PROBLEM SET 2

Due 5pm Thursday Oct. 18. You must give complete justification for all answers in order to receive full credit.

- **1.** Let $A, B \in \mathbb{M}_{n \times n}$ commute, and let $V \subset \mathbb{C}^n$ be a generalised eigenspace for A. Show that V is B-invariant. (In fact, one can make the slightly stronger statement that ker $(A - \lambda I)^k$ is B-invariant for every k.)
- **2.** Let $A \in \mathbb{M}_{4\times 4}$ have eigenvalues $\{-2, -2, -i, i\}$ (counting multiplicity). Write down all possible upper real Jordan canonical forms for A. For each such canonical form, give the general solution to $\dot{x} = Ax$. (Leave the general solution in the form M(t)x(0), where M(t) is a time-dependent 4×4 matrix and x(0) is the initial condition.)
- **3.** For each of the following matrices A, find the stable, unstable, and centre subspaces E^s , E^u , and E^c , and use these to sketch the phase portrait of solutions to $\dot{x} = Ax$.

(a)
$$A = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 0 & -4 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}$

- **4.** Say that a solution to an ODE is *complicated* if it is bounded for all time (there exists M > 0 such that $|x(t)| \leq M$ for all $t \in \mathbb{R}$) and is not an equilibrium or a periodic orbit.
 - (a) Suppose that $A \in \mathbb{M}_{n \times n}$ has at most one complex conjugate pair of non-real eigenvalues, and show that $\dot{x} = Ax$ has no complicated solutions.
 - (b) Let $A \in \mathbb{M}_{4\times 4}$ have eigenvalues $\pm i, \pm \omega i$, where $\omega \in \mathbb{R}$ is irrational. Show that the ODE $\dot{x} = Ax$ has a complicated solution.
- 5. Let $\varphi_t \colon \mathbb{R}^2 \to \mathbb{R}^2$ be the flow corresponding to $\dot{x} = Ax$. Show that φ_t is a linear map on \mathbb{R}^2 for each fixed t, which preserves area if and only if $\operatorname{Tr}(A) = 0$, and that in this case the origin is not a sink or a source.

- 6. For each of the following nonlinear systems $\dot{x} = f(x)$, find all the equilibrium points and classify them as sources, sinks, or saddles.
 - (a) $f(x_1, x_2) = (-2x_2 + x_1x_2 4, 4x_2^2 x_1^2)$ (b) $f(x_1, x_2) = (4x_1 - 4x_1x_2, 2x_2 - x_1^2 + x_2^2)$
- 7. Compute the first three Picard iteration terms $x_0(t), x_1(t), x_2(t)$ for the initial value problem $\dot{x} = \sin(x), x(0) = \pi/2$.
- 8. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be Lipschitz continuous and let y(t) be a (nonconstant) periodic solution to $\dot{x} = f(x)$. Suppose that x(t) is another solution such that x(0) lies inside the region enclosed by y(t). Prove that x(t) exists for all $t \in \mathbb{R}$.
- **9.** Let φ_t, ψ_t be globally defined flows on \mathbb{R}^n and define $\rho_t(x) = \varphi_t(\psi_t(x))$. (a) Suppose the flows φ_t and ψ_t commute – that is, $\varphi_s \circ \psi_t = \psi_t \circ \varphi_s$
 - for all s, t. Show that ρ_t is a flow.
 - (b) Give an example of non-commuting flows φ_t, ψ_t for which ρ_t is not a flow.
- 10. Show that $L = x^2 + y^2$ is a strict Lyapunov function for the planar system

$$\dot{x} = -x - y^2$$
$$\dot{y} = -y - x^2$$

on a neighbourhood of the origin. What is the maximum r such that the origin attracts the entire disc of radius r?