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These are notes for a talk I am giving in Jon Chaika’s online working
seminar in ergodic theory. The purpose of the talk is to outline Bowen’s proof
of uniqueness of the measure of maximal entropy for shift spaces with the
specification property. Bowen’s approach extends much more broadly than
this: to non-symbolic systems (assuming expansivity); to equilibrium states
for non-zero potential functions (assuming a bounded distortion property);
and to non-uniformly hyperbolic systems using the notion of ”obstructions to
specification and expansivity” developed by Dan Thompson and myself (see
some notes here and here, and videos here). In these notes, though, I want to
give the bare bones of the argument in the simplest possible setting, to make
the essential structure as clear as possible. I gave an alternate argument
in a previous post; here I am giving Bowen’s original argument, although I
do not necessarily follow his presentation. I should also point out that this
argument differs from the construction of the MME, or more generally the
equilibrium state, in Bowen’s monograph, which uses the Ruelle operator.

1 Setting and result

Let A be a finite set; the alphabet. Then the full shift AN is the set of infinite
sequences of symbols from A; this is a compact metric space with d(x, y) =
e−n(x,y), where n(x, y) = min{n : xn 6= yn}. The shift map σ : AN → AN

is defined by σ(x)n = xn+1. A shift space is a closed set X ⊂ AN with
σ(X) = X.

Example 1 The best example to keep in mind through this talk is a topologi-
cal Markov shift: fix d ∈ N and put A = {1, . . . , d}; then fix a d×d transition
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matrix T with entries in {0, 1}, and write

i→ j if Tij = 1, i 6→ j if Tij = 0. (1)

Define X = {x ∈ AN : xn → xn+1 for all n}. This is a topological Markov
shift (TMS). It can be viewed in terms of a directed graph with vertex set A
and edges given by (1): X consists of all sequences that label infinite paths
on the graph.

The TMS is mixing or primitive if there is N ∈ N such that (TN)ij > 0
for all i, j. Equivalently, the graph is strongly connected and the set of loop
lengths on the graph has gcd 1.

Given a shift space X, consider

M = {Borel probability measures on X},
Mσ = {µ ∈M : σ∗µ := µ ◦ σ−1 = µ},
Me

σ = {µ ∈Mσ : µ is ergodic}.

The setMσ of invariant measures is extremely large for a mixing TMS (and
more generally for systems with some sort of hyperbolic behavior), and it is
important to identify “distinguished” invariant measures. One way of doing
this is via the variational principle

htop(X) = sup{h(µ) : µ ∈Mσ}.

The next section recalls the definitions of the topological and measure-theoretic
entropies in this setting. A measure achieving the supremum is a measure of
maximal entropy (MME).

We will see that every mixing TMS has a unique MME, via a more general
result. Given n ∈ N0 and w ∈ An, let [w] = wX ∩X be the set of sequences
in X that start with the word w (juxtaposition denotes concatenation); call
this the cylinder of w. Define the language of X by

Ln = {w ∈ An : [w] 6= ∅}, L =
⋃
n∈N0

Ln.

Definition 2 X has specification if there is τ ∈ N0 such that for all v, w ∈ L
there is u ∈ Lτ such that vuw ∈ L.

Exercise 1 Prove that every mixing TMS has specification.

Theorem 3 (Bowen) If X has specification, then it has a unique MME.
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2 Entropies

2.1 Topological entropy

Every word in Lm+n is of the form vw for some v ∈ Lm and w ∈ Ln; thus

Lm+n ⊂ LmLn ⇒ #Lm+n ≤ #Lm#Ln.

This means that the sequence cn := log #Ln has the sub-additivity property

cm+n ≤ cm + cn. (2)

Exercise 2 Prove Fekete’s lemma: for any sequence satisfying (2), limn→∞
1
n
cn

exists and is equal to infn
1
n
cn (a priori it could be −∞).

We conclude that the topological entropy htop(X) := limn→∞
1
n

log #Ln
exists for every shift space. This quantifies the growth rate of the total
complexity of the system.

Exercise 3 Prove that htop(X) is the box dimension of X (easy). Then prove
that it is also the Hausdorff dimension of X (harder). (Both of these facts rely
very strongly on the fact that d(σx, σy)/d(x, y) is globally constant whenever
x, y are close; for general systems where the amount of expansion may vary,
the definition of topological entropy is more involved and the relationship to
dimension is more subtle, although it is worth noting that a 1973 paper of
Bowen in TAMS gives a definition of topological entropy that is analogous to
Hausdorff dimension.)

2.2 Measure-theoretic entropy

Recall the motivation from information theory for the definition of entropy:
given p ∈ (0, 1], let I(p) = − log p. This can be interpreted as the information
associated to an event with probability p; note that it is monotonic (the less
likely an event is, the more information we gain by learning that it happened)
and that I(pq) = I(p) + I(q).

Now define φ on [0, 1] by φ(p) = pI(p) = −p log p (and φ(0) = 0); this
can be interpreted as the expected amount of information associated to an
event with probability p.

Exercise 4 Show that φ is concave.
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Given N ∈ N, let ∆ = ∆N = {p̄ = (p1, . . . , pN) : pi ≥ 0 and
∑
pi ≤ 1}

be the set of sub-probability vectors with N components. Define

H(p̄) =
N∑
i=1

φ(pi); (3)

this can be interpreted as the expected information associated to a collection
of mutually exclusive events with probabilities p1, . . . , pN .

Exercise 5 Show that H(p̄) ≤ logN for all p̄ ∈ ∆N , with equality if and
only if pi = 1

N
for all i.

Given µ ∈ Mσ, we have for each n a probability vector with #Ln com-
ponents; writing µ(w) = µ([w]) for convenience, the entropy (expected infor-
mation) associated to this vector is

Hn(µ) :=
∑
w∈Ln

φ(µ(w)). (4)

Lemma 4 Hm+n(µ) ≤ Hm(µ) +Hn(µ)

Proof:

Hm+n(µ) ≤
∑
v∈Lm

∑
w∈Ln

µ(vw)I
(µ(vw)

µ(v)
· µ(v)

)
=
∑
w∈Ln

∑
v∈Lm

µ(v)φ
(µ(vw)

µ(v)

)
+
∑
v∈Lm

∑
w∈Ln

µ(vw)I(µ(v))

≤
∑
w∈Ln

φ
( ∑
v∈Lm

µ(vw)
)

+
∑
v∈Lm

φ(µ(v))

= Hn(µ) +Hm(µ),

where the first line is by definition, the second is since I(pq) = I(p) + I(q),
the third uses concavity of φ, and the fourth uses invariance of µ to get∑

v∈Lm µ(vw) = µ(w). �

This lemma has the following intuitive interpretation: the expected infor-
mation from the first m+n symbols is at most the expected information from
the first m symbols plus the expected information from the next n symbols.

Now Fekete’s lemma implies that the following measure-theoretic entropy
exists:

h(µ) := lim
n→∞

1

n
Hn(µ). (5)
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2.3 Variational principle

Using Exercise 5 we see that Hn(µ) ≤ cn = log #Ln, with equality if and
only if µ(w) = 1/#Ln for all w ∈ Ln. This immediately proves that

h(µ) ≤ htop(X) for all µ ∈Mσ, (6)

and suggests that in order to have equality we should look for a measure with

µ(w) ≈ 1

#Ln
≈ e−nhtop(X) for all w ∈ Ln. (7)

The following makes this more precise.

Definition 5 µ ∈ Mσ is a Gibbs measure if there are h, c, C > 0 such that
for all n ∈ N and w ∈ Ln, we have ce−nh ≤ µ(w) ≤ Ce−nh.

Now Theorem 3 is a consequence of the following two results, which we
prove below.

Theorem 6 If µ is an ergodic Gibbs measure for X, then h = htop(X) =
h(µ) and µ is the unique MME.

Theorem 7 If X has specification, then it has an ergodic Gibbs measure.

In fact the construction of µ below always gives equality in (6), without
relying on the specification property (or obtaining uniqueness), but we will
not prove this.

2.4 Convex combinations

Before embarking on the proof of Theorems 6 and 7, we establish a general
property of entropy that will be important.

Lemma 8 Given p̄, q̄ ∈ ∆N and s, t ∈ [0, 1] with s+ t = 1, we have

sH(p̄) + tH(q̄) ≤ H(sp̄+ tq̄) ≤ sH(p̄) + tH(q̄) + log 2. (8)
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Proof: The first inequality follows immediately from concavity of φ. For
the second inequality we first observe that

H(sp̄) =
N∑
i=1

spiI(spi) =
N∑
i=1

(
spiI(pi) + spiI(s)

)
= sH(p̄) + φ(s)

N∑
i=1

pi. (9)

Then we use monotonicity of I to get

H(sp̄+ tq̄) =
∑

spiI(spi + tqi) + tqiI(spi + tqi)

≤
∑

spiI(spi) +
∑

tqiI(tqi)

= sH(p̄) + tH(q̄) + φ(s)
∑

pi + φ(t)
∑

qi,

where the last equality uses (9) twice; this proves (8). �

Applying Lemma 8 to the probability vectors associated to two measures
ν, µ ∈Mσ, we see that

sHn(ν) + tHn(µ) ≤ Hn(sν + tµ) ≤ sHn(ν) + tHn(µ) + log 2

for all n: dividing by n and sending n→∞ gives

h(sν + tµ) = sh(ν) + th(µ). (10)

Remark 9 It is worth mentioning the deeper fact that a version of (10)
holds for infinite convex combinations (even uncountable ones given by an
integral); this is due to Konrad Jacobs, see Section 9.6 of ”Foundations of
Ergodic Theory” by Viana and Oliveira.

3 Gibbs implies uniqueness

To prove Theorem 6, start by observing that the lower Gibbs bound gives

1 = µ(X) =
∑
w∈Ln

µ(w) ≥ ce−nh#Ln ⇒ #Ln ≤ c−1enh, (11)

and thus htop(X) ≤ h. Meanwhile, the upper Gibbs bound gives

Hn(µ) =
∑
w∈Ln

µ(w)I(µ(w)) ≥
∑
w∈Ln

µ(w)I(Ce−nh) = I(Ce−nh) = nh− logC,
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and thus h(µ) ≥ h, so we conclude that htop(X) = h = h(µ). It remains to
show that every ν ∈Mσ with ν 6= µ has h(ν) < h.

First observe that by (10), we can restrict our attention to the case when
ν ⊥ µ. Indeed, given any ν ∈ Mσ, the Lebesgue decomposition theorem
gives ν = sν1 + tν2 for some ν1 ⊥ µ and ν2 � µ, and (10) gives h(ν) =
sh(ν1) + th(ν2). By ergodicity we must have ν2 = µ and thus s > 0, so if
h(ν1) < h then the same is true of h(ν).

Now consider ν ⊥ µ. Then there is a Borel set D ⊂ X with ν(D) = 0
and µ(D) = 1, and this in turn gives Dn ⊂ Ln such that

ν(Dn)→ 0 and µ(Dn)→ 1 as n→∞. (12)

Let ν|Dn denote the normalization of ν after restricting to words in Dn, and
similarly for ν|Dc

n
. Recall from Fekete’s lemma and subadditivity of Hn(ν)

that 1
n
Hn(ν) ≥ h(ν) for all n. Then we get

nh(ν) ≤ Hn(ν) = Hn

(
ν(Dn)ν|Dn + ν(Dcn)ν|Dc

n

)
≤ ν(Dn)Hn(ν|Dn) + ν(Dcn)Hn(ν|Dc

n
) + log 2

≤ ν(Dn) log #Dn + ν(Dcn) log #Dcn + log 2

≤ ν(Dn) log(c−1enhµ(Dn)) + ν(Dcn) log(c−1enhDcn) + log 2

= nh− log c+ log 2 + ν(Dn) log µ(Dn) + ν(Dcn) log µ(Dcn),

where the second line uses Lemma 8, the third line uses Exercise 5, and the
fourth line uses the lower Gibbs bound as in (11). We conclude that

n(h(ν)− h) ≤ log(2/c) + ν(Dn) log µ(Dn) + ν(Dcn) log µ(Dcn),

and as n → ∞ the right-hand side goes to −∞ by (12), which implies that
h(ν) < h, completing the proof.

4 Specification implies Gibbs

Now we outline the proof of Theorem 7. This comes in three steps: (1)
uniform counting bounds; (2) construction of a Gibbs measure; (3) proof of
ergodicity.
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4.1 Uniform counting bounds

From now on we write h = htop(X) for convenience. Fekete’s lemma gives
1
n

log #Ln ≥ h for all n, or equivalently #Ln ≥ enh. This can also be deduced
by writing

#Lkn ≤ (#Ln)k ⇒ 1

kn
log #Lkn ≤

1

n
log #Ln

and sending k → ∞ so that the left-hand side goes to h (this is basically
part of the proof of Fekete’s lemma).

To get an upper bound on #Ln we need the specification property, which
gives a 1-1 map Lm × Ln → Lm+n+τ , so that #Lm+n+τ ≥ #Lm#Ln. Then
one can either apply Fekete’s lemma to bn := − log #Ln+τ , or observe that

#Lk(n+τ) ≥ (#Ln)k ⇒ 1

k(n+ τ)
log #Lk(n+τ) ≥

1

n+ τ
log #Ln.

Sending k →∞ the left-hand side goes to h, and so combined with the lower
bound above we get the uniform counting bounds

enh ≤ #Ln ≤ eτhenh. (13)

4.2 A Gibbs measure

There is a standard procedure for constructing an MME: let νn ∈M be any
sequence of (not necessarily invariant) Borel probability measures such that
νn(w) = 1/#Ln for all w ∈ Ln, and then put

µn =
1

n

n−1∑
k=0

σk∗νn =
1

n

n−1∑
k=0

νn ◦ σ−k.

Since M is weak* compact, there is a weak* convergent subsequence µnj
.

Exercise 6 Show that µ := limj→∞ µnj
is σ-invariant (µ ◦ σ−1 = µ).

The preceding exercise is basically the proof of the Krylov-Bogolyubov
theorem, and does not require any properties of the measures νn beyond the
fact that they are Borel probability measures.

One can prove that µ is an MME whether or not X has specification, but
we will use specification to directly prove the stronger Gibbs property.
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Given any w ∈ Lm and any τ ≤ k ≤ n − τ , we bound νn(σ−k[w]) by
estimating how many words in #Ln are of the form uwv for some u ∈ Lk
and v ∈ Ln−m−k. Arguments similar to those in the uniform counting bounds
show that

#Lk−τ#Ln−k−m−τ ≤ (# of such words) ≤ #Lk#Ln−k−m,

where the first inequality requires specification. Dividing by #Ln and using
the uniform counting bounds (13) gives

νn(σ−k[w]) ≤ #Lk#Ln−k−m
#Ln

≤ eτhekheτhe(n−k−m)h

enh
= e2τhe−mh;

using a similar estimate from below we get

e−3τhe−mh ≤ νn(σ−k[w]) ≤ e2τhe−mh. (14)

Averaging over all k and sending n→∞ along the subsequence nj gives

e−3τhe−mh ≤ µ(w) ≤ e2τhe−mh, (15)

so µ is a Gibbs measure.

4.3 Ergodicity

To prove that µ is ergodic, start by fixing v, w ∈ L, with lengths |v| and |w|,
respectively. Given j � |v| and k � n, follow the same procedure as above
to estimate the number of words in Ln with the form xvywz, where x ∈ Lk,
y ∈ Lj−|v|, and z ∈ Ln−k−j−|w|, and obtain the bounds

#Lk−τ#Lj−|v|−τ#Ln−k−j−|w|−τ
#Ln

≤ σk∗νn([v]∩σ−j[w]) ≤
#Lk#Lj−|v|#Ln−k−j−|w|

#Ln
.

Averaging over k, sending n → ∞, and using the uniform counting bounds
(13) gives

e−4τhe−|v|he−|w|h ≤ µ([v] ∩ σ−j[w]) ≤ e3τhe−|v|he−|w|h.

Using the Gibbs bounds (15) gives

e−8τhµ(v)µ(w) ≤ µ([v] ∩ σ−j[w]) ≤ e9τhµ(v)µ(w). (16)
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Exercise 7 Given Borel sets V,W ⊂ X, approximate V and W with cylin-
ders and use (16) to get

e−8τhµ(V )µ(W ) ≤ lim
j→∞

µ(V ∩ σ−jW ) ≤ lim
j→∞

µ(V ∩ σ−jW ) ≤ e9τhµ(V )µ(W ).

Now if E ⊂ X is invariant, then taking V = E and W = Ec in Exercise
7, the lower bound gives e−8τhµ(E)(1− µ(E)) = 0, so µ(E) is either 0 or 1.
This proves ergodicity and completes the proof of Theorem 7.

Remark 10 In fact, the upper bound in Exercise 7 can be used to show that
µ is mixing; see Proposition 20.3.6 in Katok and Hasselblatt.
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