), E^u(g^k(x)))$ is controlled by R_n
- The set of times k such that $\alpha_k \leq \bar{\alpha}$ can be made arbitrarily sparse by taking $\bar{\alpha}$ arbitrarily small

$$R_n(x) := \sum_{k=0}^{\infty} C \lambda^{-k} \tau_{n+k+1}(x)$$

- $(DF \circ DG)B(R_n(x)) \supset B(R_{n+1}(F \circ G(x)))$
- $B(R_n(x))$ contains some \vec{v} whose iterates do not go to ∞
- This shows the existence of $E^s(x)$
- $\alpha_k = \measuredangle(E^s(g^k(x)), E^u(g^k(x)))$ is controlled by R_n
- The set of times k such that $\alpha_k \leq \bar{\alpha}$ can be made arbitrarily sparse by taking $\bar{\alpha}$ arbitrarily small
- $\lambda(x) = \min\{\lambda^u(x), \zeta(x)\} = \lambda^u(x)$ whenever $\alpha(x) > \bar{\alpha}$

Usable hyperbolicity

$$R_n(x) := \sum_{k=0}^{\infty} C \lambda^{-k} \tau_{n+k+1}(x)$$

- $(DF \circ DG)B(R_n(x)) \supset B(R_{n+1}(F \circ G(x)))$
- $B(R_n(x))$ contains some \vec{v} whose iterates do not go to ∞
- This shows the existence of $E^s(x)$
- $\alpha_k = \measuredangle(E^s(g^k(x)), E^u(g^k(x)))$ is controlled by R_n
- The set of times k such that $\alpha_k \leq \bar{\alpha}$ can be made arbitrarily sparse by taking $\bar{\alpha}$ arbitrarily small
- $\lambda(x) = \min\{\lambda^u(x), \zeta(x)\} = \lambda^u(x)$ whenever $\alpha(x) > \bar{\alpha}$

bounded average sojourn time

- ⇒ positive asymptotic rate of usable hyperbolicity
- \Rightarrow g has an SRB measure

Usable hyperbolicity

$$R_n(x) := \sum_{k=0}^{\infty} C \lambda^{-k} \tau_{n+k+1}(x)$$

- $(DF \circ DG)B(R_n(x)) \supset B(R_{n+1}(F \circ G(x)))$
- $B(R_n(x))$ contains some \vec{v} whose iterates do not go to ∞
- This shows the existence of $E^s(x)$
- $\alpha_k = \measuredangle(E^s(g^k(x)), E^u(g^k(x)))$ is controlled by R_n
- The set of times k such that $\alpha_k \leq \bar{\alpha}$ can be made arbitrarily sparse by taking $\bar{\alpha}$ arbitrarily small
- $\lambda(x) = \min\{\lambda^u(x), \zeta(x)\} = \lambda^u(x)$ whenever $\alpha(x) > \bar{\alpha}$

bounded average sojourn time

- ⇒ positive asymptotic rate of usable hyperbolicity
- \Rightarrow g has an SRB measure