Linear theory.

- Basic definitions: vector space, norm, metric, topology
 - All norms are equivalent in finite dimensions
 - Operator norm on linear transformations/matrices
- Matrix exponential, basic properties
 - Formula for solution of arbitrary linear autonomous homogeneous first-order ODEs in terms of matrix exponentials
- Use of Jordan normal form to compute matrix exponentials
 - Complexification, semisimple and nilpotent matrices
 - Generalised eigenvectors, Jordan chains
 - Jordan normal form: description and existence
 - Results on matrices (linear transformations) using Jordan normal form (semisimplenilpotent decomposition): Cayley–Hamilton theorem, properties of trace and determinant
- Higher order ODEs
 - Reduction to first order ODEs, solution through Jordan normal form
 - Analysis via operators on function spaces
- Non-homogeneous ODEs
 - Solution via variation of constants
- Stability of fixed point at 0
 - Spectral data: use of real parts of eigenvalues to determine if 0 is hyperbolic, a sink, or a source
 - Lyapunov functions for sinks

Nonlinear theory: general results.

- Different regularities of vector field: continuous, locally Lipschitz, Lipschitz, C^1
- Peano's existence theorem: existence of solutions for continuous vector field
 - Examples for non-uniqueness (leaky bucket)
- Picard–Lindelöf theorem: local existence and uniqueness for locally Lipschitz vector field
 - Picard iteration
 - Banach fixed point theorem
 - Local nature of solution, possibility of finite-time blowup
- Gronwall's lemma, global uniqueness, maximal interval of existence
- Dependence on initial conditions and parameters
 - Continuous dependence via Gronwall's lemma (locally Lipschitz vector field)
 - $-C^1$ dependence via fundamental matrix solution to $\dot{v} = A(t)v$ for A(t) = Df(x(t))
 - (requires a C^1 vector field)
 - Properties of fundamental matrix solution
- Flow associated to an ODE/vector field, group law $\phi_{t+s} = \phi_t \circ \phi_s$

Nonlinear theory: tools for analysis of specific systems.

- Stability of equilibrium points
 - Lyapunov stability, asymptotic stability, exponential stability, instability
 - Use of linearisation to determine stability
 - * Sinks (all eigenvalues have negative real part) are exponentially stable* Eigenvalue with positive real part implies unstable
 - Lyapunov functions, use to determine stability, asymptotic stability, size of basin of attraction
- Local behaviour near hyperbolic fixed points
 - Stable manifold theorem (Hadamard–Perron), local and global stable and unstable manifolds
 - Topological equivalence, topological conjugacy, C^1 -conjugacy
 - * Preservation of equilibrium points, periodic orbits, periods, eigenvalues under various notions of equivalent/conjugacy
 - Hartman–Grobman theorem on topological conjugacy to linearisation in neighbourhood of hyperbolic fixed point
 - * Conjugacy can be made C^1 if vector field is C^2
- Stability of periodic orbits
 - Poincaré return map
 - Floquet theory, characteristic exponents, characteristic multipliers
- Bifurcations
 - Structural stability
 - Local bifurcations (changes in stability of a fixed point or periodic orbit)
 - Global bifurcations (such as changes in behaviour of homoclinic/heteroclinic orbits)
- Asymptotic behaviour, α and ω -limit sets
 - Basic properties (closed and invariant, also non-empty, compact, and connected if trajectory contained in bounded region)
 - Positively and negatively invariant sets (forward- and backward-invariant), identifying with Lyapunov-type function, using to determine location of limit sets
 - Possible limit sets in \mathbb{R}^2 , Poincaré–Bendixson theorems
 - * Local sections, flow boxes, heteroclinic cycles
 - Comparison to behaviour in \mathbb{R}^n for $n\geq 3$