Lab quiz 11

- 1. The radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n^n}$ is:
 - (A) 0
 - (B) 1
 - (C) 3
 - (D) ∞
 - (E) None of the above

- 2. Interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^n (x-5)^n}{4^n n}$ is:
 - (A) [1,9]
 - (B) [1,9)
 - (C) (1,9]
 - (D) (1,9)
 - (E) None of the above

3. The Taylor series in x for $f(x) = x^2 ln(1+x)$ is

(A)
$$\sum \frac{(-1)^{n+1}x^{n+2}}{n!}$$

(B) $\sum \frac{(-1)^{n+1}x^{n+1}}{n}$
(C) $\sum \frac{(-1)^{n+1}x^{n+2}}{n}$
(D) $\sum \frac{(-1)^{n+1}x^{n+1}}{n!}$
(E) $\sum \frac{(-1)^{n+1}x^{n+2}}{(n+1)!}$

4. Write following function as a power series using sigma notation: $f(x) = \frac{6}{1+6x}$

(A)
$$\sum 6^{k+1}x^k$$
, if $|6x| < 1$
(B) $\sum (-1)^k 6^{k+1}x^k$, if $|6x| < 1$
(C) $\sum (-1)^k 6^k x^k$, if $|6x| < 1$
(D) $\sum 6^{k+1}x^k$, if $|6x| < 1$
(E) $\sum (-1)^k 6x^k$, if $|6x| < 1$

[Extra, not in lab quiz: Using the above problem write the power series for g(x) = ln(1+6x)]

- 5. Using the Taylor polynomial for $f(x) = x^2 cos(2x)$ centered at x = 0 the $f^4(0)$ is:
 - (A) 0
 - (B) 24
 - (C) -24
 - (D) 48
 - (E) -48