Math 3321

Homogeneous Systems of Linear Differential Equations. Part III

University of Houston

Lecture 25

Outline

(1) Homogeneous Systems - Repeated Eigenvalues
(2) Non-Homogeneous Systems (sketch)

Homogeneous Systems with Constant Coefficients

Recall:

Corollary

Consider the homogeneous system of n equations with constant coefficients

$$
x^{\prime}=A x
$$

Homogeneous Systems with Constant Coefficients

Recall:

Corollary

Consider the homogeneous system of n equations with constant coefficients

$$
x^{\prime}=A x
$$

If $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are n distinct eigenvalues of A with corresponding eigenvectors $v_{1}, v_{2}, \cdots, v_{n}$, then

$$
x_{1}=e^{\lambda_{1} t} v_{1}, x_{2}=e^{\lambda_{2} t} v_{2}, \cdots, x_{n}=e^{\lambda_{n} t} v_{n}
$$

is a fundamental set of solutions of the system and

$$
x(t)=C_{1} x_{1}+C_{2} x_{2}+\cdots+C_{n} x_{n}
$$

is the general solution.

Homogeneous Systems with Constant Coefficients

Recall:

Corollary

Consider the homogeneous system of n equations with constant coefficients

$$
x^{\prime}=A x
$$

If $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are n distinct eigenvalues of A with corresponding eigenvectors $v_{1}, v_{2}, \cdots, v_{n}$, then

$$
x_{1}=e^{\lambda_{1} t} v_{1}, x_{2}=e^{\lambda_{2} t} v_{2}, \cdots, x_{n}=e^{\lambda_{n} t} v_{n}
$$

is a fundamental set of solutions of the system and

$$
x(t)=C_{1} x_{1}+C_{2} x_{2}+\cdots+C_{n} x_{n}
$$

is the general solution.
This holds for both real and complex distinct eigenvalues.

Homogeneous Systems with Constant Coefficients

In the last lectures, I illustrated the case where the $n \times n$ matrix of coefficient A has n real or complex distinct eigenvalues.

Homogeneous Systems with Constant Coefficients

In the last lectures, I illustrated the case where the $n \times n$ matrix of coefficient A has n real or complex distinct eigenvalues.

In this lecture, I consider the case where there are no n distinct eigenvalues.

Homogeneous Systems - Repeated Eigenvalues

Example 1: Find a fundamental set of solutions of

$$
x^{\prime}=\left(\begin{array}{lll}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right) x .
$$

Homogeneous Systems - Repeated Eigenvalues

Example 1: Find a fundamental set of solutions of

$$
x^{\prime}=\left(\begin{array}{lll}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right) x .
$$

We compute the eigenvalues:

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & -3 & 3 \\
3 & -5-\lambda & 3 \\
6 & -6 & 4-\lambda
\end{array}\right| \\
=16+12 \lambda-\lambda^{3}=-(\lambda-4)(\lambda+2)^{2} .
\end{gathered}
$$

We find the eigenvalues: $\lambda_{1}=4, \lambda_{2}=\lambda_{3}=-2$

Homogeneous Systems - Repeated Eigenvalues

Example 1: Find a fundamental set of solutions of

$$
x^{\prime}=\left(\begin{array}{lll}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right) x .
$$

We compute the eigenvalues:

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & -3 & 3 \\
3 & -5-\lambda & 3 \\
6 & -6 & 4-\lambda
\end{array}\right| \\
=16+12 \lambda-\lambda^{3}=-(\lambda-4)(\lambda+2)^{2} .
\end{gathered}
$$

We find the eigenvalues: $\lambda_{1}=4, \lambda_{2}=\lambda_{3}=-2$
Note: the eigenvalue $\lambda_{2}=\lambda_{3}=-2$ is repeated!

Homogeneous Systems with Constant Coefficients

For $\lambda_{1}=4$, we examine $(A-4 I)=\left(\begin{array}{rrr}-3 & -3 & 3 \\ 3 & -9 & 3 \\ 6 & -6 & 0\end{array}\right)$
Solve:

$$
(A-4 I) x=\left(\begin{array}{rrr}
-3 & -3 & 3 \\
3 & -9 & 3 \\
6 & -6 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Homogeneous Systems with Constant Coefficients

For $\lambda_{1}=4$, we examine $(A-4 I)=\left(\begin{array}{rrr}-3 & -3 & 3 \\ 3 & -9 & 3 \\ 6 & -6 & 0\end{array}\right)$
Solve:

$$
(A-4 I) x=\left(\begin{array}{rrr}
-3 & -3 & 3 \\
3 & -9 & 3 \\
6 & -6 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

The augmented matrix row reduces to

$$
\left(\begin{array}{rrr|r}
-3 & -3 & 3 & 0 \\
3 & -9 & 3 & 0 \\
6 & -6 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & -1 & 0 \\
0 & -12 & 6 & 0 \\
0 & -12 & 6 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & -1 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Homogeneous Systems with Constant Coefficients

For $\lambda_{1}=4$, we examine $(A-4 I)=\left(\begin{array}{rrr}-3 & -3 & 3 \\ 3 & -9 & 3 \\ 6 & -6 & 0\end{array}\right)$
Solve:

$$
(A-4 I) x=\left(\begin{array}{rrr}
-3 & -3 & 3 \\
3 & -9 & 3 \\
6 & -6 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

The augmented matrix row reduces to

$$
\left(\begin{array}{rrr|r}
-3 & -3 & 3 & 0 \\
3 & -9 & 3 & 0 \\
6 & -6 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & -1 & 0 \\
0 & -12 & 6 & 0 \\
0 & -12 & 6 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & -1 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

we obtain the eigenvector $v_{1}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$.

Homogeneous Systems with Constant Coefficients

We next examine the eigenvalues $\lambda_{2}=\lambda_{3}=-2$:
To find the eigenvector(s), we examine $A-(-2) I=\left(\begin{array}{ccc}3 & -3 & 3 \\ 3 & -3 & 3 \\ 6 & -6 & 6\end{array}\right)$

Homogeneous Systems with Constant Coefficients

We next examine the eigenvalues $\lambda_{2}=\lambda_{3}=-2$:
To find the eigenvector(s), we examine $A-(-2) I=\left(\begin{array}{ccc}3 & -3 & 3 \\ 3 & -3 & 3 \\ 6 & -6 & 6\end{array}\right)$
The augmented matrix row reduces to

$$
\left(\begin{array}{lll|l}
3 & -3 & 3 & 0 \\
3 & -3 & 3 & 0 \\
6 & -6 & 6 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Note that this matrix has rank 1.

Homogeneous Systems with Constant Coefficients

Solution set:

$$
x_{1}=x_{2}-x_{3}, x_{2}, x_{3} \quad \text { arbitrary }
$$

Set $x_{2}=1, x_{3}=0: \quad v_{2}=\left(\begin{array}{c}1 \\ 1 \\ 0\end{array}\right)$;
Set $x_{2}=0, x_{3}=1: \quad v_{3}=\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right)$.

Homogeneous Systems with Constant Coefficients

Solution set:

$$
x_{1}=x_{2}-x_{3}, x_{2}, x_{3} \quad \text { arbitrary }
$$

Set $x_{2}=1, x_{3}=0: \quad v_{2}=\left(\begin{array}{c}1 \\ 1 \\ 0\end{array}\right)$;
Set $x_{2}=0, x_{3}=1: \quad v_{3}=\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right)$.
Fundamental set:

$$
\left\{e^{4 t}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right), e^{-2 t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), e^{-2 t}\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right)\right\}
$$

In this example, even with repeated eigenvalues, we have a full set of eigenvectors.

Homogeneous Systems - Repeated Eigenvalues

Example 2: Find a fundamental set of solutions of $x^{\prime}=\left(\begin{array}{ll}-4 & 1 \\ -4 & 0\end{array}\right) x$.

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
-4-\lambda & 1 \\
-4 & -\lambda
\end{array}\right| \\
=\lambda^{2}+4 \lambda+4
\end{gathered}
$$

Homogeneous Systems - Repeated Eigenvalues

Example 2: Find a fundamental set of solutions of $x^{\prime}=\left(\begin{array}{ll}-4 & 1 \\ -4 & 0\end{array}\right) x$.

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
-4-\lambda & 1 \\
-4 & -\lambda
\end{array}\right| \\
=\lambda^{2}+4 \lambda+4
\end{gathered}
$$

Characteristic equation:

$$
\lambda^{2}+4 \lambda+4=0
$$

Homogeneous Systems - Repeated Eigenvalues

Example 2: Find a fundamental set of solutions of $x^{\prime}=\left(\begin{array}{ll}-4 & 1 \\ -4 & 0\end{array}\right) x$.

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
-4-\lambda & 1 \\
-4 & -\lambda
\end{array}\right| \\
=\lambda^{2}+4 \lambda+4
\end{gathered}
$$

Characteristic equation:

$$
\lambda^{2}+4 \lambda+4=0
$$

Eigenvalues:

$$
\lambda_{1}=\lambda_{2}=-2
$$

Homogeneous Systems - Repeated Eigenvalues

To compute the eigenvectors, we examine: $\quad A-\lambda I=\left(\begin{array}{cc}-4-\lambda & 1 \\ -4 & -\lambda\end{array}\right)$

Homogeneous Systems - Repeated Eigenvalues

To compute the eigenvectors, we examine: $\quad A-\lambda I=\left(\begin{array}{cc}-4-\lambda & 1 \\ -4 & -\lambda\end{array}\right)$ For $\lambda_{1}=\lambda_{2}=-2$, we solve:

$$
(A-(-2) I) x=\left(\begin{array}{ll}
-2 & 1 \\
-4 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

$\left(\begin{array}{ll|l}-2 & 1 & 0 \\ -4 & 2 & 0\end{array}\right) \rightarrow\left(\begin{array}{rr|r}-2 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
We find the eigenvector $v=(2,1)$.

Homogeneous Systems - Repeated Eigenvalues

To compute the eigenvectors, we examine: $\quad A-\lambda I=\left(\begin{array}{cc}-4-\lambda & 1 \\ -4 & -\lambda\end{array}\right)$ For $\lambda_{1}=\lambda_{2}=-2$, we solve:

$$
(A-(-2) I) x=\left(\begin{array}{ll}
-2 & 1 \\
-4 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

$\left(\begin{array}{ll|l}-2 & 1 & 0 \\ -4 & 2 & 0\end{array}\right) \rightarrow\left(\begin{array}{rr|r}-2 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
We find the eigenvector $v=(2,1)$.
Problem: Only one eigenvector and only one solution!

Homogeneous Systems - Repeated Eigenvalues

To compute the eigenvectors, we examine: $\quad A-\lambda I=\left(\begin{array}{cc}-4-\lambda & 1 \\ -4 & -\lambda\end{array}\right)$ For $\lambda_{1}=\lambda_{2}=-2$, we solve:

$$
(A-(-2) I) x=\left(\begin{array}{ll}
-2 & 1 \\
-4 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

$\left(\begin{array}{ll|l}-2 & 1 & 0 \\ -4 & 2 & 0\end{array}\right) \rightarrow\left(\begin{array}{rr|r}-2 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
We find the eigenvector $v=(2,1)$.
Problem: Only one eigenvector and only one solution!
Unlike Example 1, we do not have a full set of eigenvectors. We need another solution to be able to write the general solution of the system.

Homogeneous Systems - Repeated Eigenvalues

Example 3: Find a fundamental set of solutions of

$$
x^{\prime}=\left(\begin{array}{rrr}
5 & 6 & 2 \\
0 & -1 & -8 \\
1 & 0 & -2
\end{array}\right) x .
$$

Homogeneous Systems - Repeated Eigenvalues

Example 3: Find a fundamental set of solutions of

$$
x^{\prime}=\left(\begin{array}{rrr}
5 & 6 & 2 \\
0 & -1 & -8 \\
1 & 0 & -2
\end{array}\right) x .
$$

We compute the characteristic polynomial:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
5-\lambda & 6 & 2 \\
0 & -1-\lambda & -8 \\
1 & 0 & -2-\lambda
\end{array}\right| \\
& =-36+15 \lambda+2 \lambda^{2}-\lambda^{3}=-(\lambda+4)(\lambda-3)^{2} .
\end{aligned}
$$

Homogeneous Systems - Repeated Eigenvalues

Example 3: Find a fundamental set of solutions of

$$
x^{\prime}=\left(\begin{array}{rrr}
5 & 6 & 2 \\
0 & -1 & -8 \\
1 & 0 & -2
\end{array}\right) x .
$$

We compute the characteristic polynomial:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
5-\lambda & 6 & 2 \\
0 & -1-\lambda & -8 \\
1 & 0 & -2-\lambda
\end{array}\right| \\
& =-36+15 \lambda+2 \lambda^{2}-\lambda^{3}=-(\lambda+4)(\lambda-3)^{2} .
\end{aligned}
$$

We find the eigenvalues: $\lambda_{1}=-4, \lambda_{2}=\lambda_{3}=3$.

Homogeneous Systems - Repeated Eigenvalues

Example 3: Find a fundamental set of solutions of

$$
x^{\prime}=\left(\begin{array}{rrr}
5 & 6 & 2 \\
0 & -1 & -8 \\
1 & 0 & -2
\end{array}\right) x .
$$

We compute the characteristic polynomial:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
5-\lambda & 6 & 2 \\
0 & -1-\lambda & -8 \\
1 & 0 & -2-\lambda
\end{array}\right| \\
& =-36+15 \lambda+2 \lambda^{2}-\lambda^{3}=-(\lambda+4)(\lambda-3)^{2} .
\end{aligned}
$$

We find the eigenvalues: $\lambda_{1}=-4, \lambda_{2}=\lambda_{3}=3$.
We have repeated eigenvalues $\lambda_{2}=\lambda_{3}=3$

Homogeneous Systems - Repeated Eigenvalues

We compute the eigenvector for the eigenvalue $\lambda_{1}=-4$.
Need to solve the homogeneous system:

$$
(A+4 I) x=\left(\begin{array}{rrr}
9 & 6 & 2 \\
0 & 3 & -8 \\
1 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$$
\left(\begin{array}{rrr|r}
9 & 6 & 2 & 0 \\
0 & 3 & -8 & 0 \\
1 & 0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 2 & 0 \\
0 & 3 & -8 & 0 \\
0 & 6 & -18 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 2 & 0 \\
0 & 3 & -8 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Hence we have the solution: $x_{1}=-2 x_{3}, x_{2}=\frac{8}{3} x_{3}, \quad x_{3}$ arbitrary
Setting $x_{3}=-3$, we obtian the eigenvector $v_{1}=\left(\begin{array}{r}6 \\ -8 \\ -3\end{array}\right)$

Homogeneous Systems - Repeated Eigenvalues

We compute the eigenvector for the eigenvalue $\lambda_{1}=-4$.
Need to solve the homogeneous system:

$$
(A+4 I) x=\left(\begin{array}{rrr}
9 & 6 & 2 \\
0 & 3 & -8 \\
1 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$$
\left(\begin{array}{rrr|r}
9 & 6 & 2 & 0 \\
0 & 3 & -8 & 0 \\
1 & 0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 2 & 0 \\
0 & 3 & -8 & 0 \\
0 & 6 & -18 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 2 & 0 \\
0 & 3 & -8 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Hence we have the solution: $x_{1}=-2 x_{3}, x_{2}=\frac{8}{3} x_{3}, \quad x_{3}$ arbitrary
Setting $x_{3}=-3$, we obtian the eigenvector $v_{1}=\left(\begin{array}{r}6 \\ -8 \\ -3\end{array}\right)$
Hence we obtain the solution: $x_{1}=e^{-4 t}\left(\begin{array}{r}6 \\ -8 \\ -3\end{array}\right)$

Homogeneous Systems - Repeated Eigenvalues

We next compute the eigenvector(s) for the eigenvalue with multiplicity $2, \lambda_{2}=\lambda_{3}=3$:
Need to solve the homogeneous system:

$$
(A-3 I) x=\left(\begin{array}{rrr}
2 & 6 & 2 \\
0 & -4 & -8 \\
1 & 0 & -5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$\left(\begin{array}{rrr|l}2 & 6 & 2 & 0 \\ 0 & -4 & -8 & 0 \\ 1 & 0 & -5 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}1 & 0 & -5 & 0 \\ 0 & -4 & -8 & 0 \\ 2 & 6 & 2 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}2 & 6 & 2 & 0 \\ 0 & -4 & -8 & 0 \\ 1 & 0 & -5 & 0\end{array}\right)$
$\rightarrow\left(\begin{array}{rrr|r}1 & 0 & -5 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

Homogeneous Systems - Repeated Eigenvalues

Hence we have the solution:
$x_{1}=5 x_{3}, x_{2}=-2 x_{3}, x_{3}$ arbitrary
Set $x_{3}=1: \quad v_{2}=\left(\begin{array}{r}5 \\ -2 \\ 1\end{array}\right)$

Homogeneous Systems - Repeated Eigenvalues

Hence we have the solution:
$x_{1}=5 x_{3}, x_{2}=-2 x_{3}, x_{3}$ arbitrary
Set $x_{3}=1: \quad v_{2}=\left(\begin{array}{r}5 \\ -2 \\ 1\end{array}\right)$
NOTE: Only one eigenvector!
Solutions:

$$
x_{1}=e^{-4 t}\left(\begin{array}{r}
6 \\
-8 \\
-3
\end{array}\right), \quad x_{2}=e^{3 t}\left(\begin{array}{r}
5 \\
-2 \\
1
\end{array}\right) .
$$

Homogeneous Systems - Repeated Eigenvalues

Hence we have the solution:
$x_{1}=5 x_{3}, x_{2}=-2 x_{3}, x_{3}$ arbitrary
Set $x_{3}=1: \quad v_{2}=\left(\begin{array}{r}5 \\ -2 \\ 1\end{array}\right)$
NOTE: Only one eigenvector!
Solutions:

$$
x_{1}=e^{-4 t}\left(\begin{array}{r}
6 \\
-8 \\
-3
\end{array}\right), \quad x_{2}=e^{3 t}\left(\begin{array}{r}
5 \\
-2 \\
1
\end{array}\right) .
$$

Problem: Only two solutions! We need a third solution x_{3} which is independent of x_{1}, x_{2}. to be able to write the general solution of the system.

Homogeneous Systems - Repeated Eigenvalues

To find the extra solution, we are going to take a lesson from linear differential equations.

Homogeneous Systems - Repeated Eigenvalues

To find the extra solution, we are going to take a lesson from linear differential equations.

Example:

$$
y^{\prime \prime \prime}+y^{\prime \prime}-8 y^{\prime}-12 y=0
$$

Homogeneous Systems - Repeated Eigenvalues

To find the extra solution, we are going to take a lesson from linear differential equations.

Example:

$$
y^{\prime \prime \prime}+y^{\prime \prime}-8 y^{\prime}-12 y=0
$$

Characteristic equation:

$$
r^{3}+r^{2}-8 r-12=(r-3)(r+2)^{2}=0
$$

Homogeneous Systems - Repeated Eigenvalues

To find the extra solution, we are going to take a lesson from linear differential equations.

Example:

$$
y^{\prime \prime \prime}+y^{\prime \prime}-8 y^{\prime}-12 y=0
$$

Characteristic equation:

$$
r^{3}+r^{2}-8 r-12=(r-3)(r+2)^{2}=0
$$

Characteristic roots: $r=3, r=-2$ (repeated)

Homogeneous Systems - Repeated Eigenvalues

To find the extra solution, we are going to take a lesson from linear differential equations.

Example:

$$
y^{\prime \prime \prime}+y^{\prime \prime}-8 y^{\prime}-12 y=0
$$

Characteristic equation:

$$
r^{3}+r^{2}-8 r-12=(r-3)(r+2)^{2}=0
$$

Characteristic roots: $r=3, r=-2$ (repeated)
Fundamental set: $\left\{e^{3 t}, e^{-2 t}, t e^{-2 t}\right\}$

Homogeneous Systems - Repeated Eigenvalues

Equivalent system: $x^{\prime}=\left(\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & 1 \\ 12 & 8 & -1\end{array}\right) x$

Homogeneous Systems - Repeated Eigenvalues

Equivalent system: $\quad x^{\prime}=\left(\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & 1 \\ 12 & 8 & -1\end{array}\right) x$
We find the eigenvalues:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & \lambda & 1 \\
12 & 8 & -1-\lambda
\end{array}\right|=-\lambda^{3}-\lambda^{2}+8 \lambda+12 \lambda
$$

giving the characteristic equation:

$$
\lambda^{3}+\lambda^{2}-8 \lambda-12=(\lambda-3)(\lambda+2)^{2}
$$

Homogeneous Systems - Repeated Eigenvalues

Equivalent system: $\quad x^{\prime}=\left(\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & 1 \\ 12 & 8 & -1\end{array}\right) x$
We find the eigenvalues:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & \lambda & 1 \\
12 & 8 & -1-\lambda
\end{array}\right|=-\lambda^{3}-\lambda^{2}+8 \lambda+12 \lambda
$$

giving the characteristic equation:

$$
\lambda^{3}+\lambda^{2}-8 \lambda-12=(\lambda-3)(\lambda+2)^{2}
$$

Hence we have the eigenvalues: $\lambda_{1}=3, \quad \lambda_{2}=\lambda_{3}=-2$

Homogeneous Systems - Repeated Eigenvalues

we have the Fundamental set:

$$
\begin{gathered}
x_{1}=e^{3 t}\left(\begin{array}{l}
1 \\
3 \\
9
\end{array}\right), \quad x_{2}=e^{-2 t}\left(\begin{array}{r}
1 \\
-2 \\
4
\end{array}\right), \\
x_{3}=e^{-2 t}\left(\begin{array}{r}
0 \\
1 \\
-4
\end{array}\right)+t e^{-2 t}\left(\begin{array}{r}
1 \\
-2 \\
4
\end{array}\right)
\end{gathered}
$$

Homogeneous Systems - Repeated Eigenvalues

we have the Fundamental set:

$$
\begin{gathered}
x_{1}=e^{3 t}\left(\begin{array}{l}
1 \\
3 \\
9
\end{array}\right), \quad x_{2}=e^{-2 t}\left(\begin{array}{r}
1 \\
-2 \\
4
\end{array}\right), \\
x_{3}=e^{-2 t}\left(\begin{array}{r}
0 \\
1 \\
-4
\end{array}\right)+t e^{-2 t}\left(\begin{array}{r}
1 \\
-2 \\
4
\end{array}\right)
\end{gathered}
$$

Note that x_{1} and x_{2} are the solution obtained from the eigenvalues and eigenvectors of λ_{1} and λ_{2}. What about the solution vector x_{3} ?
Note that $\left(\begin{array}{r}1 \\ -2 \\ 4\end{array}\right)$ in x_{3} is an eigenvector for -2
What is the vector

$$
\left(\begin{array}{r}
0 \\
1 \\
-4
\end{array}\right) ?
$$

Homogeneous Systems - Repeated Eigenvalues

$$
(A-(-2) I)\left(\begin{array}{r}
0 \\
1 \\
-4
\end{array}\right)=\left(\begin{array}{rrr}
2 & 1 & 0 \\
0 & 2 & 1 \\
12 & 8 & 1
\end{array}\right)\left(\begin{array}{r}
0 \\
1 \\
-4
\end{array}\right)=\left(\begin{array}{r}
1 \\
-2 \\
4
\end{array}\right)
$$

Hence:
$A-(-2 I)$ maps $w=\left(\begin{array}{r}0 \\ 1 \\ -4\end{array}\right)$ onto the eigenvector $v=\left(\begin{array}{r}1 \\ -2 \\ 4\end{array}\right)$.

Homogeneous Systems - Repeated Eigenvalues

$$
(A-(-2) I)\left(\begin{array}{r}
0 \\
1 \\
-4
\end{array}\right)=\left(\begin{array}{rrr}
2 & 1 & 0 \\
0 & 2 & 1 \\
12 & 8 & 1
\end{array}\right)\left(\begin{array}{r}
0 \\
1 \\
-4
\end{array}\right)=\left(\begin{array}{r}
1 \\
-2 \\
4
\end{array}\right)
$$

Hence:
$A-(-2 I)$ maps $w=\left(\begin{array}{r}0 \\ 1 \\ -4\end{array}\right)$ onto the eigenvector $v=\left(\begin{array}{r}1 \\ -2 \\ 4\end{array}\right)$.
The vector $w=\left(\begin{array}{r}0 \\ 1 \\ -4\end{array}\right)$ is called a generalized eigenvector.

Homogeneous Systems - Repeated Eigenvalues

$$
(A-(-2) I)\left(\begin{array}{r}
0 \\
1 \\
-4
\end{array}\right)=\left(\begin{array}{rrr}
2 & 1 & 0 \\
0 & 2 & 1 \\
12 & 8 & 1
\end{array}\right)\left(\begin{array}{r}
0 \\
1 \\
-4
\end{array}\right)=\left(\begin{array}{r}
1 \\
-2 \\
4
\end{array}\right)
$$

Hence:
$A-(-2 I)$ maps $w=\left(\begin{array}{r}0 \\ 1 \\ -4\end{array}\right)$ onto the eigenvector $v=\left(\begin{array}{r}1 \\ -2 \\ 4\end{array}\right)$.
The vector $w=\left(\begin{array}{r}0 \\ 1 \\ -4\end{array}\right)$ is called a generalized eigenvector.
The third solution has the form

$$
x_{3}=e^{-2 t} w+t e^{-2 t} v
$$

Homogeneous Systems - Repeated Eigenvalues

Solution of Homogeneous Systems with 2 repeated eigenvalues

Given $x^{\prime}=A x$, suppose that A has an eigenvalue λ of multiplicity two. Then exactly one of the following holds:

Homogeneous Systems - Repeated Eigenvalues

Solution of Homogeneous Systems with 2 repeated eigenvalues

Given $x^{\prime}=A x$, suppose that A has an eigenvalue λ of multiplicity two. Then exactly one of the following holds:

1. λ has two linearly independent eigenvectors, v_{1} and v_{2} and the corresponding linearly independent solution vectors of the differential system are

$$
x_{1}(t)=e^{\lambda t} v_{1} \quad \text { and } \quad x_{2}(t)=e^{\lambda t} v_{2} .
$$

Homogeneous Systems - Repeated Eigenvalues

Solution of Homogeneous Systems with 2 repeated eigenvalues

Given $x^{\prime}=A x$, suppose that A has an eigenvalue λ of multiplicity two. Then exactly one of the following holds:

1. λ has two linearly independent eigenvectors, v_{1} and v_{2} and the corresponding linearly independent solution vectors of the differential system are

$$
x_{1}(t)=e^{\lambda t} v_{1} \quad \text { and } \quad x_{2}(t)=e^{\lambda t} v_{2} .
$$

2. λ has only one eigenvector v. Then a linearly independent pair of solution vectors corresponding to λ is:

$$
x_{1}(t)=e^{\lambda t} v, \quad x_{2}(t)=e^{\lambda t} w+t e^{\lambda t} v
$$

where w is a vector that satisfies $(A-\lambda I) w=v$.
The vector w is called a generalized eigenvector corresponding to the eigenvalue λ.

Homogeneous Systems - Repeated Eigenvalues

The first situation of the general method presented in the slide above was illustrated by Example 1.

The second situation of the general method presented in the slide above was illustrated by Example 2 and Example 3.

We are now going to revisit Example 2 and Example 3 to compute the missing solution of the homogeneous linear system.

Homogeneous Systems - Repeated Eigenvalues

Back to Example 2.

$$
x^{\prime}=\left(\begin{array}{ll}
-4 & 1 \\
-4 & 0
\end{array}\right) x
$$

We found that corresponding to the eigenvalue $\lambda_{1}=\lambda_{2}=2$, there is 1 eigenvector $v=\binom{1}{2}$ and a solution:

$$
x_{1}=e^{2 t}\binom{1}{2}
$$

The second solution has the form

$$
x_{2}=e^{2 t} w+t e^{2 t}\binom{1}{2}
$$

Homogeneous Systems - Repeated Eigenvalues

To find w, we solve:

$$
(A-(-2) I) w=\left(\begin{array}{ll}
-2 & 1 \\
-4 & 2
\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{1}{2}
$$

$$
\left(\begin{array}{ll|l}
-2 & 1 & 1 \\
-4 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{rr|r}
1 & -1 / 2 & -1 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

Homogeneous Systems - Repeated Eigenvalues

To find w, we solve:

$$
(A-(-2) I) w=\left(\begin{array}{ll}
-2 & 1 \\
-4 & 2
\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{1}{2}
$$

$\left(\begin{array}{ll|l}-2 & 1 & 1 \\ -4 & 2 & 2\end{array}\right) \rightarrow\left(\begin{array}{rr|r}1 & -1 / 2 & -1 / 2 \\ 0 & 0 & 0\end{array}\right)$
Hence: $w_{1}=1 / 2 w_{2}-1 / 2, w_{2}$ arbitrary.
For $w_{2}=3$, we get $w_{1}=1$, hence $w=\binom{1}{3}$

Homogeneous Systems - Repeated Eigenvalues

To find w, we solve:

$$
(A-(-2) I) w=\left(\begin{array}{ll}
-2 & 1 \\
-4 & 2
\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{1}{2}
$$

$\left(\begin{array}{ll|l}-2 & 1 & 1 \\ -4 & 2 & 2\end{array}\right) \rightarrow\left(\begin{array}{rr|r}1 & -1 / 2 & -1 / 2 \\ 0 & 0 & 0\end{array}\right)$
Hence: $w_{1}=1 / 2 w_{2}-1 / 2, w_{2}$ arbitrary.
For $w_{2}=3$, we get $w_{1}=1$, hence $w=\binom{1}{3}$
Hence we obtain the Fundamental Set:

$$
x_{1}=e^{-2 t}\binom{1}{2}, \quad x_{2}=e^{-2 t}\binom{1}{3}+t e^{-2 t}\binom{1}{2}
$$

Homogeneous Systems - Repeated Eigenvalues

Back to Example 3.

$$
x^{\prime}=\left(\begin{array}{rrr}
5 & 6 & 2 \\
0 & -1 & -8 \\
1 & 0 & -2
\end{array}\right) x
$$

We need to find the second solutions corresponding to the repeated eigenvalue $\lambda_{2}=\lambda_{3}=3$
Such solution has the form

$$
x_{3}=e^{3 t} w+t e^{3 t} v
$$

To find w, solve

$$
(A-3 I) w=\left(\begin{array}{rrr}
2 & 6 & 2 \\
0 & -4 & -8 \\
1 & 0 & -5
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{r}
5 \\
-2 \\
1
\end{array}\right)
$$

Homogeneous Systems - Repeated Eigenvalues

$\left(\begin{array}{rrr|r}2 & 6 & 2 & 5 \\ 0 & -4 & -8 & -2 \\ 1 & 0 & -5 & 1\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}1 & 0 & -5 & 1 \\ 0 & -4 & -8 & -2 \\ 2 & 6 & 2 & 5\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}1 & 0 & -5 & 1 \\ 0 & 1 & 2 & 1 / 2 \\ 0 & 0 & 0 & 0\end{array}\right)$
Solution set:

$$
w_{1}=1+5 w_{3}, w_{2}=\frac{1}{2}-2 w_{3}, w_{3} \text { arbitrary }
$$

Set $w_{3}=0: \quad w=\left(\begin{array}{r}1 \\ 1 / 2 \\ 0\end{array}\right)$

Homogeneous Systems - Repeated Eigenvalues

$\left(\begin{array}{rrr|r}2 & 6 & 2 & 5 \\ 0 & -4 & -8 & -2 \\ 1 & 0 & -5 & 1\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}1 & 0 & -5 & 1 \\ 0 & -4 & -8 & -2 \\ 2 & 6 & 2 & 5\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}1 & 0 & -5 & 1 \\ 0 & 1 & 2 & 1 / 2 \\ 0 & 0 & 0 & 0\end{array}\right)$
Solution set:

$$
w_{1}=1+5 w_{3}, w_{2}=\frac{1}{2}-2 w_{3}, w_{3} \text { arbitrary }
$$

Set $w_{3}=0: \quad w=\left(\begin{array}{r}1 \\ 1 / 2 \\ 0\end{array}\right)$
The third solution is:

$$
x_{3}=e^{3 t}\left(\begin{array}{r}
1 \\
1 / 2 \\
0
\end{array}\right)+t e^{3 t}\left(\begin{array}{r}
5 \\
-2 \\
1
\end{array}\right)
$$

Homogeneous Systems - Repeated Eigenvalues

$\left(\begin{array}{rrr|r}2 & 6 & 2 & 5 \\ 0 & -4 & -8 & -2 \\ 1 & 0 & -5 & 1\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}1 & 0 & -5 & 1 \\ 0 & -4 & -8 & -2 \\ 2 & 6 & 2 & 5\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}1 & 0 & -5 & 1 \\ 0 & 1 & 2 & 1 / 2 \\ 0 & 0 & 0 & 0\end{array}\right)$
Solution set:

$$
w_{1}=1+5 w_{3}, w_{2}=\frac{1}{2}-2 w_{3}, w_{3} \text { arbitrary }
$$

Set $w_{3}=0: \quad w=\left(\begin{array}{r}1 \\ 1 / 2 \\ 0\end{array}\right)$
The third solution is:

$$
x_{3}=e^{3 t}\left(\begin{array}{r}
1 \\
1 / 2 \\
0
\end{array}\right)+t e^{3 t}\left(\begin{array}{r}
5 \\
-2 \\
1
\end{array}\right)
$$

Fundamental set:

$$
x_{1}=e^{-4 t}\left(\begin{array}{r}
6 \\
-8 \\
-3
\end{array}\right), x_{2}=e^{3 t}\left(\begin{array}{r}
5 \\
-2 \\
1
\end{array}\right), x_{3}=e^{3 t}\left(\begin{array}{r}
1 \\
1 / 2 \\
0
\end{array}\right)+t e^{3 t}\left(\begin{array}{r}
5 \\
-2 \\
1
\end{array}\right)
$$

Homogeneous Systems - Repeated Eigenvalues

Example 4: Find a fundamental set of solutions of

$$
x^{\prime}=\left(\begin{array}{lll}
-3 & 1 & -1 \\
-7 & 5 & -1 \\
-6 & 6 & -2
\end{array}\right) x
$$

Homogeneous Systems - Repeated Eigenvalues

Example 4: Find a fundamental set of solutions of

$$
x^{\prime}=\left(\begin{array}{ccc}
-3 & 1 & -1 \\
-7 & 5 & -1 \\
-6 & 6 & -2
\end{array}\right) x
$$

We compute the characteristic polynomial:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
-3-\lambda & 1 & -1 \\
-7 & 5-\lambda & -1 \\
-6 & 6 & -2-\lambda
\end{array}\right| \\
& =-16-4 \lambda-2 \lambda^{2}+\lambda^{3}=(\lambda-4)(\lambda+2)^{2} .
\end{aligned}
$$

Homogeneous Systems - Repeated Eigenvalues

Example 4: Find a fundamental set of solutions of

$$
x^{\prime}=\left(\begin{array}{lll}
-3 & 1 & -1 \\
-7 & 5 & -1 \\
-6 & 6 & -2
\end{array}\right) x
$$

We compute the characteristic polynomial:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
-3-\lambda & 1 & -1 \\
-7 & 5-\lambda & -1 \\
-6 & 6 & -2-\lambda
\end{array}\right| \\
& =-16-4 \lambda-2 \lambda^{2}+\lambda^{3}=(\lambda-4)(\lambda+2)^{2} .
\end{aligned}
$$

Hence we have $\lambda_{1}=4$ with multiplicity one and $\lambda_{2}=\lambda_{3}=-2$ with multiplicity two.

Homogeneous Systems - Repeated Eigenvalues

From $\lambda_{1}=4$, we compute

$$
(A-4 I)=\left(\begin{array}{ccc}
-3-4 & 1 & -1 \\
-7 & 5-4 & -1 \\
-6 & 6 & -2-4
\end{array}\right)=\left(\begin{array}{ccc}
-7 & 1 & -1 \\
-7 & 1 & -1 \\
-6 & 6 & -6
\end{array}\right)
$$

Homogeneous Systems - Repeated Eigenvalues

From $\lambda_{1}=4$, we compute

$$
(A-4 I)=\left(\begin{array}{ccc}
-3-4 & 1 & -1 \\
-7 & 5-4 & -1 \\
-6 & 6 & -2-4
\end{array}\right)=\left(\begin{array}{ccc}
-7 & 1 & -1 \\
-7 & 1 & -1 \\
-6 & 6 & -6
\end{array}\right)
$$

Hence, solving $(A-4 I) x=0$, we have
$\left(\begin{array}{lll|l}-7 & 1 & -1 & 0 \\ -7 & 1 & -1 & 0 \\ -6 & 6 & -6 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}-6 & 6 & -6 & 0 \\ -7 & 1 & -1 & 0 \\ -7 & 1 & -1 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}1 & -1 & 1 & 0 \\ 0 & -6 & 6 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
It follows that the eigenvector corresponding to $\lambda_{1}=4$ is $v_{1}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$
and a solution of the system is

$$
x_{1}=e^{4 t}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Homogeneous Systems - Repeated Eigenvalues

From $\lambda_{2}=-2$, we compute

$$
(A+2 I)=\left(\begin{array}{ccc}
-3+2 & 1 & -1 \\
-7 & 5+2 & -1 \\
-6 & 6 & -2+2
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 1 & -1 \\
-7 & 7 & -1 \\
-6 & 6 & 0
\end{array}\right)
$$

Homogeneous Systems - Repeated Eigenvalues

From $\lambda_{2}=-2$, we compute

$$
(A+2 I)=\left(\begin{array}{ccc}
-3+2 & 1 & -1 \\
-7 & 5+2 & -1 \\
-6 & 6 & -2+2
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 1 & -1 \\
-7 & 7 & -1 \\
-6 & 6 & 0
\end{array}\right)
$$

Hence, solving $(A+2 I) x=0$, we have

$$
\left(\begin{array}{rrr|r}
-1 & 1 & -1 & 0 \\
-7 & 7 & -1 & 0 \\
-6 & 6 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 & 1 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Homogeneous Systems - Repeated Eigenvalues

From $\lambda_{2}=-2$, we compute

$$
(A+2 I)=\left(\begin{array}{ccc}
-3+2 & 1 & -1 \\
-7 & 5+2 & -1 \\
-6 & 6 & -2+2
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 1 & -1 \\
-7 & 7 & -1 \\
-6 & 6 & 0
\end{array}\right)
$$

Hence, solving $(A+2 I) x=0$, we have

$$
\left(\begin{array}{rrr|r}
-1 & 1 & -1 & 0 \\
-7 & 7 & -1 & 0 \\
-6 & 6 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 & 1 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

It follows that the eigenvector corresponding to $\lambda_{2}=-2$ is
$v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and a solution of the system is

$$
x_{2}=e^{-2 t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Homogeneous Systems - Repeated Eigenvalues

We need to find the third solution of the system, which has the form

$$
x_{3}=e^{-2 t} w+t e^{-2 t} v_{2}
$$

Homogeneous Systems - Repeated Eigenvalues

We need to find the third solution of the system, which has the form

$$
x_{3}=e^{-2 t} w+t e^{-2 t} v_{2}
$$

To find w, we solve

$$
(A+2 I) w=\left(\begin{array}{rrr}
-1 & 1 & -1 \\
-7 & 7 & -1 \\
-6 & 6 & 0
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Homogeneous Systems - Repeated Eigenvalues

We need to find the third solution of the system, which has the form

$$
x_{3}=e^{-2 t} w+t e^{-2 t} v_{2}
$$

To find w, we solve

$$
(A+2 I) w=\left(\begin{array}{rrr}
-1 & 1 & -1 \\
-7 & 7 & -1 \\
-6 & 6 & 0
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Hence

$$
\left(\begin{array}{rrr|r}
-1 & 1 & -1 & 1 \\
-7 & 7 & -1 & 1 \\
-6 & 6 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 & 1 & -1 \\
0 & 0 & 6 & -6 \\
0 & 0 & 7 & -7
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 & 1 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This gives $w_{3}=-1, w_{1}=w_{2}$.

Homogeneous Systems - Repeated Eigenvalues

We need to find the third solution of the system, which has the form

$$
x_{3}=e^{-2 t} w+t e^{-2 t} v_{2}
$$

To find w, we solve

$$
(A+2 I) w=\left(\begin{array}{rrr}
-1 & 1 & -1 \\
-7 & 7 & -1 \\
-6 & 6 & 0
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Hence

$$
\left(\begin{array}{rrr|r}
-1 & 1 & -1 & 1 \\
-7 & 7 & -1 & 1 \\
-6 & 6 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 & 1 & -1 \\
0 & 0 & 6 & -6 \\
0 & 0 & 7 & -7
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 & 1 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This gives $w_{3}=-1, w_{1}=w_{2}$.
Hence choosing $w_{1}=1$ we have $w=\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right)$

Homogeneous Systems - Repeated Eigenvalues

In conclusion, we have the Fundamental Set:

$$
x_{1}=e^{4 t}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \quad x_{2}=e^{-2 t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad x_{3}=e^{-2 t}\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right)+t e^{-2 t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Homogeneous Systems - Repeated Eigenvalues

In conclusion, we have the Fundamental Set:
$x_{1}=e^{4 t}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right), \quad x_{2}=e^{-2 t}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), \quad x_{3}=e^{-2 t}\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right)+t e^{-2 t}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$
General solution:

$$
x=C_{1} e^{4 t}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+C_{2} e^{-2 t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+C_{3}\left[e^{-2 t}\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right)+t e^{-2 t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right]
$$

Homogeneous Systems - Repeated Eigenvalues

Solution of Homogeneous Systems with 3 repeated eigenvalues
Given the differential system

$$
x^{\prime}=A x .
$$

Suppose that λ is an eigenvalue of A of multiplicity 3 . Then exactly one of the following three cases holds:

Homogeneous Systems - Repeated Eigenvalues

Solution of Homogeneous Systems with 3 repeated eigenvalues

Given the differential system

$$
x^{\prime}=A x .
$$

Suppose that λ is an eigenvalue of A of multiplicity 3 . Then exactly one of the following three cases holds:

1. λ has three linearly independent eigenvectors v_{1}, v_{2}, v_{3}. Then three linearly independent solution vectors of the system corresponding to λ are:

$$
x_{1}(t)=e^{\lambda t} v_{1}, \quad x_{2}(t)=e^{\lambda t} v_{2}, \quad x_{3}(t)=e^{\lambda t} v_{3} .
$$

Homogeneous Systems - Repeated Eigenvalues

Solution of Homogeneous Systems with 3 repeated eigenvalues

2. λ has two lin. independent eigenvectors v_{1}, v_{2}. Then three lin. independent solutions of the system corresponding to λ are:

$$
x_{1}(t)=e^{\lambda t} v_{1}, \quad x_{2}(t)=e^{\lambda t} v_{2} \quad \text { and } \quad x_{3}(t)=e^{\lambda t} w+t e^{\lambda t} v
$$

where v is an eigenvector corresponding to λ and $(A-\lambda I) w=v$; that is: $(A-\lambda I)^{2} w=0$.

Homogeneous Systems - Repeated Eigenvalues

Solution of Homogeneous Systems with 3 repeated eigenvalues

2. λ has two lin. independent eigenvectors v_{1}, v_{2}. Then three lin. independent solutions of the system corresponding to λ are:

$$
x_{1}(t)=e^{\lambda t} v_{1}, \quad x_{2}(t)=e^{\lambda t} v_{2} \quad \text { and } \quad x_{3}(t)=e^{\lambda t} w+t e^{\lambda t} v
$$

where v is an eigenvector corresponding to λ and $(A-\lambda I) w=v$; that is: $(A-\lambda I)^{2} w=0$.
3. λ has only one (independent) eigenvector v. Then three linearly independent solutions of the system have the form:
$x_{1}=e^{\lambda t} v, \quad x_{2}=e^{\lambda t} w+t e^{\lambda t} v, \quad$ and $x_{3}(t)=e^{\lambda t} z+t e^{\lambda t} w+t^{2} e^{\lambda t} v$
where $(A-\lambda I) z=w \&(A-\lambda I) w=v$;
that is, $(A-\lambda I)^{3} z=0 \quad \& \quad(A-\lambda I)^{2} w=0$

Homogeneous Systems - 3 repeated Eigenvalues

Example:

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=0
$$

Homogeneous Systems - 3 repeated Eigenvalues

Example:

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=0
$$

We have the characteristic equation: $(r-2)^{3}=0$

Homogeneous Systems - 3 repeated Eigenvalues

Example:

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=0
$$

We have the characteristic equation: $(r-2)^{3}=0$

We have the characteristic roots: $r_{1}=r_{2}=r_{3}=2$

Homogeneous Systems - 3 repeated Eigenvalues

Example:

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=0
$$

We have the characteristic equation: $(r-2)^{3}=0$

We have the characteristic roots: $r_{1}=r_{2}=r_{3}=2$

Hence we have the fundamental set:

$$
\left\{e^{2 t}, t e^{2 t}, t^{2} e^{2 t}\right\}
$$

Homogeneous Systems - 3 repeated Eigenvalues

Corresponding system:

$$
x^{\prime}=\left(\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & -12 & 6
\end{array}\right) x
$$

Homogeneous Systems - 3 repeated Eigenvalues

Corresponding system:

$$
x^{\prime}=\left(\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & -12 & 6
\end{array}\right) x
$$

We compute the characteristic polynomial:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda & 1 \\
8 & -12 & 6-\lambda
\end{array}\right| \\
& =8-12 \lambda+6 \lambda^{2}-\lambda^{3}=(\lambda-2)^{3}
\end{aligned}
$$

Hence we have one eigenvalue $\lambda_{1}=\lambda_{2}=\lambda_{3}=2$ with multiplicity 3 .

Homogeneous Systems - 3 repeated Eigenvalues

To find the eigenvector of $\lambda_{1}=2$, we compute

$$
(A-2 I)=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 1 \\
8 & -12 & 6-2
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 1 \\
8 & -12 & 4
\end{array}\right)
$$

Homogeneous Systems - 3 repeated Eigenvalues

To find the eigenvector of $\lambda_{1}=2$, we compute

$$
(A-2 I)=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 1 \\
8 & -12 & 6-2
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 1 \\
8 & -12 & 4
\end{array}\right)
$$

Hence, solving $(A-2 I) x=0$, we have

$$
\left(\begin{array}{rrr|r}
-2 & 1 & 0 & 0 \\
0 & -2 & 1 & 0 \\
8 & -12 & 4 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 / 2 & 0 & 0 \\
0 & -2 & 1 & 0 \\
0 & -8 & 4 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 / 2 & 0 & 0 \\
0 & 1 & -1 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Homogeneous Systems - 3 repeated Eigenvalues

To find the eigenvector of $\lambda_{1}=2$, we compute

$$
(A-2 I)=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 1 \\
8 & -12 & 6-2
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 1 \\
8 & -12 & 4
\end{array}\right)
$$

Hence, solving $(A-2 I) x=0$, we have
$\left(\begin{array}{rrr|r}-2 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 8 & -12 & 4 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}1 & -1 / 2 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & -8 & 4 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}1 & -1 / 2 & 0 & 0 \\ 0 & 1 & -1 / 2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

It follows that the eigenvector corresponding to $\lambda_{1}=1$ is $v=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$ and a solution of the system is

$$
x_{1}=e^{2 t}\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)
$$

Homogeneous Systems - 3 repeated Eigenvalues

Next, we look for the second solution of the system, which has the form

$$
x_{2}=e^{2 t} w+t e^{2 t} v
$$

Homogeneous Systems - 3 repeated Eigenvalues

Next, we look for the second solution of the system, which has the form

$$
x_{2}=e^{2 t} w+t e^{2 t} v
$$

To find w, we solve

$$
(A-2 I) w=\left(\begin{array}{rrr}
-2 & 1 & 0 \\
0 & -2 & 1 \\
8 & -12 & 4
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)
$$

Homogeneous Systems - 3 repeated Eigenvalues

Next, we look for the second solution of the system, which has the form

$$
x_{2}=e^{2 t} w+t e^{2 t} v
$$

To find w, we solve

$$
(A-2 I) w=\left(\begin{array}{rrr}
-2 & 1 & 0 \\
0 & -2 & 1 \\
8 & -12 & 4
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)
$$

Hence
$\left(\begin{array}{rrr|r}-2 & 1 & 0 & 1 \\ 0 & -2 & 1 & 2 \\ 8 & -12 & 4 & 4\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & -2 & 1 & 2 \\ 0 & -8 & 4 & 8\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} & -1 \\ 0 & 0 & 0 & 0\end{array}\right)$
We find the generalized eigenvector $w=\left(\begin{array}{l}0 \\ 1 \\ 4\end{array}\right)$

Homogeneous Systems - 3 repeated Eigenvalues

Next, we look for the third solution of the system, which has the form

$$
x_{3}=e^{2 t} z+t e^{2 t} w+t^{2} e^{2 t} v
$$

Homogeneous Systems - 3 repeated Eigenvalues

Next, we look for the third solution of the system, which has the form

$$
x_{3}=e^{2 t} z+t e^{2 t} w+t^{2} e^{2 t} v
$$

To find z, we solve

$$
(A-2 I) z=\left(\begin{array}{rrr}
-2 & 1 & 0 \\
0 & -2 & 1 \\
8 & -12 & 4
\end{array}\right)\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
4
\end{array}\right)
$$

Hence
$\left(\begin{array}{rrr|r}-2 & 1 & 0 & 0 \\ 0 & -2 & 1 & 1 \\ 8 & -12 & 4 & 4\end{array}\right) \rightarrow\left(\begin{array}{lll|l}1 & -\frac{1}{2} & 0 & 0 \\ 0 & -2 & 1 & 1 \\ 0 & -8 & 4 & 4\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}1 & -\frac{1}{2} & 0 & 0 \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 & 0\end{array}\right)$
We find the generalized eigenvector $z=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

Homogeneous Systems - 3 repeated Eigenvalues

Fundamental set:

$$
\begin{gathered}
x_{1}=e^{2 t}\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right), \quad x_{2}=e^{2 t}\left(\begin{array}{l}
0 \\
1 \\
4
\end{array}\right)+t e^{2 t}\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right), \\
x_{3}=e^{2 t}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+t e^{2 t}\left(\begin{array}{l}
0 \\
1 \\
4
\end{array}\right)+t^{2} e^{2 t}\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)
\end{gathered}
$$

Non-Homogeneous Systems

The treatment in this topic parallels exactly the treatment of linear nonhomogeneous equations discussed in Section 3.

We are going to provide just some general observations without getting into details.

Non-Homogeneous Systems

Recall that a general nonhomogeneous system of first-order linear differential equations has the form

$$
\begin{array}{cc}
x_{1}^{\prime}= & a_{11}(t) x_{1}+a_{12}(t) x_{2}+\cdots+a_{1 n}(t) x_{n}+b_{1}(t) \\
x_{2}^{\prime}= & a_{21}(t) x_{1}+a_{22}(t) x_{2}+\cdots+a_{2 n}(t) x_{n}+b_{2}(t) \\
\vdots & \vdots \\
x_{n}^{\prime}= & a_{n 1}(t) x_{1}+a_{n 2}(t) x_{2}+\cdots+a_{n n}(t) x_{n}+b_{n}(t)
\end{array}
$$

Non-Homogeneous Systems

Using the notation

$$
A(t)=\left(\begin{array}{rrrr}
a_{11}(t) & a_{12}(t) & \cdots & a_{1 n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2 n}(t) \\
\vdots & \vdots & \vdots & \\
a_{n 1}(t) & a_{n 2}(t) & \cdots & a_{n n}(t)
\end{array}\right)
$$

and

$$
x=\left(\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad b(t)=\left(\begin{array}{r}
b_{1}(t) \\
b_{2}(t) \\
\vdots \\
b_{n}(t)
\end{array}\right),
$$

the first-order linear differential system can be written in the vector-matrix form

$$
\begin{equation*}
x^{\prime}=A(t) x+b(t) \tag{S}
\end{equation*}
$$

Non-Homogeneous Systems

The following result generalizes a property of standard linear differential equations

Non-Homogeneous Systems

The following result generalizes a property of standard linear differential equations

Theorem

If z_{1} and z_{2} are solutions of the nonhomogeneous system (S), then $x=z_{1}-z_{2}$ is a solution of the corresponding homogeneous system (H).

Non-Homogeneous Systems

The following result generalizes a property of standard linear differential equations

Theorem

If z_{1} and z_{2} are solutions of the nonhomogeneous system (S), then $x=z_{1}-z_{2}$ is a solution of the corresponding homogeneous system (H).

Proof: Since z_{1} and z_{2} are solutions of (N),

$$
\left.\mathbf{z}_{1}^{\prime}(t)=A(t) \mathbf{z}_{1}(t)+\mathbf{b}(t) \quad \text { and } \quad \mathbf{z}_{2}^{\prime}(t)=A(t) \mathbf{z}_{2}(t)+\mathbf{b}(t)\right) .
$$

Let $\mathbf{x}(t)=\mathbf{z}_{1}(t)-\mathbf{z}_{2}(t)$. Then

$$
\begin{aligned}
\mathbf{x}^{\prime}(t)=\mathbf{z}_{1}^{\prime}(t)-\mathbf{z}_{2}^{\prime}(t) & =\left[A(t) \mathbf{z}_{1}(t)+\mathbf{b}(t)\right]-\left[A(t) \mathbf{z}_{2}(t)+\mathbf{b}(t)\right] \\
& =A(t)\left[\mathbf{z}_{1}(t)-\mathbf{z}_{2}(t)\right]=A(t) \mathbf{x}(t) .
\end{aligned}
$$

Thus, $\mathbf{x}(t)=\mathbf{z}_{1}(t)-\mathbf{z}_{2}(t)$ is a solution of (H).

Non-Homogeneous Systems

The following result also generalizes a fundamental result of standard linear differential equations

Non-Homogeneous Systems

The following result also generalizes a fundamental result of standard linear differential equations

Theorem

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a fundamental set of solutions the reduced system (H) and z be a particular solution of (S). If u is a solution of (S), then there are real numbers $C_{1}, C_{2}, \ldots, C_{n}$ such that

$$
u(t)=C_{1} x_{1}(t)+C_{2} x_{2}(t)+\cdots+C_{n} x_{n}(t)+z(t)
$$

Proof: Let $\mathbf{u}=\mathbf{u}(t)$ be any solution of (N). By Theorem 1, $\mathbf{u}(t)-\mathbf{z}(t)$ is a solution of the reduced system (H). Since $\mathbf{x}_{1}(t), \mathbf{x}_{2}(t), \ldots, \mathbf{x}_{n}(t)$ are n linearly independent solutions of (H), there exist constants $c_{1}, c_{2}, \ldots, c_{n}$ such that

$$
\mathbf{u}(t)-\mathbf{z}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)
$$

Therefore

$$
\mathbf{u}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)+\mathbf{z}(t)
$$

Non-Homogeneous Systems

By the last theorem, if $x_{1}, x_{2}, \ldots, x_{n}$ are linearly independent solution of (H) and z is a particular solution of (S), then

$$
u(t)=C_{1} x_{1}(t)+C_{2} x_{2}(t)+\cdots+C_{n} x_{n}(t)+z(t)
$$

is the general solution of (S), in the sense that any solution of (S) is of this form.

Non-Homogeneous Systems

By the last theorem, if $x_{1}, x_{2}, \ldots, x_{n}$ are linearly independent solution of (H) and z is a particular solution of (S), then

$$
u(t)=C_{1} x_{1}(t)+C_{2} x_{2}(t)+\cdots+C_{n} x_{n}(t)+z(t)
$$

is the general solution of (S), in the sense that any solution of (S) is of this form.

Hence, the method to find the general solution is exactly as for standard linear differential equations.
One finds a fundamental set of solutions of (H) and the finds one particular solution of (S).

Non-Homogeneous Systems

By the last theorem, if $x_{1}, x_{2}, \ldots, x_{n}$ are linearly independent solution of (H) and z is a particular solution of (S), then

$$
u(t)=C_{1} x_{1}(t)+C_{2} x_{2}(t)+\cdots+C_{n} x_{n}(t)+z(t)
$$

is the general solution of (S), in the sense that any solution of (S) is of this form.

Hence, the method to find the general solution is exactly as for standard linear differential equations.
One finds a fundamental set of solutions of (H) and the finds one particular solution of (S).

To find a particular solution, one can use the method of Variation of Parameters.

