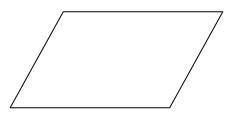

Math 1312 Section 4.1 Parallelograms

Definition:

A parallelogram is a quadrilateral in which both pairs of opposite sides are parallel.

Example 1:


Theorem:

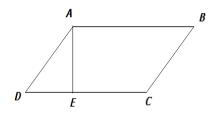
A diagonal of a parallelogram separates it into two congruent triangles.

Proof:

Given: Prove:

Corollary 1: The opposite angles of a parallelogram are congruent.

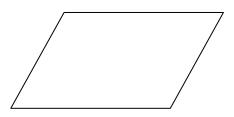
Corollary 2: The opposite sides of a parallelogram are congruent.

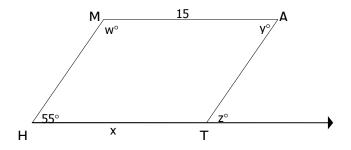

Corollary 3: The diagonals of a parallelogram bisect each other.

Corollary 4: Two consecutive angles of a parallelogram are supplementary.

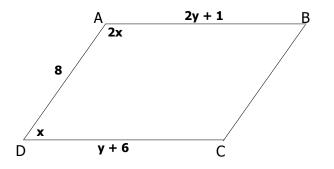
Definition:

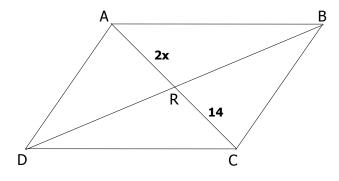
An **altitude** of a parallelogram is a line segment from one vertex that is perpendicular to a non adjacent side (or an extension of that side).

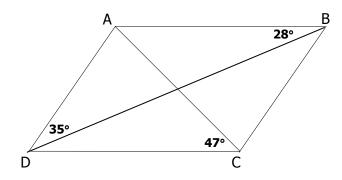

Example 2:

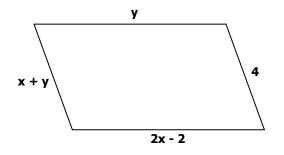

Theorem:

In a parallelogram with unequal pairs of consecutive angles, the longer diagonal lies opposite the obtuse angle.

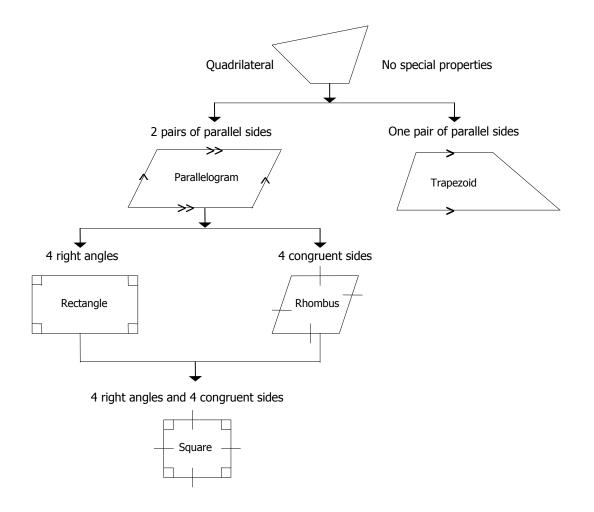

Example 3:


Example 4: MATH is a parallelogram. Find the values of w, x, y, and z.


Example 5: Find the measure of each angle and side in parallelogram ABCD below.


Example 6: Diagonals \overline{AC} and \overline{BD} intersect at R. Find x and the measure of \overline{AC} .

Example 7: Find the measure of each angle in parallelogram ABCD below.



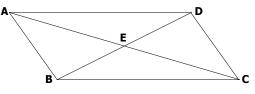
Example 8: Find x and y in the parallelogram below.

Proving that Quadrilateral is a parallelogram.

As seen in the flow chart below, a rectangle, a rhombus, and a square are all parallelograms. Hence all "RULES" of parallelograms (listed below) are true for rectangles, rhombi, squares.

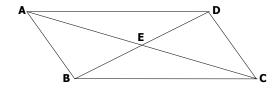
"RULES" of parallelograms:

- 1) Opposite sides of a parallelogram are congruent.
- 2) Opposite angles of a parallelogram are congruent.
- 3) Consecutive angles in a parallelogram are supplementary.
- 4) The diagonals of a parallelogram bisect each other.


Methods might be used to prove that a quadrilateral is a parallelogram.

- 1. If both pairs of opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram.
- 2. If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
- 3. If one pair of opposite sides of a quadrilateral are both parallel and congruent, then the quadrilateral is a parallelogram.
- 4. If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
- 5. If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

Example 9: If $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$, is quadrilateral ABCD a parallelogram?



Example 10: State whether or not you can conclude that the figure is a parallelogram, based on the given information.

- **a.** $\overline{AB} \cong \overline{CD}$ and $\overline{AD} \cong \overline{BC}$
- **b.** $\overline{AB} \parallel \overline{CD}$ and $\overline{AD} \parallel \overline{BC}$
- **c.** $\overline{AB} \cong \overline{CD}$ and $\overline{AB} \parallel \overline{CD}$

Example 10 (continued): State whether or not you can conclude that the figure is a parallelogram, based on the given information.

- **d.** $\overline{AD} \cong \overline{BC}$ and $\overline{AB} \parallel \overline{CD}$
- e. $\overline{AE} = \frac{1}{2}\overline{AC}$ and $\overline{BE} = \frac{1}{2}\overline{BD}$
- **f.** AB = BC = CD = AD
- **g.** $m \angle ADC = m \angle ABC$ and $m \angle BAD = m \angle BCD$