Lab quiz 8
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Solution :
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2. The series 21 s
n=

(A) Convergent
(B) Divergent

Solution:
Method 1
L In(n®) = 6In(n) = In(n) 1
= =2 > 2 —
n=1 n=1 n=1 n=1
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Now >’ % is divergent by p-series test as p=1. Hence, by basic divergence test
n=1
> @ is divergent.
n=1
Method 2
a, = l”éZG) is (i) continuous as the numerator and denominator are continuous,

(ii) positive as numerator and denominator are positive for all n > 1 and (iii)
decreasing (convince yourself!!!) so we can apply integral test.
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As the integral diverges therefore by integral test the series is divergent.



3. The series Y (22)" is :

n=1
(A) Convergent
(B) Divergent

Solution:

(Check if you apply root test the result will be inconclusive)
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As the limit of the sequence does not go to 0 the series is divergent by basic
divergence test.
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4. The series I is:
n—=

(A) Convergent
(B) Divergent

Solution:

Method 1:

5

. (We get by n2—2 =n?)
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Then 7}1_)120 = h 0 e = 3 > 0.

Now Z is divergent by p-series test as p=1. Hence by limit comparison test the

OO
series Y a,, is divergent.
n=1

Method 2:

Convince yourself about each step of the inequality. We can increase a fraction if
we increase the numerator or decrease the denominator.
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Now Z is divergent by p-series test as p=1 .

Hence the series is divergent by basic divergence test.



5. The series > n’/" is:

n=1
(A) Convergent
(B) Divergent
Solution:
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Now lim M(ﬁ form, L’Hospital) = lim 42—~ =
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Therefore lim n”/» =e>0 = =140
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As the limit of the sequence does not go to zero the series is divergent by ba-
sic divergence test.



