1. If possible find the sum of the \sum^{∞} $n=0$ $1-2^n$ 3^{n+1}

- $(A) \frac{1}{2}$
- $(B) -\frac{1}{2}$ 2
- (C) 3
- $(D) \frac{3}{2}$
- (E) Divergent

Solution :

$$
\sum_{n=0}^{\infty} \frac{1 - 2^n}{3^{n+1}} = \sum_{n=0}^{\infty} \frac{1 - 2^n}{3^n \cdot 3}
$$

= $\frac{1}{3} \sum_{n=0}^{\infty} \left[\left(\frac{1}{3} \right)^n - \left(\frac{2}{3} \right)^n \right]$
= $\frac{1}{3} \left[\frac{\left(\frac{1}{3} \right)^0}{1 - \frac{1}{3}} - \frac{\left(\frac{2}{3} \right)^0}{1 - \frac{2}{3}} \right]$
= $\frac{1}{3} \left[\frac{1}{\frac{2}{3}} - \frac{1}{\frac{1}{3}} \right]$
= $\frac{1}{2} - 1$
= $-\frac{1}{2}$

2. The series
$$
\sum_{n=1}^{\infty} \frac{\ln(n^6)}{3n}
$$
 is :

- (A) Convergent
- (B) Divergent

Solution: Method 1

$$
\sum_{n=1}^{\infty} \frac{\ln(n^6)}{3n} = \sum_{n=1}^{\infty} \frac{6\ln(n)}{3n} = 2\sum_{n=1}^{\infty} \frac{\ln(n)}{n} \ge 2\sum_{n=1}^{\infty} \frac{1}{n}
$$

Now \sum^{∞} $n=1$ 1 $\frac{1}{n}$ is divergent by *p*-series test as *p*=1. Hence, by basic divergence test $\sum_{i=1}^{\infty}$ $n=1$ $ln(n^6)$ $\frac{\binom{n^{\circ}}{3n}}{3n}$ is divergent.

Method 2

 $a_n = \frac{ln(n^6)}{3n}$ $\frac{(\{n^{\circ}\})}{3n}$ is (i) continuous as the numerator and denominator are continuous, (ii) positive as numerator and denominator are positive for all $n \geq 1$ and (iii) decreasing (convince yourself!!!) so we can apply integral test.

$$
\int_{1}^{\infty} \frac{\ln(x^6)}{3x} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{6\ln(x)}{3x} dx = 2 \lim_{b \to \infty} \int_{1}^{b} \frac{\ln(x)}{x} dx
$$

Now

$$
\int \frac{\ln(x)}{x} dx = \int u du \quad (u = \ln x \implies du = \frac{dx}{x})
$$

$$
= \frac{u^2}{2} + c = \frac{(\ln(n))^2}{2} + c
$$

Hence $\lim_{b \to \infty} \int_1^b$ $ln(x)$ $\lim_{x \to \infty} dx = \lim_{b \to \infty}$ $(ln(n))^2$ 2 b $\lim_{b \to \infty}$ $\frac{(ln(b))^2}{2} - \frac{(ln(1))^2}{2} = \lim_{b \to \infty}$ $\frac{(ln(b))^2}{2} = DNE$

As the integral diverges therefore by integral test the series is divergent.

- 3. The series $\sum_{n=1}^{\infty}$ $n=1$ $\left(\frac{n+2}{n+1}\right)^n$ is :
	- (A) Convergent
	- (B) Divergent

Solution:

(Check if you apply root test the result will be inconclusive)

$$
\lim_{n \to \infty} \left(\frac{n+2}{n+1}\right)^n = \lim_{n \to \infty} \left(\frac{n+1+1}{n+1}\right)^n
$$

$$
= \lim_{n \to \infty} \left(\frac{n+1}{n+1} + \frac{1}{n+1}\right)^n
$$

$$
= \lim_{n \to \infty} \left(1 + \frac{1}{n+1}\right)^n
$$

$$
= \lim_{m \to \infty} \left(1 + \frac{1}{m}\right)^{m-1}
$$

(Let $m = n + 1 \implies n = m - 1$. And if $n \to \infty$ then $m \to \infty$)

$$
= \lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^m \cdot \lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^{-1}
$$

= $e \cdot (1 + 0)^{-1}$
= $e \to 0$

As the limit of the sequence does not go to 0 the series is divergent by basic divergence test.

4. The series
$$
\sum_{n=1}^{\infty} \frac{7n^{3/2} + 2n}{3n^{5/2} + \sqrt{n}}
$$
 is:

- (A) Convergent
- (B) Divergent

Solution:

Method 1:

Let
$$
\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{7n^{3/2} + 2n}{3n^{5/2} + \sqrt{n}}
$$
 and
$$
\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}
$$
. (We get by $n^{\frac{3}{2} - \frac{5}{2}} = n^{-1}$)
Then
$$
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{7n^{5/2} + 2n^2}{3n^{5/2} + \sqrt{n}} = \frac{7}{3} > 0.
$$

Now
$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$
 is divergent by *p*-series test as $p=1$. Hence by limit comparison test the

series $\sum_{n=1}^{\infty}$ $n=1$ a_n is divergent.

Method 2:

Convince yourself about each step of the inequality. We can increase a fraction if we increase the numerator or decrease the denominator.

$$
\sum_{n=1}^{\infty} \frac{7n^{3/2} + 2n}{3n^{5/2} + \sqrt{n}} \le \sum_{n=1}^{\infty} \frac{7n^{3/2} + 2n}{3n^{5/2}} \le \sum_{n=1}^{\infty} \frac{7n^{3/2} + 2n^{3/2}}{3n^{5/2}} = \sum_{n=1}^{\infty} \frac{5n^{3/2}}{3n^{5/2}} = \sum_{n=1}^{\infty} \frac{5}{3n}
$$

Now \sum^{∞} $n=1$ 5 $\frac{5}{3n}$ is divergent by *p*-series test as $p=1$. Hence the series is divergent by basic divergence test.

4

- 5. The series $\sum_{n=1}^{\infty}$ $n=1$ $n^{5/n}$ is: (A) Convergent
	- (B) Divergent

Solution:

$$
\lim_{n \to \infty} n^{5/n}(\infty^0 \text{ form}) = \lim_{n \to \infty} e^{\ln(n^{5/n})}
$$

$$
= \lim_{n \to \infty} e^{\frac{5}{n}\ln(n)}
$$

$$
= e^{\frac{5}{n} \lim_{n \to \infty} \frac{\ln(n)}{n}}
$$
Now
$$
\lim_{n \to \infty} \frac{\ln(n)}{n} \left(\frac{\infty}{\infty} \text{ form, L'Hospital}\right) = \lim_{n \to \infty} \frac{\frac{d}{dn} \ln(n)}{\frac{d}{dn}(n)} = \lim_{n \to \infty} \frac{1}{n \cdot 1} = 0
$$
Therefore
$$
\lim_{n \to \infty} n^{5/n} = e^{5.0} = e^0 = 1 \to 0
$$

As the limit of the sequence does not go to zero the series is divergent by basic divergence test.