Lab quiz 13

- 1. The polar form of the ewuation $x^2 + y^2 + 2x + 6y = 0$ is:
	- (A) $r =$ 10 (B) $r = 3\sec\theta + 6\tan\theta$ (C) $r = -2sin\theta - 6cos\theta$ (D) $r = -2\cos\theta - 6\sin\theta$ (E) $r = -2\cos\theta + 6\sin\theta$

√

Solution:

The substitution is $x = r\cos\theta$ and $y = r\sin\theta$. So we have $x^2 + y^2 = r^2 \cos^2 \theta + r^2 \sin^2 \theta = r^2(\cos^2 \theta + \sin^2 \theta) = r^2$ Then by substitution we get: $r^2 + 2r\cos\theta + 6r\sin\theta = 0$ \Rightarrow r² = $-2rcos\theta - 6rsin\theta$ \Rightarrow r² = r(-2cos θ – 6sin θ) \Rightarrow r=-2cos $\theta - 6sin\theta$

2. For the parametric curve: $x(t) = 3 + 2cos(t), y(t) = 1 + 4sin(t), t \in [0, 2\pi)$. Give an equation in x and y that represents this curve.

(A)
$$
\frac{x^2}{4} + \frac{y^2}{16} = 1
$$

\n(B)
$$
\frac{(x-3)^2}{4} + \frac{(y-1)^2}{16} = 1
$$

\n(C)
$$
\frac{(x+3)^2}{16} + \frac{(y+1)^2}{4} = 1
$$

\n(D)
$$
\frac{(x+3)^2}{4} + \frac{(y+1)^2}{16} = 1
$$

\n(E)
$$
\frac{(x-2)^2}{16} + \frac{(y-4)^2}{4} = 1
$$

Solution:

We have
\n
$$
x(t) = 3 + 2\cos(t)
$$
 and $y(t) = 1 + 4\sin(t)$
\n $\Rightarrow x - 3 = 2\cos(t)$ and $y - 1 = 4\sin(t)$
\n $\Rightarrow \frac{x-3}{2} = \cos(t)$ and $\frac{y-1}{4} = \sin(t)$
\nNow
\n $\cos^2(t) + \sin^2(t) = 1 \Rightarrow (\frac{x-3}{2})^2 + (\frac{y-1}{4})^2 = 1 \Rightarrow \frac{(x-3)^2}{4} + \frac{(y-1)^2}{16} = 1$

- 3. For the parametric curve: $x(t) = 3 + 2cos(t), y(t) = 1 + 4sin(t), t \in [0, 2\pi)$. state the points (x, y) where tangent line are horizontal.
	- (A) (3,5), (3,1)
	- (B) (5,5) , (5,1)
	- (C) (3,5), (3,-3)
	- (D) (5,1), (1,1)
	- (E) (4,1), (1,1)

Solution:

 $x' = -2sin(t)$ and $y' = 4cos(t)$. For horizontal tangent we need $y' = 0$ and $x' \neq 0$ $y' = 0 \Rightarrow 4cos(t) = 0 \Rightarrow cos(t) = 0 \Rightarrow t = \frac{\pi}{2}$ $\frac{\pi}{2}, \frac{3\pi}{2}$ Now $x'(\frac{\pi}{2}) = -2 \neq 0$ and $x'(\frac{3\pi}{2}) = 2 \neq 0$ $(\frac{\pi}{2}) = -2 \neq 0$ and $x'(\frac{3\pi}{2})$ $\frac{3\pi}{2}) = 2 \neq 0$ Thus, the horizontal tangents occur at $t=\frac{\pi}{2}$ $\frac{\pi}{2}, \frac{3\pi}{2}$ 2 Therefore, the points are $\left(x\left(\frac{\pi}{2}\right)\right)$ $(\frac{\pi}{2}), y(\frac{\pi}{2})$ $(\frac{\pi}{2})$ = $(3, 5)$ and $\left(x\left(\frac{3\pi}{2}\right)\right)$ $(\frac{3\pi}{2}), y(\frac{3\pi}{2})$ $(\frac{3\pi}{2})$) = $(3,-3)$

- 4. For the parametric curve: $x(t) = 3 + 2cos(t), y(t) = 1 + 4sin(t), t \in [0, 2\pi)$. state the points (x, y) where tangent line are vertical.
	- (A) (3,5), (3,1)
	- (B) (5,5) , (5,1)
	- (C) $(3,5)$, $(3,-3)$
	- (D) (5,1), (1,1)
	- (E) (4,1), (1,1)

Solution:

 $x' = -2sin(t)$ and $y' = 4cos(t)$. For vertical tangent we need $x' = 0$ $x' = 0 \Rightarrow -2sin(t) = 0 \Rightarrow sin(t) = 0 \Rightarrow t = 0, \pi$

 $(x(0), y(0)) = (5, 1)$ and $(x(\pi), y(\pi)) = (1, 1)$

(Notice that $x' = 0$ also for $t = 2\pi, 3\pi$ and so on but as $t \in [0, 2\pi)$ so we do not include 2π and later points)

- 5. The equation of the tangent line to the curve defined by $F(t) = (t^2 + 1, 2^t)$ at the point $y = 4$ is:
	- (A) $y 4 = 4ln(2)(x 5)$ (B) $y - 4 = 4ln(2)(x - 2)$ (C) $y - 4 = ln(2)(x - 2)$ (D) $y - 4 = 4(x - 5)$ (E) $y - 4 = ln(2)(x - 5)$

Solution:

 $x(t) = t^2 + 1$ and $y(t) = 2^t$. Given $y = 4 \Rightarrow 2^t = 4 \Rightarrow t = 2$ Hence, $x(2) = 5$ and $y(2) = 4 \Rightarrow (x, y) = (5, 4)$ Now, $x'(t) = 2t$ and $y'(t) = 2^t ln(2)$. So, $x'(2) = 4$ and $y'(t) = 4ln(2)$. Therefore, Slope= $\frac{y'(2)}{x'(2)} = \frac{4ln(2)}{4} = ln(2)$ The equation of tangent line is: $y - 4 = ln(2)(x - 5)$ [y-y₁ = m(x - x₁)]