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Introducti N . .
ntroduction Intrinsic ergodicity

Classical results

Basic thermodynamic concepts

Topological dynamical system:
@ X a compact metric space, f: X — X continuous

@ M = {Borel f-invariant probability measures on X}

Variational principle: hiop (X, f) = sup,,e aq hu(f)

o If h,(f) = hiop (X, f), then u is a measure of maximal
entropy (MME)

e (X, f) is intrinsically ergodic if there exists a unique MME
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@ X a compact metric space, f: X — X continuous

@ M = {Borel f-invariant probability measures on X}

Variational principle: hiop (X, f) = sup,,e aq hu(f)

o If h,(f) = hiop (X, f), then u is a measure of maximal
entropy (MME)

e (X, f) is intrinsically ergodic if there exists a unique MME

Example: The full shift ¥, = {1,..., p}Z is intrinsically ergodic.
The unique MME is (% %) Bernoulli measure.
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Classical results

Basic thermodynamic concepts

Topological dynamical system:
@ X a compact metric space, f: X — X continuous

@ M = {Borel f-invariant probability measures on X}

Variational principle: hiop (X, f) = sup,,e aq hu(f)

o If h,(f) = hiop (X, f), then u is a measure of maximal
entropy (MME)

e (X, f) is intrinsically ergodic if there exists a unique MME

Example: The full shift ¥, = {1,..., p}Z is intrinsically ergodic.
The unique MME is (% %) Bernoulli measure.

When is a transitive dynamical system intrinsically ergodic?
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Classical results

Motivation and context

More general variational principle for topological pressure P(p) of
a continuous potential function ¢: X — R

()= sup (1) + [ wan)

neM

If h,(f)+ [ ¢dp= P(p), then w is an equilibrium state.
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Classical results

Motivation and context

More general variational principle for topological pressure P(p) of
a continuous potential function ¢: X — R

()= sup (1) + [ wan)

neM
If h,(f)+ [ ¢dp= P(p), then w is an equilibrium state.

o Existence of a unique equilibrium state is connected to
statistical properties, large deviations, multifractal analysis,
phase transitions, etc.

@ = 0: reduces to intrinsic ergodicity. Techniques for showing
intrinsic ergodicity usually generalise to help prove other
thermodynamic results.
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Classical results

Intrinsic ergodicity for shift spaces

Focus on shift spaces (subshifts):
@ X CX,or X CX}, X closed and g-invariant
o L=L(X)={x1- x5 | x€ X,n>1}is the language of X

When is a transitive shift space intrinsically ergodic?
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Classical results

Intrinsic ergodicity for shift spaces

Focus on shift spaces (subshifts):
@ X CX,or X CX}, X closed and g-invariant
o L=L(X)={x1- x5 | x€ X,n>1}is the language of X

When is a transitive shift space intrinsically ergodic? Not always.
Example: X C 5 = {0,1,2,1,2}%. Define the language £ by
v0"w, w0"v € L if and only if n > 2max(|v|, |w|).
@ (X, o) is topologically transitive
® hiop (X, 0) =log2
@ 2 measures of maximal entropy:
v = (3, 5)-Bernoulli on {1,2}7,
1= (%,1)-Bernoulli on {1,2}Z.
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Intrinsic ergodicity

Classical results

Classes of intrinsically ergodic shifts

The following classes of shift spaces are intrinsically ergodic:

@ lrreducible subshifts of finite type

(om0
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Intrinsic ergodicity

Classical results

Classes of intrinsically ergodic shifts

The following classes of shift spaces are intrinsically ergodic:
@ lrreducible subshifts of finite type

@ lrreducible sofic shifts

[

sofic
shifts
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Introduction - L
Intrinsic ergodicity

Classical results

Classes of intrinsically ergodic shifts

The following classes of shift spaces are intrinsically ergodic:
@ lrreducible subshifts of finite type
@ Irreducible sofic shifts

@ Shifts with specification

[

sofic
shifts shifts with
specification

Thermodynamics for non-uniformly mixing systems



Introduction - L
Intrinsic ergodicity

Classical results

Classes of intrinsically ergodic shifts

The following classes of shift spaces are intrinsically ergodic:
@ lrreducible subshifts of finite type
@ lrreducible sofic shifts
@ Shifts with specification
@ [3-shifts

B-shifts

shifts with
specification
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L 5 [3-shifts
Motivating problem and solution Intrinsic ergodicity for factors

(-shifts

fs(2)
B>1, b=[B]. The B-shift L5 C £} is the
natural coding space for the map

fz: [0,1] — [0, 1], x+— (Bx (mod 1)

lg=ajax---, where1 =52 a,67"
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L 5 [3-shifts
Motivating problem and solution Intrinsic ergodicity for factors

(-shifts

B>1, b=[B]. The B-shift L5 C £} is the
natural coding space for the map

fz: [0,1] — [0, 1], x+— (Bx (mod 1)

o0 —
lg=ajap---, where 1 =577 a,67" 0 T2 %

Fact: Sequences x € ¥ 3 are precisely those sequences in ¥, that

label trajectories of the following graph beginning at the vertex B.
(Here 15 = 2100201...)

1 0 0 2 0 1
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B-shifts

Motivating problem and solution Ttriiee eesiEty G s

An open problem

Intrinsic ergodicity is not necessarily preserved by factors.
e X C {0,1,2,1,2}* as before
@ Y CXs=1{0,1,2,1,2,3}2 by similar rule

@ X is a factor of Y; Y is intrinsically ergodic; X is not
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An open problem

Intrinsic ergodicity is not necessarily preserved by factors.
e X C {0,1,2,1,2}* as before
@ Y CXs=1{0,1,2,1,2,3}2 by similar rule
@ X is a factor of Y; Y is intrinsically ergodic; X is not
What intrinsically ergodic classes are closed under factors?
@ Closure of SFTs is class of sofic systems

@ Specification preserved by factors
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Motivating problem and solution Ttriiee eesiEty G s

An open problem

Intrinsic ergodicity is not necessarily preserved by factors.
e X C {0,1,2,1,2}* as before
@ Y CXs=1{0,1,2,1,2,3}2 by similar rule
@ X is a factor of Y; Y is intrinsically ergodic; X is not
What intrinsically ergodic classes are closed under factors?
@ Closure of SFTs is class of sofic systems

@ Specification preserved by factors

Are factors of (-shifts intrinsically ergodic?
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B-shifts

Motivating problem and solution Ttriiee eesiEty G s

An open problem

Intrinsic ergodicity is not necessarily preserved by factors.
e X C {0,1,2,1,2}* as before
@ Y CXs=1{0,1,2,1,2,3}2 by similar rule
@ X is a factor of Y; Y is intrinsically ergodic; X is not
What intrinsically ergodic classes are closed under factors?
@ Closure of SFTs is class of sofic systems

@ Specification preserved by factors

Are factors of (-shifts intrinsically ergodic?

Theorem (C.—Thompson 2010)

Yes.
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B-shifts

Motivating problem and solution Ttriiee eesiEty G s

An open problem

Intrinsic ergodicity is not necessarily preserved by factors.
e X C {0,1,2,1,2}* as before
@ Y CXs=1{0,1,2,1,2,3}2 by similar rule
@ X is a factor of Y; Y is intrinsically ergodic; X is not
What intrinsically ergodic classes are closed under factors?
@ Closure of SFTs is class of sofic systems

@ Specification preserved by factors

Are factors of (-shifts intrinsically ergodic?

Theorem (C.—Thompson 2010)

Every subshift factor of a (3-shift is intrinsically ergodic.
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ompositions
odicity that passes to factors
General result er examples and i f proof

The classical specification property

@ L = language for a shift space X
o L < {cylinders in X}
o |w| =lengthof w, L,={weLl]|]|w|=n}

X has specification if there exists t € N such that for every
Wi,...,Wm € L, there exist z1,...,z,_1 € L+ for which the
concatenated word wiziwszs - - - Z—_1 W is in L.

(Arbitrary orbit segments can be connected by a single orbit)
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The classical specification property

@ L = language for a shift space X
o L < {cylinders in X}
o |w| =lengthof w, L,={weLl]|]|w|=n}

X has specification if there exists t € N such that for every
Wi,...,Wm € L, there exist z1,...,z,_1 € L+ for which the
concatenated word wiziwszs - - - Z—_1 W is in L.

(Arbitrary orbit segments can be connected by a single orbit)

Topological transitivity guarantees the existence of such words

z; € L. Specification demands that the words z; can be chosen to
have uniformly bounded length t, where t is independent of the
words w; and their lengths.
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Shifts with and without specification

The following shifts have the specification property:
@ Mixing subshifts of finite type

Thermodynamics for non-uniformly mixing systems



positions
city that passes to factors
General result f proof

Shifts with and without specification

The following shifts have the specification property:
@ Mixing subshifts of finite type
@ Mixing sofic shifts
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Shifts with and without specification

The following shifts have the specification property:
@ Mixing subshifts of finite type
@ Mixing sofic shifts
@ Some [-shifts

> 3 does not have the specification property if 15 contains
arbitrarily long strings of O's.
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Shifts with and without specification

The following shifts have the specification property:
@ Mixing subshifts of finite type
@ Mixing sofic shifts
@ Some [-shifts
> 3 does not have the specification property if 15 contains
arbitrarily long strings of O's.
Y 3 does not have specification for Lebesgue-a.e. 8 > 1.

We must replace specification with a property that
@ holds for every (-shift;
@ implies intrinsic ergodicity;

@ is preserved by factors.
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A restricted version of the specification property

Fix a subset G C L. We say that G has specification if there exists
t € N such that for every wq,..., w, € G, there exist

Z1,...,Zm—1 € L; for which the concatenated word

X = WiZIWoZo ++* Zm_1Wm IS in L.

Only difference from classical property is that we take w; € G.
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A restricted version of the specification property

Fix a subset G C L. We say that G has specification if there exists
t € N such that for every wq,..., w, € G, there exist

Z1,...,Zm—1 € L; for which the concatenated word

X = WiZIWoZo ++* Zm_1Wm IS in L.

Only difference from classical property is that we take w; € G.

Say that G has (Per)-specification if in addition to the above
condition, the cylinder [x] contains a periodic point of period
x|+ t.
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A restricted version of the specification property

Fix a subset G C L. We say that G has specification if there exists
t € N such that for every wq,..., w, € G, there exist

Z1,...,Zm—1 € L; for which the concatenated word

X = WiZIWoZo ++* Zm_1Wm IS in L.

Only difference from classical property is that we take w; € G.

Say that G has (Per)-specification if in addition to the above
condition, the cylinder [x] contains a periodic point of period
x|+ t.

Example: For X = X3, let G be the set of words corresponding to

paths that begin and end at B. Then G has (Per)-specification
with t = 0.

Thermodynamics for non-uniformly mixing systems



General result

Decomposing the language

A CGC-decomposition of the language L is a collection of words
CP,G,C* C L with the following properties.

@ J has specification.
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Decomposing the language

A CGC-decomposition of the language L is a collection of words
CP,G,C* C L with the following properties.

@ J has specification.

Q@ L =CPGC*. That is, every word in £ can be written in the
form uvw with ue CP, v € G, w € C°.
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Decomposing the language

A CGC-decomposition of the language L is a collection of words
CP,G,C* C L with the following properties.

@ J has specification.

Q@ L =CPGC*. That is, every word in £ can be written in the
form uvw with ue CP, v € G, w € C°.

© For every uvw € L of the above form, there exist x,y € L
such that xuvwy € G.
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Decomposing the language

A CGC-decomposition of the language L is a collection of words
CP,G,C* C L with the following properties.
@ J has specification.
Q@ L =CPGC*. That is, every word in £ can be written in the
form uvw with ue CP, v € G, w € C°.
© For every uvw € L of the above form, there exist x,y € L
such that xuvwy € G.
A CGC-decomposition is uniform if the lengths of x and y in the
last condition depend only on the lengths of u and w. (And not on
u, v, w themselves.)

Thermodynamics for non-uniformly mixing systems



ompositions
0 odicity that passes to factors
General result e les a f proof

Decomposing the language

A CGC-decomposition of the language L is a collection of words
CP,G,C* C L with the following properties.

@ J has specification.

Q@ L =CPGC*. That is, every word in £ can be written in the
form uvw with ue CP, v € G, w € C°.
© For every uvw € L of the above form, there exist x,y € L
such that xuvwy € G.
A CGC-decomposition is uniform if the lengths of x and y in the

last condition depend only on the lengths of u and w. (And not on
u, v, w themselves.)

Example: For X = X3, let CP = @ and let C° be the set of words
corresponding to paths that begin at B and never return. Then
(CP,G,C*) is a uniform CGC-decomposition.
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fication and CGC-decompositions
for intrinsic ergodicity that passes to factors
General result examples and idea of proof

Intrinsic ergodicity for shifts W|th CGC-decompositions

Given a collection of words D C £, let h(D) = limy_.oo £ log #D,.
Observe that hiop, (X, 0) = h(L).
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Intrinsic ergodicity for shifts with CGC-decompositions

Given a collection of words D C £, let h(D) = limy_.oo £ log #D,.
Observe that hiop, (X, 0) = h(L).

Theorem (C.—Thompson 2010)

Let X be a shift space admitting a uniform CGC-decomposition.

If h(CPUC®) < hiop (X, 0), then (X, o) is intrinsically ergodic.

If G has (Per)-specification, then the unique MME is the limit of
the periodic orbit measures p, = W 2 Fn(x)=x Ox-
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Intrinsic ergodicity for shifts with CGC-decompositions

Given a collection of words D C £, let h(D) = limy_.oo £ log #D,.
Observe that hiop, (X, 0) = h(L).

Theorem (C.—Thompson 2010)

Let X be a shift space admitting a uniform CGC-decomposition.

If h(CPUC®) < hiop (X, 0), then (X, o) is intrinsically ergodic.

If G has (Per)-specification, then the unique MME is the limit of
the periodic orbit measures p, = W 2 Fn(x)=x Ox-

Example: For X = X3, let x = 13. Then (CPUC®), = {x1 - Xa},
and so h(CP UC®) = 0. Thus (Xg,0) is intrinsically ergodic.
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for intrinsic ergodicity that passes to factors
General result er examples and idea of proof

Behaviour under factors

Let (X, o) be a factor of (X, ), and let £, £ be the languages.

o If £ has a uniform C§C—decomposition, then so does L.
Futhermore, h(CP UC®) < h(CP UC?®).
Every factor with heop, (X, o) > h(CP U C®) is intrinsically ergodic.
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Behaviour under factors

Let (X, o) be a factor of (X, ), and let £, £ be the languages.

o If £ has a uniform C§C—decomposition, then so does L.
Futhermore, h(CP UC®) < h(CP UC?®).
Every factor with heop, (X, o) > h(CP U C®) is intrinsically ergodic.

Dichotomy for shifts with uniform CGC-decompositions:

Either heop (X, 0) > 0, or X comprises a single periodic orbit.
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Behaviour under factors

Let (X, o) be a factor of (X, ), and let £, £ be the languages.

o If £ has a uniform C§C—decomposition, then so does L.
Futhermore, h(CP UC®) < h(CP UC?®).
Every factor with heop, (X, o) > h(CP U C®) is intrinsically ergodic.

Dichotomy for shifts with uniform CGC-decompositions:

Either heop (X, 0) > 0, or X comprises a single periodic orbit.

Theorem (C.—Thompson 2010)

Let X be a shift space admitting a uniform CGC-decomposition.

If h(CP UC®) = 0, then every subshift factor of (X, o) is
intrinsically ergodic.
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S-gap shifts

Fix S € N and suppose S is infinite. The associated S-gap shift is
the subshift £s C {0,1}% with language

£ = {0kK10m10™1--.10%10° | n; € S, k, £ € N}.

Thermodynamics for non-uniformly mixing systems
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S-gap shifts

Fix S € N and suppose S is infinite. The associated S-gap shift is
the subshift £s C {0,1}% with language

£ = {0kK10m10™1--.10%10° | n; € S, k, £ € N}.
A uniform CGC-decomposition for X g is given by

G={0"1|neS}
CP={0"1| k>0}
cs={0°|¢>1}
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S-gap shifts

Fix S € N and suppose S is infinite. The associated S-gap shift is
the subshift £s C {0,1}% with language

£ = {0kK10m10™1--.10%10° | n; € S, k, £ € N}.
A uniform CGC-decomposition for X g is given by
G={0"1|neS}

CP={0"1| k>0}
cs={0°|¢>1}

Then #(CPUC®), =2forall n>1, and so h(CPUC*) =0. It
follows that every subshift factor of an S-gap shift is intrinsically
ergodic.
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Coded systems

A shift space X is coded if its language L is freely generated by a
countable set of generators {wp}neny C L.

L = {all subwords of wp, Wy, - - wp, | nj € N}
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Coded systems

A shift space X is coded if its language L is freely generated by a
countable set of generators {wp}neny C L.

L = {all subwords of wp, Wy, - - wp, | nj € N}
Every coded system has a uniform CGC-decomposition.

G ={wn Wy, - wp, | nj € N}
CP = {suffixes of w, | n € N}
= {prefixes of w, | n € N}
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Coded systems

A shift space X is coded if its language L is freely generated by a
countable set of generators {wp}neny C L.

L = {all subwords of wp, Wy, - - wp, | nj € N}
Every coded system has a uniform CGC-decomposition.

G ={wn Wy, - wp, | nj € N}
CP = {suffixes of w, | n € N}
= {prefixes of w, | n € N}

Let h = h({prefixes and suffixes of generators}).
0 h < hiop (X,0) = (X,0) is intrinsically ergodic
@ h =0 = every subshift factor of (X, o) is intrinsically ergodic

Thermodynamics for non-uniformly mixing systems
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Structure of proof

Step 1. Estimates on number of words of a given length

#£m+n < (#Em)(#cn) = #[’n > enh
#Lminrt > (#Gm)(#Gn) = #Gn < Cenh
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Structure of proof

Step 1. Estimates on number of words of a given length

#£m+n < (#Em)(#cn) = #[’n > enh
#Lminrt > (#Gm)(#Gn) = #Gn < Cenh

Number of prefixes and suffixes is small, so

#L, < Ce #G, > C L
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Structure of proof

Step 1. Estimates on number of words of a given length

#£m+n < (#Em)(#cn) = #['n > enh
#Lminrt > (#Gm)(#Gn) = #Gn < Cenh

Number of prefixes and suffixes is small, so
#L, < Ce #Gn > Cle™

Step 2. Build a measure of maximal entropy as a limit of
d-measures on (n,c)-separated orbits. Use counting estimates to
obtain a Gibbs property

wi - wp € G(M) = p([wy---wy]) > Kye ™"

Thermodynamics for non-uniformly mixing systems
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Structure of proof

Step 3. The mme p is ergodic
p(P) > 0,u(Q) > 0= lim u(PNo~"(Q)) >0

So either p is unique, or there is an ergodic mme v L pu.
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Structure of proof

Step 3. The mme p is ergodic
p(P) > 0,u(Q) > 0= lim u(PNo~"(Q)) >0

So either p is unique, or there is an ergodic mme v L pu.

Step 4. Contradiction if such a v exists.
Choose D such that v(D,) — 1 and p(D,) — 0.

#(D, N G(M)) > Ce™
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Structure of proof

Step 3. The mme p is ergodic
u(P) > 0.1(Q) > 0= Tim ju(Po"(Q)) >0

So either p is unique, or there is an ergodic mme v L pu.

Step 4. Contradiction if such a v exists.
Choose D such that v(D,) — 1 and p(D,) — 0.

#(DnNG(M)) > Ce™
The Gibbs property says that
#(Dn) > Kue™"#(Dn N G(M)) > K C >0

Thus no such v can exist, and p is unique.

Thermodynamics for non-uniformly mixing systems
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