LAB QUIZ 3

<u>1.</u>

What is the volume of the solid obtained when the area between the x-axis and the curve $y = x^3 + 1$, from x = -1 to x = 1, is rotated about the line y = -1? Exactly one option must be correct)

- \bigcirc a) $\frac{207}{3}$
- $\bigcirc b) \quad \frac{10\pi}{3}$
- \bigcirc C) $\frac{21\pi}{4}$
- O d) $4\pi 1$
- O e) None of the above

2. and 3

Let Ω be the region bounded by the curve $y = \sqrt{x}$, y = 0 and x = 1. Find the volume of the solid formed by revolving Ω about:

7 the y-axis.

a. $4\pi/15$ b. $12\pi/5$ c. $4\pi/5$ d. $8\pi/3$ e. $8\pi/15$ f. None

3 \blacksquare . the line x = 1.

a. $4\pi/15$

b. $12\pi/5$ c. $8\pi/3$ d. $4\pi/5$ e. $8\pi/15$ f. None

4.

Which of the following gives the arc length of the curve $f(x) = \cos x$ from x = 0 to $x = \pi$?

$$A) \int_{0}^{\pi} 2\pi \sqrt{1 + \cos^2 x} dx$$

$$\mathbf{B}) \int_{0}^{\pi} 2\pi \sqrt{1 + \sin^2 x} dx$$

C)
$$\int_{0}^{\pi} \sqrt{1 + \sin^2 x} dx$$

$$\mathbf{D}) \int_{0}^{\pi} \sin x \sqrt{1 + \cos^2 x} dx$$

$$\mathbf{E}) \int_{0}^{\pi} \sqrt{1-\sin^2 x} dx$$

- Which of the following gives the surface area of the solid generated by rotating the region bounded by $f(x) = \sin x$ from x = 0 to $x = \pi$ about the x-axis?
- A) $\int_{0}^{\pi} 2\pi \sin x \sqrt{1 + \cos x} dx$
- $\mathbf{B}) \int_{0}^{\pi} 2\pi \sin x \sqrt{1 + \cos^2 x} dx$
- C) $\int_{0}^{\pi} 2\pi \cos x \sqrt{1 + \sin^2 x} dx$
- D) $\int_{0}^{\pi} 2\pi \sin x \sqrt{1 + \sin^{2} x} dx$ E) $\int_{0}^{\pi} \pi \sin x \sqrt{1 + \cos x} dx$