Introduction Motivating problem and solution General result

Thermodynamics for non-uniformly mixing systems: factors of β -shifts are intrinsically ergodic

Vaughn Climenhaga University of Maryland

January 19, 2011

Joint work with Daniel Thompson

Thermodynamics for non-uniformly mixing systems

Introduction Motivating problem and solution General result

Thermodynamics for non-uniformly mixing systems: factors of β -shifts are intrinsically ergodic

Vaughn Climenhaga University of Maryland

January 19, 2011

Joint work with Daniel Thompson

Thermodynamics for non-uniformly mixing systems

1 Introduction

- Intrinsic ergodicity
- Classical results

2 Motivating problem and solution

- β-shifts
- Intrinsic ergodicity for factors

3 General result

- Specification and CGC-decompositions
- A criterion for intrinsic ergodicity that passes to factors
- Other examples and idea of proof

Basic thermodynamic concepts

Topological dynamical system:

- X a compact metric space, $f: X \to X$ continuous
- $\mathcal{M} = \{ \text{Borel } f \text{-invariant probability measures on } X \}$

Variational principle: $h_{top}(X, f) = \sup_{\mu \in \mathcal{M}} h_{\mu}(f)$

- If h_μ(f) = h_{top}(X, f), then μ is a measure of maximal entropy (MME)
- (X, f) is intrinsically ergodic if there exists a unique MME

同 ト イ ヨ ト イ ヨ ト

Basic thermodynamic concepts

Topological dynamical system:

- X a compact metric space, $f: X \to X$ continuous
- $\mathcal{M} = \{ \text{Borel } f \text{-invariant probability measures on } X \}$

Variational principle: $h_{top}(X, f) = \sup_{\mu \in \mathcal{M}} h_{\mu}(f)$

- If h_μ(f) = h_{top}(X, f), then μ is a measure of maximal entropy (MME)
- (X, f) is intrinsically ergodic if there exists a unique MME

Example: The full shift $\Sigma_p = \{1, \dots, p\}^{\mathbb{Z}}$ is intrinsically ergodic. The unique MME is $(\frac{1}{p}, \dots, \frac{1}{p})$ -Bernoulli measure.

- 4 周 ト 4 月 ト 4 月 ト

Basic thermodynamic concepts

Topological dynamical system:

- X a compact metric space, $f: X \to X$ continuous
- $\mathcal{M} = \{ \text{Borel } f \text{-invariant probability measures on } X \}$

Variational principle: $h_{top}(X, f) = \sup_{\mu \in \mathcal{M}} h_{\mu}(f)$

- If h_μ(f) = h_{top}(X, f), then μ is a measure of maximal entropy (MME)
- (X, f) is intrinsically ergodic if there exists a unique MME

Example: The full shift $\Sigma_p = \{1, \dots, p\}^{\mathbb{Z}}$ is intrinsically ergodic. The unique MME is $(\frac{1}{p}, \dots, \frac{1}{p})$ -Bernoulli measure.

When is a transitive dynamical system intrinsically ergodic?

Motivation and context

More general variational principle for topological pressure $P(\varphi)$ of a continuous potential function $\varphi \colon X \to \mathbb{R}$

$${\sf P}(arphi) = \sup_{\mu \in \mathcal{M}} \left(h_\mu(f) + \int arphi \, d\mu
ight)$$

If $h_{\mu}(f) + \int \varphi \, d\mu = P(\varphi)$, then μ is an equilibrium state.

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation and context

More general variational principle for topological pressure $P(\varphi)$ of a continuous potential function $\varphi \colon X \to \mathbb{R}$

$${\mathcal P}(arphi) = \sup_{\mu \in \mathcal{M}} \left(h_\mu(f) + \int arphi \, d\mu
ight)$$

If $h_{\mu}(f) + \int \varphi \, d\mu = P(\varphi)$, then μ is an equilibrium state.

- Existence of a unique equilibrium state is connected to statistical properties, large deviations, multifractal analysis, phase transitions, etc.
- $\varphi \equiv 0$: reduces to intrinsic ergodicity. Techniques for showing intrinsic ergodicity usually generalise to help prove other thermodynamic results.

Intrinsic ergodicity for shift spaces

Focus on shift spaces (subshifts):

- $X \subset \Sigma_p$ or $X \subset \Sigma_p^+$, X closed and σ -invariant
- $\mathcal{L} = \mathcal{L}(X) = \{x_1 \cdots x_n \mid x \in X, n \ge 1\}$ is the language of X

When is a transitive shift space intrinsically ergodic?

Intrinsic ergodicity for shift spaces

Focus on shift spaces (subshifts):

•
$$X \subset \Sigma_p$$
 or $X \subset \Sigma_p^+$, X closed and σ -invariant

• $\mathcal{L} = \mathcal{L}(X) = \{x_1 \cdots x_n \mid x \in X, n \ge 1\}$ is the language of X

When is a transitive shift space intrinsically ergodic? Not always.

Example: $X \subset \Sigma_5 = \{0, 1, 2, 1, 2\}^{\mathbb{Z}}$. Define the language \mathcal{L} by $v0^n w$, $w0^n v \in \mathcal{L}$ if and only if $n \ge 2 \max(|v|, |w|)$.

- (X, σ) is topologically transitive
- $h_{ ext{top}}(X,\sigma) = \log 2$
- 2 measures of maximal entropy:

$$\nu = (\frac{1}{2}, \frac{1}{2})\text{-Bernoulli on } \{1, 2\}^{\mathbb{Z}},$$

$$\mu = (\frac{1}{2}, \frac{1}{2})\text{-Bernoulli on } \{1, 2\}^{\mathbb{Z}}.$$

伺 ト イ ヨ ト イ ヨ ト

The following classes of shift spaces are intrinsically ergodic:

• Irreducible subshifts of finite type (Parry 1964)

The following classes of shift spaces are intrinsically ergodic:

- Irreducible subshifts of finite type (Parry 1964)
- Irreducible sofic shifts (Weiss 1970, 1973)

The following classes of shift spaces are intrinsically ergodic:

- Irreducible subshifts of finite type (Parry 1964)
- Irreducible sofic shifts (Weiss 1970, 1973)
- Shifts with specification (Bowen 1974)

The following classes of shift spaces are intrinsically ergodic:

- Irreducible subshifts of finite type (Parry 1964)
- Irreducible sofic shifts (Weiss 1970, 1973)
- Shifts with specification (Bowen 1974)
- β-shifts (Walters 1978, Hofbauer 1979)

・ 同 ト ・ 三 ト ・ 三 ト

Introduction Motivating problem and solution General result

 β -shifts Intrinsic ergodicity for factors

β -shifts

 $\beta > 1$, $b = \lceil \beta \rceil$. The β -shift $\Sigma_{\beta} \subset \Sigma_{b}^{+}$ is the natural coding space for the map

$$f_eta \colon [0,1] o [0,1], \qquad x \mapsto eta x \pmod{1}$$

 $1_{\beta} = a_1 a_2 \cdots$, where $1 = \sum_{n=1}^{\infty} a_n \beta^{-n}$

伺 と く ヨ と く ヨ と

э

Introduction Motivating problem and solution General result

 β -shifts Intrinsic ergodicity for factors

β -shifts

 $\beta > 1$, $b = \lceil \beta \rceil$. The β -shift $\Sigma_{\beta} \subset \Sigma_{b}^{+}$ is the natural coding space for the map

 $f_{eta} \colon [0,1] \to [0,1], \qquad x \mapsto eta x \pmod{1}$

 $1_{eta} = a_1 a_2 \cdots$, where $1 = \sum_{n=1}^{\infty} a_n eta^{-n}$

Fact: Sequences $x \in \Sigma_{\beta}$ are precisely those sequences in Σ_b that label trajectories of the following graph beginning at the vertex **B**. (Here $1_{\beta} = 2100201...$)

Intrinsic ergodicity is not necessarily preserved by factors.

- $X \subset \{0, 1, 2, 1, 2\}^{\mathbb{Z}}$ as before
- $Y \subset \Sigma_6 = \{0, 1, 2, 1, 2, 3\}^{\mathbb{Z}}$ by similar rule
- X is a factor of Y; Y is intrinsically ergodic; X is not

Intrinsic ergodicity is not necessarily preserved by factors.

- $X \subset \{0, 1, 2, 1, 2\}^{\mathbb{Z}}$ as before
- $Y \subset \Sigma_6 = \{0, 1, 2, 1, 2, 3\}^{\mathbb{Z}}$ by similar rule
- X is a factor of Y; Y is intrinsically ergodic; X is not

What intrinsically ergodic classes are closed under factors?

- Closure of SFTs is class of sofic systems
- Specification preserved by factors
- Factors of β -shifts = ?????

3.1

Intrinsic ergodicity is not necessarily preserved by factors.

- $X \subset \{0, 1, 2, 1, 2\}^{\mathbb{Z}}$ as before
- $Y \subset \Sigma_6 = \{0, 1, 2, 1, 2, 3\}^{\mathbb{Z}}$ by similar rule
- X is a factor of Y; Y is intrinsically ergodic; X is not

What intrinsically ergodic classes are closed under factors?

- Closure of SFTs is class of sofic systems
- Specification preserved by factors
- Factors of β -shifts = ?????

Are factors of β -shifts intrinsically ergodic? (Klaus Thomsen)

- A I - A I

Intrinsic ergodicity is not necessarily preserved by factors.

- $X \subset \{0, 1, 2, 1, 2\}^{\mathbb{Z}}$ as before
- $Y \subset \Sigma_6 = \{0, 1, 2, 1, 2, 3\}^{\mathbb{Z}}$ by similar rule
- X is a factor of Y; Y is intrinsically ergodic; X is not

What intrinsically ergodic classes are closed under factors?

- Closure of SFTs is class of sofic systems
- Specification preserved by factors
- Factors of β -shifts = ?????

Are factors of β -shifts intrinsically ergodic? (Klaus Thomsen)

Theorem (C.–Thompson 2010)

Yes.

(日) (同) (三) (三)

Intrinsic ergodicity is not necessarily preserved by factors.

- $X \subset \{0, 1, 2, 1, 2\}^{\mathbb{Z}}$ as before
- $Y \subset \Sigma_6 = \{0, 1, 2, 1, 2, 3\}^{\mathbb{Z}}$ by similar rule
- X is a factor of Y; Y is intrinsically ergodic; X is not

What intrinsically ergodic classes are closed under factors?

- Closure of SFTs is class of sofic systems
- Specification preserved by factors
- Factors of β -shifts = ?????

Are factors of β -shifts intrinsically ergodic? (Klaus Thomsen)

Theorem (C.–Thompson 2010)

Every subshift factor of a β -shift is intrinsically ergodic.

・ロト ・同ト ・ヨト ・ヨト

The classical specification property

- $\mathcal{L} =$ language for a shift space X
- $\mathcal{L} \leftrightarrow \{ \text{cylinders in } X \}$
- |w| = length of w, $\mathcal{L}_n = \{w \in \mathcal{L} \mid |w| = n\}$

X has specification if there exists $t \in \mathbb{N}$ such that for every $w_1, \ldots, w_m \in \mathcal{L}$, there exist $z_1, \ldots, z_{m-1} \in \mathcal{L}_t$ for which the concatenated word $w_1 z_1 w_2 z_2 \cdots z_{m-1} w_m$ is in \mathcal{L} .

(Arbitrary orbit segments can be connected by a single orbit)

伺 ト イ ヨ ト イ ヨ ト

The classical specification property

- $\mathcal{L} =$ language for a shift space X
- $\mathcal{L} \leftrightarrow \{ \text{cylinders in } X \}$
- |w| = length of w, $\mathcal{L}_n = \{w \in \mathcal{L} \mid |w| = n\}$

X has specification if there exists $t \in \mathbb{N}$ such that for every $w_1, \ldots, w_m \in \mathcal{L}$, there exist $z_1, \ldots, z_{m-1} \in \mathcal{L}_t$ for which the concatenated word $w_1 z_1 w_2 z_2 \cdots z_{m-1} w_m$ is in \mathcal{L} .

(Arbitrary orbit segments can be connected by a single orbit)

Topological transitivity guarantees the existence of such words $z_i \in \mathcal{L}$. Specification demands that the words z_i can be chosen to have uniformly bounded length t, where t is independent of the words w_i and their lengths.

イロト イポト イラト イラト

The following shifts have the specification property:

• Mixing subshifts of finite type

The following shifts have the specification property:

- Mixing subshifts of finite type
- Mixing sofic shifts

The following shifts have the specification property:

- Mixing subshifts of finite type
- Mixing sofic shifts
- Some β -shifts

 Σ_β does not have the specification property if 1_β contains arbitrarily long strings of 0's.

▶ GRAPH

The following shifts have the specification property:

- Mixing subshifts of finite type
- Mixing sofic shifts
- Some β -shifts

 Σ_β does not have the specification property if 1_β contains arbitrarily long strings of 0's.

▶ GRAPH

 Σ_{β} does not have specification for Lebesgue-a.e. $\beta > 1$.

We must replace specification with a property that

- holds for every β -shift;
- implies intrinsic ergodicity;
- is preserved by factors.

A restricted version of the specification property

Fix a subset $\mathcal{G} \subset \mathcal{L}$. We say that \mathcal{G} has specification if there exists $t \in \mathbb{N}$ such that for every $w_1, \ldots, w_m \in \mathcal{G}$, there exist $z_1, \ldots, z_{m-1} \in \mathcal{L}_t$ for which the concatenated word $x := w_1 z_1 w_2 z_2 \cdots z_{m-1} w_m$ is in \mathcal{L} .

Only difference from classical property is that we take $w_i \in \mathcal{G}$.

A restricted version of the specification property

Fix a subset $\mathcal{G} \subset \mathcal{L}$. We say that \mathcal{G} has specification if there exists $t \in \mathbb{N}$ such that for every $w_1, \ldots, w_m \in \mathcal{G}$, there exist $z_1, \ldots, z_{m-1} \in \mathcal{L}_t$ for which the concatenated word $x := w_1 z_1 w_2 z_2 \cdots z_{m-1} w_m$ is in \mathcal{L} .

Only difference from classical property is that we take $w_i \in \mathcal{G}$.

Say that \mathcal{G} has (Per)-specification if in addition to the above condition, the cylinder [x] contains a periodic point of period |x| + t.

A restricted version of the specification property

Fix a subset $\mathcal{G} \subset \mathcal{L}$. We say that \mathcal{G} has specification if there exists $t \in \mathbb{N}$ such that for every $w_1, \ldots, w_m \in \mathcal{G}$, there exist $z_1, \ldots, z_{m-1} \in \mathcal{L}_t$ for which the concatenated word $x := w_1 z_1 w_2 z_2 \cdots z_{m-1} w_m$ is in \mathcal{L} .

Only difference from classical property is that we take $w_i \in \mathcal{G}$.

Say that \mathcal{G} has (Per)-specification if in addition to the above condition, the cylinder [x] contains a periodic point of period |x| + t.

Example: For $X = \Sigma_{\beta}$, let \mathcal{G} be the set of words corresponding to paths that begin and end at **B**. Then \mathcal{G} has (Per)-specification with t = 0.

イロト イポト イラト イラト

A CGC-decomposition of the language \mathcal{L} is a collection of words $\mathcal{C}^{p}, \mathcal{G}, \mathcal{C}^{s} \subset \mathcal{L}$ with the following properties.

() \mathcal{G} has specification.

A (1) > A (2) > A

A CGC-decomposition of the language \mathcal{L} is a collection of words $\mathcal{C}^{p}, \mathcal{G}, \mathcal{C}^{s} \subset \mathcal{L}$ with the following properties.

- **()** \mathcal{G} has specification.
- ② $\mathcal{L} = C^p \mathcal{G}C^s$. That is, every word in \mathcal{L} can be written in the form *uvw* with *u* ∈ C^p , *v* ∈ \mathcal{G} , *w* ∈ C^s .

伺 ト イ ヨ ト イ ヨ

A CGC-decomposition of the language \mathcal{L} is a collection of words $\mathcal{C}^{p}, \mathcal{G}, \mathcal{C}^{s} \subset \mathcal{L}$ with the following properties.

- **()** \mathcal{G} has specification.
- ② $\mathcal{L} = C^p \mathcal{G}C^s$. That is, every word in \mathcal{L} can be written in the form *uvw* with *u* ∈ C^p , *v* ∈ \mathcal{G} , *w* ∈ C^s .
- So For every uvw ∈ L of the above form, there exist x, y ∈ L such that xuvwy ∈ G.

・ 同 ト ・ 三 ト ・ 三 ト

A CGC-decomposition of the language \mathcal{L} is a collection of words $\mathcal{C}^{p}, \mathcal{G}, \mathcal{C}^{s} \subset \mathcal{L}$ with the following properties.

- **()** \mathcal{G} has specification.
- ② $\mathcal{L} = C^p \mathcal{G}C^s$. That is, every word in \mathcal{L} can be written in the form *uvw* with *u* ∈ C^p , *v* ∈ \mathcal{G} , *w* ∈ C^s .
- So For every uvw ∈ L of the above form, there exist x, y ∈ L such that xuvwy ∈ G.

A CGC-decomposition is uniform if the lengths of x and y in the last condition depend only on the lengths of u and w. (And not on u, v, w themselves.)

A CGC-decomposition of the language \mathcal{L} is a collection of words $\mathcal{C}^{p}, \mathcal{G}, \mathcal{C}^{s} \subset \mathcal{L}$ with the following properties.

- **()** \mathcal{G} has specification.
- ② $\mathcal{L} = C^p \mathcal{G}C^s$. That is, every word in \mathcal{L} can be written in the form *uvw* with *u* ∈ C^p , *v* ∈ \mathcal{G} , *w* ∈ C^s .
- So For every uvw ∈ L of the above form, there exist x, y ∈ L such that xuvwy ∈ G.

A CGC-decomposition is uniform if the lengths of x and y in the last condition depend only on the lengths of u and w. (And not on u, v, w themselves.)

Example: For $X = \Sigma_{\beta}$, let $\mathcal{C}^{p} = \emptyset$ and let \mathcal{C}^{s} be the set of words corresponding to paths that begin at **B** and never return. Then $(\mathcal{C}^{p}, \mathcal{G}, \mathcal{C}^{s})$ is a uniform CGC-decomposition.

・ロト ・同ト ・ヨト ・ヨト

Intrinsic ergodicity for shifts with CGC-decompositions

Given a collection of words $\mathcal{D} \subset \mathcal{L}$, let $h(\mathcal{D}) = \overline{\lim}_{n \to \infty} \frac{1}{n} \log \# \mathcal{D}_n$. Observe that $h_{\text{top}}(X, \sigma) = h(\mathcal{L})$.

・ 同 ト ・ ヨ ト ・ ヨ

Intrinsic ergodicity for shifts with CGC-decompositions

Given a collection of words $\mathcal{D} \subset \mathcal{L}$, let $h(\mathcal{D}) = \overline{\lim}_{n \to \infty} \frac{1}{n} \log \# \mathcal{D}_n$. Observe that $h_{\text{top}}(X, \sigma) = h(\mathcal{L})$.

Theorem (C.–Thompson 2010)

Let X be a shift space admitting a uniform CGC-decomposition. If $h(\mathcal{C}^p \cup \mathcal{C}^s) < h_{top}(X, \sigma)$, then (X, σ) is intrinsically ergodic. If \mathcal{G} has (Per)-specification, then the unique MME is the limit of the periodic orbit measures $\mu_n = \frac{1}{\#\{x \mid f^n(x) = x\}} \sum_{f^n(x) = x} \delta_x$.

・ロト ・同ト ・ヨト ・ヨト

Intrinsic ergodicity for shifts with CGC-decompositions

Given a collection of words $\mathcal{D} \subset \mathcal{L}$, let $h(\mathcal{D}) = \overline{\lim}_{n \to \infty} \frac{1}{n} \log \# \mathcal{D}_n$. Observe that $h_{\text{top}}(X, \sigma) = h(\mathcal{L})$.

Theorem (C.–Thompson 2010)

Let X be a shift space admitting a uniform CGC-decomposition. If $h(\mathcal{C}^p \cup \mathcal{C}^s) < h_{top}(X, \sigma)$, then (X, σ) is intrinsically ergodic. If \mathcal{G} has (Per)-specification, then the unique MME is the limit of the periodic orbit measures $\mu_n = \frac{1}{\#\{x \mid f^n(x) = x\}} \sum_{f^n(x) = x} \delta_x$.

Example: For $X = \Sigma_{\beta}$, let $x = 1_{\beta}$. Then $(\mathcal{C}^{p} \cup \mathcal{C}^{s})_{n} = \{x_{1} \cdots x_{n}\}$, and so $h(\mathcal{C}^{p} \cup \mathcal{C}^{s}) = 0$. Thus (Σ_{β}, σ) is intrinsically ergodic.

(日)

Behaviour under factors

Let (\tilde{X}, σ) be a factor of (X, σ) , and let $\mathcal{L}, \tilde{\mathcal{L}}$ be the languages.

• If \mathcal{L} has a uniform CGC-decomposition, then so does $\tilde{\mathcal{L}}$. Futhermore, $h(\tilde{\mathcal{C}}^p \cup \tilde{\mathcal{C}}^s) \leq h(\mathcal{C}^p \cup \mathcal{C}^s)$.

Every factor with $h_{top}(\tilde{X}, \sigma) > h(\mathcal{C}^p \cup \mathcal{C}^s)$ is intrinsically ergodic.

Behaviour under factors

Let (\tilde{X}, σ) be a factor of (X, σ) , and let $\mathcal{L}, \tilde{\mathcal{L}}$ be the languages.

• If \mathcal{L} has a uniform CGC-decomposition, then so does $\tilde{\mathcal{L}}$. Futhermore, $h(\tilde{\mathcal{C}}^p \cup \tilde{\mathcal{C}}^s) \leq h(\mathcal{C}^p \cup \mathcal{C}^s)$.

Every factor with $h_{top}(\tilde{X}, \sigma) > h(\mathcal{C}^p \cup \mathcal{C}^s)$ is intrinsically ergodic.

Dichotomy for shifts with uniform CGC-decompositions:

Either $h_{top}(X, \sigma) > 0$, or X comprises a single periodic orbit.

/□ ▶ < 글 ▶ < 글

Behaviour under factors

Let (\tilde{X}, σ) be a factor of (X, σ) , and let $\mathcal{L}, \tilde{\mathcal{L}}$ be the languages.

• If \mathcal{L} has a uniform CGC-decomposition, then so does $\tilde{\mathcal{L}}$. Futhermore, $h(\tilde{\mathcal{C}}^p \cup \tilde{\mathcal{C}}^s) \leq h(\mathcal{C}^p \cup \mathcal{C}^s)$.

Every factor with $h_{top}(\tilde{X}, \sigma) > h(\mathcal{C}^p \cup \mathcal{C}^s)$ is intrinsically ergodic.

Dichotomy for shifts with uniform CGC-decompositions:

Either $h_{top}(X, \sigma) > 0$, or X comprises a single periodic orbit.

Theorem (C.–Thompson 2010)

Let X be a shift space admitting a uniform CGC-decomposition.

If $h(\mathcal{C}^p \cup \mathcal{C}^s) = 0$, then every subshift factor of (X, σ) is intrinsically ergodic.

・ロト ・同ト ・ヨト ・ヨト

Introduction	Specification and CGC-decompositions
Motivating problem and solution	
General result	Other examples and idea of proof

S-gap shifts

Fix $S \subset \mathbb{N}$ and suppose S is infinite. The associated S-gap shift is the subshift $\Sigma_S \subset \{0,1\}^{\mathbb{Z}}$ with language

$$\mathcal{L} = \{0^{k}10^{n_{1}}10^{n_{2}}1\cdots 10^{n_{j}}10^{\ell} \mid n_{i} \in S, k, \ell \in \mathbb{N}\}.$$

Introduction	Specification and CGC-decompositions
Motivating problem and solution	
General result	Other examples and idea of proof

S-gap shifts

Fix $S \subset \mathbb{N}$ and suppose S is infinite. The associated S-gap shift is the subshift $\Sigma_S \subset \{0,1\}^{\mathbb{Z}}$ with language

$$\mathcal{L} = \{0^k 10^{n_1} 10^{n_2} 1 \cdots 10^{n_j} 10^\ell \mid n_i \in S, k, \ell \in \mathbb{N}\}.$$

A uniform CGC-decomposition for Σ_S is given by

$$\mathcal{G} = \{0^n 1 \mid n \in S\}$$
$$\mathcal{C}^p = \{0^k 1 \mid k \ge 0\}$$
$$\mathcal{C}^s = \{0^\ell \mid \ell \ge 1\}$$

 Introduction
 Specification and CGC-decompositions

 Motivating problem and solution
 A criterion for intrinsic ergodicity that passes to factors

 General result
 Other examples and idea of proof

S-gap shifts

Fix $S \subset \mathbb{N}$ and suppose S is infinite. The associated S-gap shift is the subshift $\Sigma_S \subset \{0,1\}^{\mathbb{Z}}$ with language

$$\mathcal{L} = \{0^{k}10^{n_{1}}10^{n_{2}}1\cdots 10^{n_{j}}10^{\ell} \mid n_{i} \in S, k, \ell \in \mathbb{N}\}.$$

A uniform CGC-decomposition for Σ_S is given by

$$\mathcal{G} = \{0^{n}1 \mid n \in S\}$$
$$\mathcal{C}^{p} = \{0^{k}1 \mid k \ge 0\}$$
$$\mathcal{C}^{s} = \{0^{\ell} \mid \ell \ge 1\}$$

Then $\#(\mathcal{C}^p \cup \mathcal{C}^s)_n = 2$ for all $n \ge 1$, and so $h(\mathcal{C}^p \cup \mathcal{C}^s) = 0$. It follows that every subshift factor of an *S*-gap shift is intrinsically ergodic.

Introduction	Specification and CGC-decompositions
Motivating problem and solution	A criterion for intrinsic ergodicity that passes to factors
General result	Other examples and idea of proof

Coded systems

A shift space X is coded if its language \mathcal{L} is freely generated by a countable set of generators $\{w_n\}_{n\in\mathbb{N}}\subset \mathcal{L}$.

 $\mathcal{L} = \{ \text{all subwords of } w_{n_1} w_{n_2} \cdots w_{n_k} \mid n_i \in \mathbb{N} \}$

Coded systems

A shift space X is coded if its language \mathcal{L} is freely generated by a countable set of generators $\{w_n\}_{n\in\mathbb{N}}\subset \mathcal{L}$.

$$\mathcal{L} = \{ \text{all subwords of } w_{n_1} w_{n_2} \cdots w_{n_k} \mid n_i \in \mathbb{N} \}$$

Every coded system has a uniform CGC-decomposition.

$$\mathcal{G} = \{ w_{n_1} w_{n_2} \cdots w_{n_k} \mid n_i \in \mathbb{N} \}$$
$$\mathcal{C}^p = \{ \text{suffixes of } w_n \mid n \in \mathbb{N} \}$$
$$\mathcal{C}^s = \{ \text{prefixes of } w_n \mid n \in \mathbb{N} \}$$

Coded systems

A shift space X is coded if its language \mathcal{L} is freely generated by a countable set of generators $\{w_n\}_{n\in\mathbb{N}}\subset \mathcal{L}$.

$$\mathcal{L} = \{ \text{all subwords of } w_{n_1} w_{n_2} \cdots w_{n_k} \mid n_i \in \mathbb{N} \}$$

Every coded system has a uniform CGC-decomposition.

$$\mathcal{G} = \{ w_{n_1} w_{n_2} \cdots w_{n_k} \mid n_i \in \mathbb{N} \}$$
$$\mathcal{C}^p = \{ \text{suffixes of } w_n \mid n \in \mathbb{N} \}$$
$$\mathcal{C}^s = \{ \text{prefixes of } w_n \mid n \in \mathbb{N} \}$$

Let $\hat{h} = h(\{\text{prefixes and suffixes of generators}\})$.

- $\hat{h} < h_{top}(X, \sigma) \Rightarrow (X, \sigma)$ is intrinsically ergodic
- $\hat{h} = 0 \Rightarrow$ every subshift factor of (X, σ) is intrinsically ergodic

Step 1. Estimates on number of words of a given length

$$\#\mathcal{L}_{m+n} \le (\#\mathcal{L}_m)(\#\mathcal{L}_n) \Rightarrow \#\mathcal{L}_n \ge e^{nh}$$

 $\#\mathcal{L}_{m+n+t} \ge (\#\mathcal{G}_m)(\#\mathcal{G}_n) \Rightarrow \#\mathcal{G}_n \le Ce^{nh}$

- 4 同 2 4 日 2 4 日

Step 1. Estimates on number of words of a given length

$$\begin{split} \#\mathcal{L}_{m+n} &\leq (\#\mathcal{L}_m)(\#\mathcal{L}_n) \Rightarrow \#\mathcal{L}_n \geq e^{nh} \\ \#\mathcal{L}_{m+n+t} \geq (\#\mathcal{G}_m)(\#\mathcal{G}_n) \Rightarrow \#\mathcal{G}_n \leq C e^{nh} \end{split}$$

Number of prefixes and suffixes is small, so

$$\#\mathcal{L}_n \leq C e^{nh} \qquad \qquad \#\mathcal{G}_n \geq C^{-1} e^{nh}$$

Step 1. Estimates on number of words of a given length

$$\begin{split} \#\mathcal{L}_{m+n} &\leq (\#\mathcal{L}_m)(\#\mathcal{L}_n) \Rightarrow \#\mathcal{L}_n \geq e^{nh} \\ \#\mathcal{L}_{m+n+t} \geq (\#\mathcal{G}_m)(\#\mathcal{G}_n) \Rightarrow \#\mathcal{G}_n \leq C e^{nh} \end{split}$$

Number of prefixes and suffixes is small, so

$$\#\mathcal{L}_n \leq C e^{nh} \qquad \qquad \#\mathcal{G}_n \geq C^{-1} e^{nh}$$

Step 2. Build a measure of maximal entropy as a limit of δ -measures on (n, ε) -separated orbits. Use counting estimates to obtain a Gibbs property

$$w_1 \cdots w_n \in \mathcal{G}(M) \Rightarrow \mu([w_1 \cdots w_n]) \geq K_M e^{-nh}$$

Step 3. The mme μ is ergodic

$$\mu(P) > 0, \mu(Q) > 0 \Rightarrow \overline{\lim_{n \to \infty}} \mu(P \cap \sigma^{-n}(Q)) > 0$$

So either μ is unique, or there is an ergodic mme $\nu \perp \mu$.

A 3 1

Step 3. The mme μ is ergodic

$$\mu(P) > 0, \mu(Q) > 0 \Rightarrow \overline{\lim_{n \to \infty}} \mu(P \cap \sigma^{-n}(Q)) > 0$$

So either μ is unique, or there is an ergodic mme $\nu \perp \mu$.

Step 4. Contradiction if such a ν exists. Choose \mathcal{D} such that $\nu(\mathcal{D}_n) \to 1$ and $\mu(\mathcal{D}_n) \to 0$.

 $\#(\mathcal{D}_n \cap \mathcal{G}(M)) \geq Ce^{nh}$

Step 3. The mme μ is ergodic

$$\mu(P) > 0, \mu(Q) > 0 \Rightarrow \overline{\lim_{n \to \infty}} \mu(P \cap \sigma^{-n}(Q)) > 0$$

So either μ is unique, or there is an ergodic mme $\nu \perp \mu$.

Step 4. Contradiction if such a ν exists. Choose \mathcal{D} such that $\nu(\mathcal{D}_n) \to 1$ and $\mu(\mathcal{D}_n) \to 0$.

$$\#({\mathcal D}_n\cap {\mathcal G}(M))\geq Ce^{nh}$$

The Gibbs property says that

$$\mu(\mathcal{D}_n) \geq K_M e^{-nh} \#(\mathcal{D}_n \cap \mathcal{G}(M)) \geq K_M C > 0$$

Thus no such ν can exist, and μ is unique.