Lab quiz 9

1. Is the series
$$
\sum_{n=1}^{\infty} \frac{2n^3 - 6}{5n^7 + 3n^4 - 2}
$$

(A) Convergent

(B) Divergent

Solution:

(Can also be done by BCT but you need to careful about showing the inequality correctly. So I prefer LCT in these cases.)

Let
$$
\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{2n^3 - 6}{5n^7 + 3n^4 - 2}
$$
 and
$$
\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^4}
$$

$$
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^7 - 6n^4}{5n^7 + 3n^4 - 2} = \frac{2}{5} > 0
$$

Now $\sum_{n=1}^{\infty}$ $n=1$ $b_n = \sum_{n=1}^{\infty}$ $n=1$ 1 $\frac{1}{n^4}$ is convergent by *p*-series test as $p=4$, so by limit comparison test the series $\sum_{n=1}^{\infty}$ $n=1$ a_n is convergent.

- 2. Is the series $\sum_{n=1}^{\infty}$ $n=1$ $(\sqrt{n}-$ √ $\overline{n-1}$ ⁿ (A) Convergent
	- (B) Divergent

Solution:

$$
\lim_{n \to \infty} \left(\left(\sqrt{n} - \sqrt{n-1} \right)^n \right)^{\frac{1}{n}} = \lim_{n \to \infty} \left(\sqrt{n} - \sqrt{n-1} \right)
$$
\n
$$
= \lim_{n \to \infty} \frac{\left(\sqrt{n} - \sqrt{n-1} \right) \left(\sqrt{n} + \sqrt{n-1} \right)}{\sqrt{n} + \sqrt{n-1}}
$$
\n
$$
= \lim_{n \to \infty} \frac{\left(\sqrt{n} \right)^2 - \left(\sqrt{n-1} \right)^2}{\sqrt{n} + \sqrt{n-1}}
$$
\n
$$
= \lim_{n \to \infty} \frac{\left(n \right) - \left(n - 1 \right)}{\sqrt{n} + \sqrt{n-1}}
$$
\n
$$
= \lim_{n \to \infty} \frac{1}{\sqrt{n} + \sqrt{n-1}}
$$
\n
$$
= 0 < 1
$$

Hence the series is convergent by root test.

3. Is the series
$$
\sum_{n=1}^{\infty} \frac{2n + \sqrt{n}}{n^3 + 3\sqrt{n}}
$$

- (A) Convergent
- (B) Divergent

Solution:

Method 1:

Convince yourself about each step of the inequality. We can increase a fraction if we increase the numerator or decrease the denominator.

$$
\sum_{n=1}^{\infty} \frac{2n + \sqrt{n}}{n^3 + 3\sqrt{n}} \le \sum_{n=1}^{\infty} \frac{2n + \sqrt{n}}{n^3} \le \sum_{n=1}^{\infty} \frac{2n + n}{n^3} = \sum_{n=1}^{\infty} \frac{3n}{n^3} = \sum_{n=1}^{\infty} \frac{3}{n^2}
$$

Now $\sum_{n=1}^{\infty}$ $n=1$ 3 $\frac{3}{n^2}$ is convergent by *p*-series test as *p*=2. Hence the series is convergent by basic comparison test.

Method 2:

 $n=1$

Let
$$
\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{2n + \sqrt{n}}{n^3 + 3\sqrt{n}} \text{ and } \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^2}
$$

$$
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^3 + n^{3/2}}{n^3 + 3\sqrt{n}} = 2 > 0
$$

Now \sum^{∞} $n=1$ $b_n = \sum_{n=1}^{\infty}$ $n=1$ 1 $\frac{1}{n^2}$ is convergent by *p*-series test as $p=2$, so by limit comparison test the series $\sum_{n=1}^{\infty}$ a_n is convergent.

4. Is the series
$$
\sum_{n=1}^{\infty} \frac{\left(1 + \frac{2}{n}\right)^{n^2}}{e^n}
$$

- (A) Convergent
- (B) Divergent

Solution:

$$
\lim_{n \to \infty} \left(\frac{\left(1 + \frac{2}{n}\right)^{n^2}}{e^n} \right)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{\left(1 + \frac{2}{n}\right)^n}{e} = \frac{e^2}{e} = e > 1
$$

Hence the series is convergent by root test.

5. Which of the following series is convergent?

(A)
$$
\sum_{n=1}^{\infty} [2 + (-1)^n]
$$

Divergent (Easy to check)

(B)
$$
\sum_{n=1}^{\infty} \frac{n^n}{n+1}
$$

Method 1:
If $a_n = \frac{n^n}{n+1}$ then

$$
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^{n+1}}{n+2} \cdot \frac{n+1}{n^n}
$$

$$
= \lim_{n \to \infty} \frac{(n+1)^n (n+1)}{n^n (n+2)}
$$

$$
= \lim_{n \to \infty} \left(\left(\frac{n+1}{n} \right)^n \cdot \frac{n+1}{n+2} \right)
$$

$$
= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \cdot \lim_{n \to \infty} \frac{n+1}{n+2}
$$

$$
= e \cdot 1 = e > 1.
$$

Hence divergent by ratio test.(Can also be done by root test)

Method 2: $\lim_{n\to\infty}\frac{n^n}{n+1} = \text{DNE} \nrightarrow 0$ As the limit does not go to 0 so divergent by basic divergence test.

(C)
$$
\sum_{n=1}^{\infty} \frac{2^n}{(n+1)!}
$$

If $a_n = \frac{2^n}{(n+1)!}$ then

$$
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(2)^{n+1}}{(n+2)} \cdot \frac{(n+1)!}{2^n}
$$

$$
= \lim_{n \to \infty} \frac{(2)^n (2)(n+1)!}{2^n (n+2)!}
$$

$$
= \lim_{n \to \infty} 2 \frac{1 \cdot 2 \cdot 3 \cdot \ldots \cdot n \cdot (n+1)}{1 \cdot 2 \cdot 3 \cdot \ldots \cdot n \cdot (n+1) \cdot (n+2)}
$$

$$
= \lim_{n \to \infty} \frac{2}{n+2}
$$

$$
= 0 < 1
$$

Hence convergent by ratio test

(D)
$$
\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}
$$

Method 1:

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1} \ge \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+n} = \sum_{n=1}^{\infty} \frac{\sqrt{n}}{2n} = \sum_{n=1}^{\infty} \frac{1}{2n^{1/2}}
$$

As \sum^{∞} $n=1$ 1 $\frac{1}{2n^{1/2}}$ is divergent by *p*-series test as $p=\frac{1}{2} < 1$, hence the series is divergent by basic comparison test.

Method 2:

Let
$$
\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}
$$
 and $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$

$$
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{n+1} = 1 > 0
$$

Now \sum^{∞} $n=1$ $b_n = \sum_{n=1}^{\infty}$ $n=1$ $\frac{1}{\sqrt{2}}$ $\frac{1}{n}$ is divergent by *p*-series test as $p=\frac{1}{2}$ $\frac{1}{2}$, so by limit comparison test the series $\sum_{n=1}^{\infty}$ $n=1$ a_n is divergent.

 $(E) \sum_{n=1}^{\infty}$ $n=1$ 2^{3n+1} 7^n \sum^{∞} $n=1$ 2^{3n+1} $\frac{3n+1}{7^n} = \sum_{n=1}^{\infty}$ $n=1$ $2^{3n} . 2$ $rac{3n}{7n} = \sum_{n=1}^{\infty}$ $n=1$ 8 7 \setminus^n .2

Now this is a geometric series with $r=\frac{8}{7}$ $\frac{8}{7}$ so $|r| = \frac{8}{7} > 1$, thus divergent by geometric series test.

(F) No option is correct or more than one options are correct