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Chapter 5 

Rational Expressions, Equations, and Functions



Section 5.1:  Simplifying Rational Expressions

· Rational Expressions



Rational Expressions 

Definition: 
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Simplifying: 

[image: image6.png]A rational expression is not simplified if the numerator and denominator share
common factors. To simplify a rational expression, we can factor the numerator
and factor the denominator and divide out common factors that appear in both
numerator and denominator.
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Example: 
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Solution: 
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Additional Example 1: 
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Solution: 
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Factor out the GCF in the numeratar and
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Sinplify.




Additional Example 2: 

[image: image17.png]Simplify each rational expression.
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Solution: 
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Additional Example 3: 
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Solution: 
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divide out the common binomil factor

Sinplify.
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Additional Example 4: 
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Solution: 
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Simplify the following rational expressions. If the expression cannot be simplified any further, then simply rewrite the original expression.
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Section 5.2: Multiplying and Dividing Rational Expressions

· Multiplication and Division



Multiplication and Division 

Multiplication of Rational Expressions: 

[image: image82.png]Recall the rule for multiplication of fractions:





To multiply two fractions, place the product of the numerators over the product


of the denominators.
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[image: image85.png]We apply the rule for multiplication of fractions to find the product of
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Example: 

[image: image86.png]Find the following product
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Solution: 
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Division of Rational Expressions: 

[image: image89.png]Recall the rule for division of fractions:
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[image: image94.png]We apply the rule for division of fractions to find the quetient of rational expresssions.




Example: 
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Solution: 
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Additional Example 1: 
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Solution: 
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Additional Example 2: 
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Solution: 
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Additional Example 3: 
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Solution: 
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Multiply the following rational expressions and simplify. No answers should contain negative exponents.
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Divide the following rational expressions and simplify. No answers should contain negative exponents.
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Section 5.3:  Adding and Subtracting Rational Expressions

· Addition and Subtraction



Addition and Subtraction 

Addition and Subtraction of Rational Expressions with Like Denominators: 

[image: image173.png]Recall the rule for addition and subtraction of fractions with like denominators:





[image: image174.png]To add (or subiract) two fractions whose denominators are the same, add (or
subtract) the numerators and keep the common denominator.

I a,b, and ¢ are real numbers and ¢ # 0, then

b_a+h

¢ ¢

and






[image: image175.png]To add (or subiract) two fractions whose denominators are the same, add (or
subtract) the numerators and keep the common denominator.

I a,b, and ¢ are real numbers and ¢ # 0, then

b_a+h

¢ ¢

and







[image: image176.png]To add (or subiract) two fractions whose denominators are the same, add (or
subtract) the numerators and keep the common denominator.

I a,b, and ¢ are real numbers and ¢ # 0, then

b_a+h

¢ ¢

and








[image: image177.png]To add (or subiract) two fractions whose denominators are the same, add (or
subtract) the numerators and keep the common denominator.

I a,b, and ¢ are real numbers and ¢ # 0, then

b_a+h

¢ ¢

and







[image: image178.png]To add (or subiract) two fractions whose denominators are the same, add (or
subtract) the numerators and keep the common denominator.

I a,b, and ¢ are real numbers and ¢ # 0, then

b_a+h

¢ ¢

and





[image: image179.png]We apply the rule for addition and subtraction of fractions with like denominators

to find the sum and difference of rational expressions with like denominators




Example: 

Perform the following operations.  All results should be in simplified form.

[image: image180.png]Peform the following operations. All results should be in simplified form





[image: image181.png]Peform the following operations. All results should be in simplified form





Solution: 

[image: image182.png]Wite the sum of the aumerators over
the common denominator

Factorthe difference of two squaresin
the denominstor and then divide out
the common binomil factor

Sinplify.
Wit the differnce of the rmerators
oves the common denoninator

Factorthe difference of two squaresin
the denominstor and then divide out
the common binomil factor

Sinplify.




[image: image183.png]Wite the sum of the aumerators over
the common denominator

Factorthe difference of two squaresin
the denominstor and then divide out
the common binomil factor

Sinplify.
Wit the differnce of the rmerators
oves the common denoninator

Factorthe difference of two squaresin
the denominstor and then divide out
the common binomil factor

Sinplify.




Addition and Subtraction of Rational Expressions with Unlike Denominators: 

[image: image184.png]To add (or subiract) two fractions whose denominators are not the same, we must
rewrite each fraction so that they have a common denominator. The smallest
such denominator is called the least common denominator (LCD). The method
of finding the LCM of the denominators will produce the LCD




[image: image185.png]See Section 1.3 for amethod of finding the LCM (least common multiple).

W apply the techniques for addition and subtraction of fractions with unlike denominators

to find the sum and difference of rational expressions with unlike denominators.




[image: image186.png]See Section 1.3 for amethod of finding the LCM (least common multiple).

W apply the techniques for addition and subtraction of fractions with unlike denominators

to find the sum and difference of rational expressions with unlike denominators.




Example: 

[image: image187.png]Find the following sum. The result should be in simplified form.
2 L5
32y 90




[image: image188.png]Find the following sum. The result should be in simplified form.
2 L5
32y 90




Solution: 

[image: image189.png]We must rewrite the rational expressions so they have a common denominator

Find the least common denomminator of the denominators 3x°y and 977




[image: image190.png]We must rewrite the rational expressions so they have a common denominator

Find the least common denomminator of the denominators 3x°y and 977





[image: image191.png]IPy=3xxy and 9P=33xyy

BB

3l [y[3]y

The least common denominator is 3-x-x-y-3.y =9x°y%





[image: image192.png]IPy=3xxy and 9P=33xyy

BB
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The least common denominator is 3-x-x-y-3.y =9x°y%





[image: image193.png]IPy=3xxy and 9P=33xyy

BB
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The least common denominator is 3-x-x-y-3.y =9x°y%




[image: image194.png]Express each rational expression as an equivalent one with a denominator of 917y

For the first rational expression —5—, we need to multiply the denominator

3y

32%y by 3y since (EXZ,V)(E,V =9x%7 We also need to multiply the numerator
2by 3.

5
Forthe sccond raional expression -, we need to muliply the denominator

92 by x since (9){)/2)(,'.) =9x%y2. We also need to multiply the numerator
Sbyx.




[image: image195.png]Express each rational expression as an equivalent one with a denominator of 917y

For the first rational expression —5—, we need to multiply the denominator

3y

32%y by 3y since (EXZ,V)(E,V =9x%7 We also need to multiply the numerator
2by 3.

5
Forthe sccond raional expression -, we need to muliply the denominator

92 by x since (9){)/2)(,'.) =9x%y2. We also need to multiply the numerator
Sbyx.




[image: image196.png]Express each rational expression as an equivalent one with a denominator of 917y

For the first rational expression —5—, we need to multiply the denominator

3y

32%y by 3y since (EXZ,V)(E,V =9x%7 We also need to multiply the numerator
2by 3.

5
Forthe sccond raional expression -, we need to muliply the denominator

92 by x since (9){)/2)(,'.) =9x%y2. We also need to multiply the numerator
Sbyx.




[image: image197.png]Express each rational expression as an equivalent one with a denominator of 917y

For the first rational expression —5—, we need to multiply the denominator

3y

32%y by 3y since (EXZ,V)(E,V =9x%7 We also need to multiply the numerator
2by 3.

5
Forthe sccond raional expression -, we need to muliply the denominator

92 by x since (9){)/2)(,'.) =9x%y2. We also need to multiply the numerator
Sbyx.




[image: image198.png]25
3%y 9n?

Peform the muliptications in the
‘umerators and the denominators,

Wite the sum of the aumerators over
the common denominator





Additional Example 1: 

Perform the following operations.  All results should be in simplified form.

[image: image199.png]Peform the following operations

2x 2
@ 54—+
4342 2 43x42
5; 15
® -

215 2A2-2-15

Give all results in simplified form.




[image: image200.png]Peform the following operations

2x 2
@ 54—+
4342 2 43x42
5; 15
® -

215 2A2-2-15

Give all results in simplified form.




Solution: 

[image: image201.png]@ 2 g2 . _2*2 Wite the sum of the umerators over
PH3+2 P A3+2 4342 the common denominator.

A
__ 2l Fastorboth the mamerator
Totf(erz] b

1
2 Simplify.
x+2





[image: image202.png]B —or 1B 515
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Wiite the difference of the mumerators
averthe common denominator

Factor both the numerator
and denominator

Sinplify.




Additional Example 2: 

Perform the addition. Give the result in simplified form.

[image: image203.png]Peform the addition. Give the resultin simplified form.
17

1,7

18z 6y




Solution: 

[image: image204.png]We must rewrite the rational expressions so they have a common denominator.

Find the least common denominator of the denominators 18x and 6.




[image: image205.png]We must rewrite the rational expressions so they have a common denominator.

Find the least common denominator of the denominators 18x and 6.
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[image: image207.png]2]3[3]x





[image: image208.png]The least common denominator is 2-3.3. x.





[image: image209.png]Express each rational expression as an equivalent one with a denominator of 182y,

1
For the firstsaiondl expression. 1o we need to mliply the denominator
x

18x by since (18x)(») =182, We also need to multiply the numerator
1y,

5
For the sccond sationl expression o we need to muliply the denominator
oy

6y by 3xsince (6)(3x)=18xy. We also need to multiply the numerator
Tby 3x




[image: image210.png]Express each rational expression as an equivalent one with a denominator of 182y,

1
For the firstsaiondl expression. 1o we need to mliply the denominator
x

18x by since (18x)(») =182, We also need to multiply the numerator
1y,

5
For the sccond sationl expression o we need to muliply the denominator
oy

6y by 3xsince (6)(3x)=18xy. We also need to multiply the numerator
Tby 3x




[image: image211.png]Express each rational expression as an equivalent one with a denominator of 182y,

1
For the firstsaiondl expression. 1o we need to mliply the denominator
x

18x by since (18x)(») =182, We also need to multiply the numerator
1y,

5
For the sccond sationl expression o we need to muliply the denominator
oy

6y by 3xsince (6)(3x)=18xy. We also need to multiply the numerator
Tby 3x
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Peform the muliptications in the
‘umerators and denominators.

Wite the sum of the sumerators
averthe common denominator




Additional Example 3: 

Perform the subtraction.  Give the result in simplified form.

[image: image213.png]Peform the subtraction. Give the result in simplified form.
Xty _x-y
5z 15y





Solution: 

[image: image214.png]We must rewrite the rational expressions so they have a common denominator.

Find the least common denominator of the denominators 5x and 15y




[image: image215.png]We must rewrite the rational expressions so they have a common denominator.

Find the least common denominator of the denominators 5x and 15y
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[image: image217.png]




[image: image218.png]The least common denominatoris 5-x-3.y





[image: image219.png]Express each rational expression as an equivalent one with a denominator of 152y,

<+
For the firstsaional expression >
x

5x by 3y since (5x)(3y) =15%. We also need to multiply the num erator

 we need to multiply the denominator

x+y by I

For the second rational expression Xl;v we need to multiply the denominator
Y

152, We also nced to muliply the numerator

15y by x since (159)(x

x-ybyx




[image: image220.png]Express each rational expression as an equivalent one with a denominator of 152y,
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x+y by I

For the second rational expression Xl;v we need to multiply the denominator
Y

152, We also nced to muliply the numerator

15y by x since (159)(x

x-ybyx




[image: image221.png]Express each rational expression as an equivalent one with a denominator of 152y,

<+
For the firstsaional expression >
x

5x by 3y since (5x)(3y) =15%. We also need to multiply the num erator

 we need to multiply the denominator

x+y by I

For the second rational expression Xl;v we need to multiply the denominator
Y

152, We also nced to muliply the numerator

15y by x since (159)(x

x-ybyx
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Additional Example 4: 

Perform the subtraction. Give the result in simplified form.

[image: image223.png]Peform the subtraction. Give the result in simplified form,

x 1

24342 xi4x




Solution: 

[image: image224.png]“We must rewnite the rational expressions so they have a common denominator.

Find the least common denominator of the denominators x> + 3x + 2 and x° +x.




[image: image225.png]“We must rewnite the rational expressions so they have a common denominator.

Find the least common denominator of the denominators x> + 3x + 2 and x° +x.





[image: image226.png]x+1)(x+2) and 2+x

(x+1)





[image: image227.png]at1]x+e
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[image: image228.png]The least common denominator is (x+1)(x+2)x = x[x+1)(x+2)




[image: image229.png]Express each rational expression as an equivalent one with a denominator of
x(x+1)(x+2)

x x
For the first rational expression

= weneedto muliiph
24342 (x+1)(x+2) il

the denominator (x+1)(x+2) by x We also need to multiply the numerator
xbyx

For the second rational expression  we need to multiply the

1
Pz x(x+1)

denominator x(x+1) by x-+2. We also need to multiply the numerator 1by x+2




[image: image230.png]Express each rational expression as an equivalent one with a denominator of
x(x+1)(x+2)

x x
For the first rational expression

= weneedto muliiph
24342 (x+1)(x+2) il

the denominator (x+1)(x+2) by x We also need to multiply the numerator
xbyx

For the second rational expression  we need to multiply the

1
Pz x(x+1)

denominator x(x+1) by x-+2. We also need to multiply the numerator 1by x+2




[image: image231.png]Express each rational expression as an equivalent one with a denominator of
x(x+1)(x+2)

x x
For the first rational expression

= weneedto muliiph
24342 (x+1)(x+2) il

the denominator (x+1)(x+2) by x We also need to multiply the numerator
xbyx

For the second rational expression  we need to multiply the

1
Pz x(x+1)

denominator x(x+1) by x-+2. We also need to multiply the numerator 1by x+2
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Sinplify.





Additional Example 5: 

Perform the following operations.  Give all results in simplified form.

[image: image233.png]Peform the following operations. Give all results in simplified form.

@ =





Solution: 

[image: image234.png](a) The denominators are negatives of each other. We can multiply the numerator
and denominator of the second rational expression by —1to obtain a common

denominator.





 [image: image235.png](a) The denominators are negatives of each other. We can multiply the numerator
and denominator of the second rational expression by —1to obtain a common

denominator.





 [image: image236.png]3462 Wite the sum of the numerators
averthe common denominator

= Sinplify.




[image: image237.png]Wte the difference of the numerators
averthe common denominator

Sinplify.




Perform the indicated operations and simplify. (Whenever possible, write both the numerator and denominator of the answer in factored form.)
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Section 5.4:  Complex Fractions

· Simplifying Complex Fractions



Simplifying Complex Fractions 

Definition: 

[image: image282.png]A complex fractionis a fraction that contains a fraction in its numerator or in its

denominator or both.

Here are some examples of complex fractions.

x 2 Ed
6 27 g 14
iy 3 6




[image: image283.png]A complex fractionis a fraction that contains a fraction in its numerator or in its

denominator or both.

Here are some examples of complex fractions.
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[image: image284.png]A complex fractionis a fraction that contains a fraction in its numerator or in its

denominator or both.

Here are some examples of complex fractions.
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Simplifying: 

[image: image285.png]We simplify a complex fraction by eliminating the fractions that appear in the
sumerator andfor denominator.

There are several methods of simplifying a complex fraction

One method is to work in the numerator and the denominator of the given complex
fraction separately and rewrite each of them as a single fraction (f necessary) and

then perform the division and give the resultin simplified form.

Another method is to multiply the numerater and denominator of the given
complex fraction by the least common denominator of all the denominators that
appear in all of the fractions in the numerator and denominator and then give the

resultin simplified form.




[image: image286.png]We simplify a complex fraction by eliminating the fractions that appear in the
sumerator andfor denominator.

There are several methods of simplifying a complex fraction

One method is to work in the numerator and the denominator of the given complex
fraction separately and rewrite each of them as a single fraction (f necessary) and

then perform the division and give the resultin simplified form.

Another method is to multiply the numerater and denominator of the given
complex fraction by the least common denominator of all the denominators that
appear in all of the fractions in the numerator and denominator and then give the

resultin simplified form.




[image: image287.png]We simplify a complex fraction by eliminating the fractions that appear in the
sumerator andfor denominator.

There are several methods of simplifying a complex fraction

One method is to work in the numerator and the denominator of the given complex
fraction separately and rewrite each of them as a single fraction (f necessary) and

then perform the division and give the resultin simplified form.

Another method is to multiply the numerater and denominator of the given
complex fraction by the least common denominator of all the denominators that
appear in all of the fractions in the numerator and denominator and then give the

resultin simplified form.




[image: image288.png]We simplify a complex fraction by eliminating the fractions that appear in the
sumerator andfor denominator.

There are several methods of simplifying a complex fraction

One method is to work in the numerator and the denominator of the given complex
fraction separately and rewrite each of them as a single fraction (f necessary) and

then perform the division and give the resultin simplified form.

Another method is to multiply the numerater and denominator of the given
complex fraction by the least common denominator of all the denominators that
appear in all of the fractions in the numerator and denominator and then give the

resultin simplified form.




Example: 

[image: image289.png]Simplify the following complex fraction.
2 x
+





[image: image290.png]Simplify the following complex fraction.
2 x
+





Solution: 

Method 1:

[image: image291.png]Method 1

Obfain a single fraction in the numerator. Note that the denominatoris already
asingle fraction. To obtain a single fraction in the numerator, add the fractions
2z

and% (The least common denominator is 6.)
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Method 2:

[image: image294.png]Method 2

Multiply the numerator and denominator of the given complex fraction by the least
common denominator of all the denominators that appear in all of the fractions i the
sumerator and denominator. These denominators are 3, 6, and 12. The least common
denominator is 12
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Additional Example 1: 

[image: image296.png]Simplify the following complex fraction.
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5
65y
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[image: image297.png]Simplify the following complex fraction.
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Solution: 

[image: image298.png]



Additional Example 2: 

[image: image299.png]Simplify the following complex fraction.

L
_2 4
Zxty

3





[image: image300.png]Simplify the following complex fraction.
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Solution: 
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Additional Example 3: 

[image: image303.png]Simplify the foll owing complex fraction.

x_y
8 3
5y





[image: image304.png]Simplify the foll owing complex fraction.
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Solution: 
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Additional Example 4: 

[image: image306.png]Simplify the following complex fraction.
1 1
-
P-3x+2 x-2





[image: image307.png]Simplify the following complex fraction.
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Solution: 
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Additional Example 5: 

[image: image309.png]Rewrite the given expression so that if contains positive exponents rather than
negative exponents and then simplify.
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[image: image310.png]Rewrite the given expression so that if contains positive exponents rather than
negative exponents and then simplify.
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Solution: 
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Simplify the following. No answers should contain negative exponents. 
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For each of the following expressions,

(a)
Rewrite the expression so that it contains positive exponents rather than negative exponents.

(b)
Simplify the expression. 
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Section 5.5:  Solving Rational Equations

· Rational Equations



Rational Equations 

Definition of a Rational Equation: 

[image: image360.png]Equations that contain at least one rational expression are called rational equations,
Here are three examples of rafional equations

x x 2 _ 4x
x+3 4 2x+6’ T+l ¥





[image: image361.png]Equations that contain at least one rational expression are called rational equations,
Here are three examples of rafional equations

x x 2 _ 4x
x+3 4 2x+6’ T+l ¥





[image: image362.png]Equations that contain at least one rational expression are called rational equations,
Here are three examples of rafional equations

x x 2 _ 4x
x+3 4 2x+6’ T+l ¥





Solving a Rational Equation: 

[image: image363.png]We will solve a rational equation by multiplying both sides of the equation by the
least common denominator (LCD) of all the rafional expressions that are contained
in the equation. This will clear the equation of fractions and the resulting equation

can be solved by applying known techniques for solving equations




Example: 

[image: image364.png]Solve and check:





Solution: 

[image: image365.png]We first note that x cannot be equal to 0 since this would give a 0 in the denominator

ofboth > and 2i Thus,if 50, then we can multiply both sides of the given
x x

equation by the 6x (LCD) to clear the equation of fractions




[image: image366.png]18+2-18=15-18
-3





[image: image367.png]Check: Substitute — 3 for x in the original equation.




[image: image368.png]The solution is





Example: 

[image: image369.png]Solve and check: —2_+12_%
%43 4 2146





Solution: 

[image: image370.png]Rewrite the equation by factoring the binomial 2x+6.
1 x

X434 2(x+3)

W first note that x cannot be equal to3 since this would give a 0 in a denominator.
Thus, if 5% =3, then we can multiply both sides of the given equation by 4 (x+3)
(LCD) to clear the equation of fractions.




[image: image371.png]Rewrite the equation by factoring the binomial 2x+6.
1 x

X434 2(x+3)

W first note that x cannot be equal to3 since this would give a 0 in a denominator.
Thus, if 5% =3, then we can multiply both sides of the given equation by 4 (x+3)
(LCD) to clear the equation of fractions.




[image: image372.png]Rewrite the equation by factoring the binomial 2x+6.
1 x

X434 2(x+3)

W first note that x cannot be equal to3 since this would give a 0 in a denominator.
Thus, if 5% =3, then we can multiply both sides of the given equation by 4 (x+3)
(LCD) to clear the equation of fractions.
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[image: image374.png]Checl: Substitute —1for x in the original cquation.




[image: image375.png]The solutionis x=~1




Extraneous Solutions: 

[image: image376.png]In the two examples above, we multiplied both sides of the equation by the LCD
and obtained a resulfing equation whose solution satisfied the orginal rational equation.
Note that in both cases, the LCD contained the variable x However, in some cases

where we multiply both sides of a rational equation by an expression containing a variable,
we obtain a resulting equation that we solve to obtain what appears to be a solution, but we
find that this apparent solution does not check in the original equation because it will

make a denominator equal to 0. In this case, we must discard this value as a solution

since it does not safisfy the original equation. We call such a value an extrancous

solution.

An exirancous solution is a value that is obtained upon solving an equation that does

not satisfy the original equation and thus cannot be a solution to the equation




[image: image377.png]In the two examples above, we multiplied both sides of the equation by the LCD
and obtained a resulfing equation whose solution satisfied the orginal rational equation.
Note that in both cases, the LCD contained the variable x However, in some cases

where we multiply both sides of a rational equation by an expression containing a variable,
we obtain a resulting equation that we solve to obtain what appears to be a solution, but we
find that this apparent solution does not check in the original equation because it will

make a denominator equal to 0. In this case, we must discard this value as a solution

since it does not safisfy the original equation. We call such a value an extrancous

solution.

An exirancous solution is a value that is obtained upon solving an equation that does

not satisfy the original equation and thus cannot be a solution to the equation




Example: 

[image: image378.png]Solve and check:





Solution: 

[image: image379.png]Rewrite the equation by Factoring the binomial x% —1
2 4x

T (1))

W first note that x cannot be equal to—1 or 1 since this would give aOina
denominator. Thus, if x# £1, then we can multiply both sides of the given
equation by (x-+1)(x~1) (LCD) to clear the equation of ractions.




[image: image380.png]Rewrite the equation by Factoring the binomial x% —1
2 4x

T (1))

W first note that x cannot be equal to—1 or 1 since this would give aOina
denominator. Thus, if x# £1, then we can multiply both sides of the given
equation by (x-+1)(x~1) (LCD) to clear the equation of ractions.




[image: image381.png]Rewrite the equation by Factoring the binomial x% —1
2 4x

T (1))

W first note that x cannot be equal to—1 or 1 since this would give aOina
denominator. Thus, if x# £1, then we can multiply both sides of the given
equation by (x-+1)(x~1) (LCD) to clear the equation of ractions.




[image: image382.png]



[image: image383.png]



[image: image384.png]Checl: Note that 1 does not satisfy the original equation since substituting ~1
for xwill resultina O in the denominator. ~1is an extrancous solution. Wemust

discard ~1as a solution of the equation since x cannot be equal to -1

The given equation has no solution.




[image: image385.png]Checl: Note that 1 does not satisfy the original equation since substituting ~1
for xwill resultina O in the denominator. ~1is an extrancous solution. Wemust

discard ~1as a solution of the equation since x cannot be equal to -1

The given equation has no solution.




Additional Example 1: 

[image: image386.png]Solve and check:





Solution: 

[image: image387.png]“We first note that x cannot be equal to 0 since this would give a 0 in the denominator

ofboth 2 and 31 Thus, if 5 0, then we can multiply both sides of the given
x x

equation by the 3x (LCD) to clear the equation of fractions
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[image: image389.png]Check: Substitute 4 for x in the original equation.
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[image: image391.png]The solution is x=4.




Additional Example 2: 

[image: image392.png]Solve and checks -2 %
315 3 2x2+10





Solution: 

[image: image393.png]Rewrite the equation by factoring the binomial 2x+10.
x 2z
X453 2(x+3)

We first note that x cannot be equal to =5 since this would give a 0 in a denominator.
Thus, if x# =5, then we can multiply both sides of the given equation by 6(x+5)
(LCD) to clear the equation of fractions.




[image: image394.png]Rewrite the equation by factoring the binomial 2x+10.
x 2z
X453 2(x+3)

We first note that x cannot be equal to =5 since this would give a 0 in a denominator.
Thus, if x# =5, then we can multiply both sides of the given equation by 6(x+5)
(LCD) to clear the equation of fractions.




[image: image395.png]6x— 4(x+5),
6x-4x-20=3x
2x-20=3x
2x-20-3x=3x-3x
—x-20=0
—x-20+20=0+20
—x=20
x=-20




[image: image396.png]6x— 4(x+5),
6x-4x-20=3x
2x-20=3x
2x-20-3x=3x-3x
—x-20=0
—x-20+20=0+20
—x=20
x=-20




[image: image397.png]Check: Substitute — 20 for x in the original equation.




[image: image398.png]x
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[image: image399.png]The solution is x = —20.




Additional Example 3: 

[image: image400.png]E
z

Solve and check: 1=





Solution: 

[image: image401.png]Wi fist noe that x cannot be eqal o 0 or—— since cach of these would give

a0in adenominator. Thus, if x#0, 1% 7%, then we can multiply both sides

of the given equation by x(2x-+1) (LCD) to clear the equation of fractions
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[image: image404.png]2x+
22+3-3=0-3 x-1+1=0+1

x=1

or





[image: image405.png]Check: Substitate 72 for x in the original equation




[image: image406.png]



[image: image407.png]Check: Substitute 1 for x in the original equation.




[image: image408.png]



[image: image409.png]The solutions are xzfg andzx=1




Additional Example 4: 

[image: image410.png]Solve and check:

x-3 x-3




Solution: 

[image: image411.png]We first note that x cannot be equal to3 since this would give a 0 in a denominator.
Thus, if x# 3, then we can multiply both sides of the given equation by (x-3) (LCD)

to clear the equation of fractions.




[image: image412.png]



[image: image413.png]x+3=0 or x=3=0
x+3-3=0-3 x-3+3=0+3
x=3





[image: image414.png]Check: Note that 3 does not satisfy the original equation since substituting 3
for x will resultin a Oin the denominator. 3is an extrancous solution. We must

discard 3 as a solution of the equation since x cannot be equal to 3




[image: image415.png]Check: Substitute — 3 for x in the original equation.




[image: image416.png]



[image: image417.png]The solution is




Solve the following. Remember to identify any extraneous solutions.
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Section 5.6:  Rational Functions

· Working with Rational Functions



Working with Rational Functions 

Definition of a Rational Function: 

[image: image476.png]Px)

A rational function f is a function of the form f (x)

Sy vhere PadQ are

polynomials
Here are three examples of rational functions

+2 3x+1
W=5 W= =
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Domain of a Rational Function: 

[image: image480.png]P

[elc)

The domain of arational f(x) consists of all real numbers x except those

values of x for which Q(x) = 0.

To determine the domain of arafional function, exclude from the set of real numbers
the real solutions to the equation O(x) =0
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The domain of arational f(x) consists of all real numbers x except those

values of x for which Q(x) = 0.

To determine the domain of arafional function, exclude from the set of real numbers
the real solutions to the equation O(x) =0




Example: 

[image: image482.png]Find the domain of the following rational functions and express
in interval notation

@ 7= 52

® fm=221
x=3

© =

x2—5x+4




Solution: 

[image: image483.png](a) Solve the equation x° —4 =0,

x-4=0

x+2=0 or x-2=0
x+2-2=0-2 x-242=0+2
x=2

The domain of the given function is the set of all real numbers except —2 and 2.

The domain in interval notation is (—c0,~2)U(~2,2)U(2,e0)





[image: image484.png](a) Solve the equation x° —4 =0,

x-4=0

x+2=0 or x-2=0
x+2-2=0-2 x-242=0+2
x=2

The domain of the given function is the set of all real numbers except —2 and 2.

The domain in interval notation is (—c0,~2)U(~2,2)U(2,e0)





[image: image485.png](a) Solve the equation x° —4 =0,

x-4=0

x+2=0 or x-2=0
x+2-2=0-2 x-242=0+2
x=2

The domain of the given function is the set of all real numbers except —2 and 2.

The domain in interval notation is (—c0,~2)U(~2,2)U(2,e0)





[image: image486.png](a) Solve the equation x° —4 =0,

x-4=0

x+2=0 or x-2=0
x+2-2=0-2 x-242=0+2
x=2

The domain of the given function is the set of all real numbers except —2 and 2.

The domain in interval notation is (—c0,~2)U(~2,2)U(2,e0)




[image: image487.png](6) Solve the equation x~3=0.

x-3=0
x-3+3=0+3
x=3

The domain of the given fanction is the set of all real numbers except 3. The

domain in interval notation is (~00,3) U(3,c0)





 [image: image488.png](6) Solve the equation x~3=0.

x-3=0
x-3+3=0+3
x=3

The domain of the given fanction is the set of all real numbers except 3. The

domain in interval notation is (~00,3) U(3,c0)





[image: image489.png](6) Solve the equation x~3=0.

x-3=0
x-3+3=0+3
x=3

The domain of the given fanction is the set of all real numbers except 3. The

domain in interval notation is (~00,3) U(3,c0)




[image: image490.png](c) Solve the equation x% — 5x+4 = 0,

X -5r+4=0

(x-1)(x-4)=

or x-4=0

The domain of the given function is the set of all real numbers except 1 and 4.

The domain in interval notation is (~o0,1) U (1,4)U(4,00)





 [image: image491.png](c) Solve the equation x% — 5x+4 = 0,

X -5r+4=0

(x-1)(x-4)=

or x-4=0

The domain of the given function is the set of all real numbers except 1 and 4.

The domain in interval notation is (~o0,1) U (1,4)U(4,00)





 [image: image492.png](c) Solve the equation x% — 5x+4 = 0,

X -5r+4=0

(x-1)(x-4)=

or x-4=0

The domain of the given function is the set of all real numbers except 1 and 4.

The domain in interval notation is (~o0,1) U (1,4)U(4,00)





[image: image493.png](c) Solve the equation x% — 5x+4 = 0,

X -5r+4=0

(x-1)(x-4)=

or x-4=0

The domain of the given function is the set of all real numbers except 1 and 4.

The domain in interval notation is (~o0,1) U (1,4)U(4,00)




Graph of a Rational Function: 

Example: 

[image: image494.png]223 ig shown below

The graph of the rational function f(x) =





[image: image495.png]



[image: image496.png](a) State the domain of the function in interval notation.
(b) Find the xntercepts of the graph and label the points on the graph where

the graph crosses the x-axis.

(c) Find the y-intercept of the graph and label the point on the graph where the graph
crosses the y-axis

(d) Label the point on the graph whose first coordinate is 1




[image: image497.png](a) State the domain of the function in interval notation.
(b) Find the xntercepts of the graph and label the points on the graph where

the graph crosses the x-axis.

(c) Find the y-intercept of the graph and label the point on the graph where the graph
crosses the y-axis

(d) Label the point on the graph whose first coordinate is 1





 [image: image498.png](a) State the domain of the function in interval notation.
(b) Find the xntercepts of the graph and label the points on the graph where

the graph crosses the x-axis.

(c) Find the y-intercept of the graph and label the point on the graph where the graph
crosses the y-axis

(d) Label the point on the graph whose first coordinate is 1




[image: image499.png](a) State the domain of the function in interval notation.
(b) Find the xntercepts of the graph and label the points on the graph where

the graph crosses the x-axis.

(c) Find the y-intercept of the graph and label the point on the graph where the graph
crosses the y-axis

(d) Label the point on the graph whose first coordinate is 1





 [image: image500.png](a) State the domain of the function in interval notation.
(b) Find the xntercepts of the graph and label the points on the graph where

the graph crosses the x-axis.

(c) Find the y-intercept of the graph and label the point on the graph where the graph
crosses the y-axis

(d) Label the point on the graph whose first coordinate is 1




[image: image501.png](a) State the domain of the function in interval notation.
(b) Find the xntercepts of the graph and label the points on the graph where

the graph crosses the x-axis.

(c) Find the y-intercept of the graph and label the point on the graph where the graph
crosses the y-axis

(d) Label the point on the graph whose first coordinate is 1




Solution: 

[image: image502.png](@) Solve the equation x— 2

x-2=0
x-242=0+2
x=2

The domain of the given function is the set of all real numbers except 2. The
domain in interval notation is (~00,2) U (2,c5). There is no point on the graph

whose first coordinate is 2.





 [image: image503.png](@) Solve the equation x— 2

x-2=0
x-242=0+2
x=2

The domain of the given function is the set of all real numbers except 2. The
domain in interval notation is (~00,2) U (2,c5). There is no point on the graph

whose first coordinate is 2.





[image: image504.png](@) Solve the equation x— 2

x-2=0
x-242=0+2
x=2

The domain of the given function is the set of all real numbers except 2. The
domain in interval notation is (~00,2) U (2,c5). There is no point on the graph

whose first coordinate is 2.




[image: image505.png](b) To find the x-intercepts, find the real solutions of the equation f(x) = 0

f®=0
x-3

x=3

The x-ntercept is 3.





 [image: image506.png](b) To find the x-intercepts, find the real solutions of the equation f(x) = 0

f®=0
x-3

x=3

The x-ntercept is 3.





 [image: image507.png](b) To find the x-intercepts, find the real solutions of the equation f(x) = 0

f®=0
x-3

x=3

The x-ntercept is 3.




[image: image508.png]() To find the y-intercept, find 7 (0).

5

f®=

JO)=

x
0.
0

The y-intercept is g





 [image: image509.png]() To find the y-intercept, find 7 (0).

5

f®=

JO)=

x
0.
0

The y-intercept is g





 [image: image510.png]() To find the y-intercept, find 7 (0).

5

f®=

JO)=

x
0.
0

The y-intercept is g




[image: image511.png](d) The point whose first coordinate is 1is (1,7(1)). Find £(1)

x-3
Fw=1=

1-3 -2
0=

The pointis (1,2)





 [image: image512.png](d) The point whose first coordinate is 1is (1,7(1)). Find £(1)

x-3
Fw=1=

1-3 -2
0=

The pointis (1,2)





 [image: image513.png](d) The point whose first coordinate is 1is (1,7(1)). Find £(1)

x-3
Fw=1=

1-3 -2
0=

The pointis (1,2)




The graph of the function is shown below, labeled with the information from parts (b)-(d).

[image: image514.png]



Vertical Asymptotes: 

[image: image515.png]A vertical line x = a is called a vertical asymptote of the graph of a function
»= J(x) ify increases without bound ory decreases without bound as x gets
close to a from the right of a o from the left of o

The line x=

is avertical asymptote for the graph of the rational function
-3
R L2 From the graph, we see that functional values decrease without
P

bound as x gets close to 2 from the right of 2 and functional values increase
without bound as x gets close to 2 from the left of 2.




[image: image516.png]A vertical line x = a is called a vertical asymptote of the graph of a function
»= J(x) ify increases without bound ory decreases without bound as x gets
close to a from the right of a o from the left of o

The line x=

is avertical asymptote for the graph of the rational function
-3
R L2 From the graph, we see that functional values decrease without
P

bound as x gets close to 2 from the right of 2 and functional values increase
without bound as x gets close to 2 from the left of 2.




[image: image517.png](vertical asymptote)




Finding Vertical Asymptotes 

[image: image518.png]Letf (x) QEX; be arational function. To find vertical asymptotes, first simplify

P

[elc)

the rational expresssion by dividing out any common factors in numerator

and denominator. Then the vertical asymptotes are of the form x = a, where ais a

real number for which the denominator of the simplified expression is equal to 0.




Example: 

[image: image519.png]Find the vertical asymptotes (if any) of the graphs of the foll owing rational functions

CRCRE
® f@=

P -51+4




[image: image520.png]Find the vertical asymptotes (if any) of the graphs of the foll owing rational functions

CRCRE
® f@=

P -51+4




Solution: 

[image: image521.png]() Rewrite the function by factoring the denominator and then divide out any

common factors.
x42 37 1

x)= [ L.
W= (3 (x-2) =2

The denominator x2 is equal to 0 whenever x= 2. Thus, the vertical asymptote

For 12 -2,

isx=2

The graph is shown below





[image: image522.png]() Rewrite the function by factoring the denominator and then divide out any

common factors.
x42 37 1

x)= [ L.
W= (3 (x-2) =2

The denominator x2 is equal to 0 whenever x= 2. Thus, the vertical asymptote

For 12 -2,

isx=2

The graph is shown below





 [image: image523.png]() Rewrite the function by factoring the denominator and then divide out any

common factors.
x42 37 1

x)= [ L.
W= (3 (x-2) =2

The denominator x2 is equal to 0 whenever x= 2. Thus, the vertical asymptote

For 12 -2,

isx=2

The graph is shown below





[image: image524.png]() Rewrite the function by factoring the denominator and then divide out any

common factors.
x42 37 1

x)= [ L.
W= (3 (x-2) =2

The denominator x2 is equal to 0 whenever x= 2. Thus, the vertical asymptote

For 12 -2,

isx=2

The graph is shown below





[image: image525.png]() Rewrite the function by factoring the denominator and then divide out any

common factors.
x42 37 1

x)= [ L.
W= (3 (x-2) =2

The denominator x2 is equal to 0 whenever x= 2. Thus, the vertical asymptote

For 12 -2,

isx=2

The graph is shown below





[image: image526.png]2

x=2
(vertical asymptote)




[image: image527.png](b) Rewrite the function by factoring the denominator and then divide out any
common factors.
4x 4x

f@= “5x+d (z-1)(z-4)

Values for which the denominator is equal to 0 are x=1and x = 4.

Thus, the vertical asymptotes are x=1and =4

The graph is shown below





[image: image528.png](b) Rewrite the function by factoring the denominator and then divide out any
common factors.
4x 4x

f@= “5x+d (z-1)(z-4)

Values for which the denominator is equal to 0 are x=1and x = 4.

Thus, the vertical asymptotes are x=1and =4

The graph is shown below





[image: image529.png](b) Rewrite the function by factoring the denominator and then divide out any
common factors.
4x 4x

f@= “5x+d (z-1)(z-4)

Values for which the denominator is equal to 0 are x=1and x = 4.

Thus, the vertical asymptotes are x=1and =4

The graph is shown below





[image: image530.png](b) Rewrite the function by factoring the denominator and then divide out any
common factors.
4x 4x

f@= “5x+d (z-1)(z-4)

Values for which the denominator is equal to 0 are x=1and x = 4.

Thus, the vertical asymptotes are x=1and =4

The graph is shown below





[image: image531.png](b) Rewrite the function by factoring the denominator and then divide out any
common factors.
4x 4x

f@= “5x+d (z-1)(z-4)

Values for which the denominator is equal to 0 are x=1and x = 4.

Thus, the vertical asymptotes are x=1and =4

The graph is shown below





[image: image532.png](b) Rewrite the function by factoring the denominator and then divide out any
common factors.
4x 4x

f@= “5x+d (z-1)(z-4)

Values for which the denominator is equal to 0 are x=1and x = 4.

Thus, the vertical asymptotes are x=1and =4

The graph is shown below





[image: image533.png]xt4

x

,m
(vertical asymptotes)




Horizontal Asymptotes: 

[image: image534.png]A horizontal line y = & is called a horizontal asymptote for the graph of a function
»= ()i gets close to b as x increases without bound or decreases without
bound.

The horizontal line = 3is a horizontal asymptote for the graph of the rational

function.f (x) = 25

From the graph, we see that functional values get close

to 3 as x increases without bound and decreases without bound.




[image: image535.png]A horizontal line y = & is called a horizontal asymptote for the graph of a function
»= ()i gets close to b as x increases without bound or decreases without
bound.

The horizontal line = 3is a horizontal asymptote for the graph of the rational

function.f (x) = 25

From the graph, we see that functional values get close

to 3 as x increases without bound and decreases without bound.




[image: image536.png]



[image: image537.png]Techniques for finding horizontal asymptotes will be introduced in College Algebra
(QMATH 1310)




Additional Example 1: 

[image: image538.png]The graph of the function f(x) Lj is shown below.
P

i
|
|
|
|
|
|
|
|
|
.

Find the xintercepts, the y-intercept, /(~1), andf (2) and label the corresponding
points on the graph.




[image: image539.png]The graph of the function f(x) Lj is shown below.
P

i
|
|
|
|
|
|
|
|
|
.

Find the xintercepts, the y-intercept, /(~1), andf (2) and label the corresponding
points on the graph.




Solution: 

[image: image540.png]To find the x-intercepts, find the real solutions of the equation f(x) = 0.






  
[image: image541.wmf](

)

0

3

0

1

fx

x

x

=

-

=

-


[image: image542.png]



[image: image543.png]The x-interceptis 3.




[image: image544.png]To find the y-intercept, find £ (0).






[image: image545.png]=22





[image: image546.png]The y-interceptis 3.




[image: image547.png]Find f(-1).






[image: image548.png]



[image: image549.png]The cotresponding point on the graph is (~1,2)




[image: image550.png]Find f(2).






[image: image551.png]



[image: image552.png]The cotresponding point on the graph is (2,~1)




[image: image553.png]



Additional Example 2: 

[image: image554.png]Find the domain of the following rational functions and express each domain in

interval notation.





Solution: 

[image: image555.png](a) Weneedto find the values of x for which the denominator is equal to 0.

Solve the equation x° +2x — 3= 0.

+2x-3=0
(x+3)(x-1)=0

x+3=0 or x-1=0
x+3-3=0-3 x-1+1=0+1
x=1

The domain of the given function is the set of all real numbers except —3 and 1
The domain in interval notation is (~e,~3)U(~3,1)U(10).





 [image: image556.png](a) Weneedto find the values of x for which the denominator is equal to 0.

Solve the equation x° +2x — 3= 0.

+2x-3=0
(x+3)(x-1)=0

x+3=0 or x-1=0
x+3-3=0-3 x-1+1=0+1
x=1

The domain of the given function is the set of all real numbers except —3 and 1
The domain in interval notation is (~e,~3)U(~3,1)U(10).





 [image: image557.png](a) Weneedto find the values of x for which the denominator is equal to 0.

Solve the equation x° +2x — 3= 0.

+2x-3=0
(x+3)(x-1)=0

x+3=0 or x-1=0
x+3-3=0-3 x-1+1=0+1
x=1

The domain of the given function is the set of all real numbers except —3 and 1
The domain in interval notation is (~e,~3)U(~3,1)U(10).





 [image: image558.png](a) Weneedto find the values of x for which the denominator is equal to 0.

Solve the equation x° +2x — 3= 0.

+2x-3=0
(x+3)(x-1)=0

x+3=0 or x-1=0
x+3-3=0-3 x-1+1=0+1
x=1

The domain of the given function is the set of all real numbers except —3 and 1
The domain in interval notation is (~e,~3)U(~3,1)U(10).





 [image: image559.png](a) Weneedto find the values of x for which the denominator is equal to 0.

Solve the equation x° +2x — 3= 0.

+2x-3=0
(x+3)(x-1)=0

x+3=0 or x-1=0
x+3-3=0-3 x-1+1=0+1
x=1

The domain of the given function is the set of all real numbers except —3 and 1
The domain in interval notation is (~e,~3)U(~3,1)U(10).




[image: image560.png](b) We needto find the values of x for which the denominator is equal to 0.

Solve the equation x+1= 0,

x+1=0
x+1-1=0-1

The domain of the given function is the set of all real numbers except —1. The

domain in interval notation is (~c,~1)(~1,c)






 [image: image561.png](b) We needto find the values of x for which the denominator is equal to 0.

Solve the equation x+1= 0,

x+1=0
x+1-1=0-1

The domain of the given function is the set of all real numbers except —1. The

domain in interval notation is (~c,~1)(~1,c)






 [image: image562.png](b) We needto find the values of x for which the denominator is equal to 0.

Solve the equation x+1= 0,

x+1=0
x+1-1=0-1

The domain of the given function is the set of all real numbers except —1. The

domain in interval notation is (~c,~1)(~1,c)






 [image: image563.png](b) We needto find the values of x for which the denominator is equal to 0.

Solve the equation x+1= 0,

x+1=0
x+1-1=0-1

The domain of the given function is the set of all real numbers except —1. The

domain in interval notation is (~c,~1)(~1,c)





Additional Example 3: 

[image: image564.png]Find the vertical asymptotes (if any) of the graphs of the following rational functions.

@ s=—ulL
(x-1)[x"+4)

2x
®) 0=




[image: image565.png]Find the vertical asymptotes (if any) of the graphs of the following rational functions.

@ s=—ulL
(x-1)[x"+4)

2x
®) 0=




Solution: 

[image: image566.png](@) Divide out common factors in numerator and denominator.
5(51] 5
) (1 (4] a

Find the real values of  for which the denominator of the simplified expression

Forxzl

is equal to 0

There are no real numbers x for which 2° +4 is equal to 0. Therefore,

there are no vertical asymptotes

The graph is shown below.





[image: image567.png](@) Divide out common factors in numerator and denominator.
5(51] 5
) (1 (4] a

Find the real values of  for which the denominator of the simplified expression

Forxzl

is equal to 0

There are no real numbers x for which 2° +4 is equal to 0. Therefore,

there are no vertical asymptotes

The graph is shown below.





 [image: image568.png](@) Divide out common factors in numerator and denominator.
5(51] 5
) (1 (4] a

Find the real values of  for which the denominator of the simplified expression

Forxzl

is equal to 0

There are no real numbers x for which 2° +4 is equal to 0. Therefore,

there are no vertical asymptotes

The graph is shown below.





 [image: image569.png](@) Divide out common factors in numerator and denominator.
5(51] 5
) (1 (4] a

Find the real values of  for which the denominator of the simplified expression

Forxzl

is equal to 0

There are no real numbers x for which 2° +4 is equal to 0. Therefore,

there are no vertical asymptotes

The graph is shown below.





 [image: image570.png](@) Divide out common factors in numerator and denominator.
5(51] 5
) (1 (4] a

Find the real values of  for which the denominator of the simplified expression

Forxzl

is equal to 0

There are no real numbers x for which 2° +4 is equal to 0. Therefore,

there are no vertical asymptotes

The graph is shown below.





 [image: image571.png]



[image: image572.png](b) The numerator and denominator share no common factors other than 1

Find the real values of x for which the denominator of the simplified expression is
equal to 0.

The value of x for which the denominator x+5 is equal to 015 x

Thus, the vertical asymptote is x=

The graph is shown below.





[image: image573.png](b) The numerator and denominator share no common factors other than 1

Find the real values of x for which the denominator of the simplified expression is
equal to 0.

The value of x for which the denominator x+5 is equal to 015 x

Thus, the vertical asymptote is x=

The graph is shown below.





[image: image574.png](b) The numerator and denominator share no common factors other than 1

Find the real values of x for which the denominator of the simplified expression is
equal to 0.

The value of x for which the denominator x+5 is equal to 015 x

Thus, the vertical asymptote is x=

The graph is shown below.





[image: image575.png](b) The numerator and denominator share no common factors other than 1

Find the real values of x for which the denominator of the simplified expression is
equal to 0.

The value of x for which the denominator x+5 is equal to 015 x

Thus, the vertical asymptote is x=

The graph is shown below.





[image: image576.png](b) The numerator and denominator share no common factors other than 1

Find the real values of x for which the denominator of the simplified expression is
equal to 0.

The value of x for which the denominator x+5 is equal to 015 x

Thus, the vertical asymptote is x=

The graph is shown below.





[image: image577.png]



Find the indicated function values. If undefined, state “Undefined.”

263. If 
[image: image578.wmf]()

3

x

fx

x

=

-

, find


(a)

[image: image579.wmf](0)

f


(b)

[image: image580.wmf](1)

f

-


(c)

[image: image581.wmf](

)

1

3

f


264. If 
[image: image582.wmf]5

()

5

fx

x

=

+

, find 

(a)

[image: image583.wmf](0)

f


(b)

[image: image584.wmf](5)

f

-


(c)

[image: image585.wmf](

)

1

5

f


265. If 
[image: image586.wmf]32

()

7

x

fx

x

-

=

-

, find

(a)

[image: image587.wmf](0)

f


(b)

[image: image588.wmf](3)

f

-


(c)

[image: image589.wmf](

)

4

5

f


266. If 
[image: image590.wmf]27

()

6

x

fx

x

+

=

-

, find

(a)

[image: image591.wmf](0)

f


(b)

[image: image592.wmf](4)

f


(c)

[image: image593.wmf](

)

3

4

f

-


267. If 
[image: image594.wmf]2

2

()

6

fx

xx

=

--

, find 

(a)

[image: image595.wmf](2)

f

-


(b)

[image: image596.wmf](0)

f


(c)

[image: image597.wmf](5)

f


268. If 
[image: image598.wmf]2

1

()

21

x

fx

xx

-

=

++

, find 

(a)

[image: image599.wmf](4)

f

-


(b)

[image: image600.wmf](0)

f


(c)

[image: image601.wmf](1)

f


269. If 
[image: image602.wmf]2

()

121

x

fx

x

-

=

-

, find 

(a)

[image: image603.wmf](3)

f

-
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The graph of each of the following functions has a horizontal asymptote at 
[image: image618.wmf]1

y

=

. (You will learn how to find horizontal asymptotes in a later mathematics course.) For each function,

(a)
Find the domain of the function and express it as an inequality.

(b)
Write the equation of the vertical asymptote(s) of the function.

(c)
Find the x- and y-intercept(s) of the function, if they exist. If an intercept does not exist, state “None.”

(d)
Find 
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.

(e)
Based on the features from (a)-(d), match the function with its corresponding graph, using the choices (Graphs I-IV) below.
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The graph of each of the following functions has a horizontal asymptote at 
[image: image625.wmf]0
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. (You will learn how to find horizontal asymptotes in a later mathematics course.) For each function,

(a)
Find the domain of the function and express it as an inequality.

(b)
Write the equation of the vertical asymptote(s) of the function.

(c)
Find the x- and y-intercept(s) of the function, if they exist. If an intercept does not exist, state “None.”

(d)
Find 
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and 
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.

(e)
Based on the features from (a)-(d), match the function with its corresponding graph, using the choices (Graphs I-IV) below.
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For each of the following functions,

(a)
Find the domain of the function and express it as an inequality. Then write the domain of the function in interval notation.

(b)
Write the equation of the vertical asymptote(s) of the function.

(c)
Find the x- and y- intercept(s) of the function. If an intercept does not exist, state “None." 
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