
The Calculus of Residues

Every elementary text in mathematical physics has a section on the
calculus of residues because it is a way of finding formulae for
integrals of analytic functions that cannot be evaluated otherwise
(except maybe numerically).

Moreover it leads to formulae for the number of solutions of
an equation f (z) = 0 inside a simple closed loop γ by just
evaluating an integral whose value must be an integer. You can
google, or search Wikipedia, for Residue theorem, argument
principle, Rouché’s theorem and winding number for more
information.

An application is the Nyquist stability criterion which is
fundamental in electrical engineering.



The Residue theorem applies if you want to evaluate an
integral of the form

∫
Γ f (z) dz where (*) f(z) is analytic

on, and inside, Γ except for a finite number of isolated singularit1es
z1, . . . , zJ .

For such functions f there is a Laurent expansion for f(z)
that converges on a deleted disk centered at each zj . Let C be a
positively oriented circle center z0 that is strictly inside Γ, then

f (z) =
∞∑
j=1

a−j
(z − z0)j

+
∞∑
j=0

aj(z − z0)j

for all z inside C. Now
∫

Γ f (z) dz =
∫
C f (z) dz from

Cauchy’s integral theorem (deformation invariance). This integral
around C can be evaluated from the formulae for

∫
C (z − z0)j dz ,

so ∫
Γ

f (z) dz = 2π i a−1



The complex number a−1 in the Laurent expansion of f (z)
about z0 is called the residue of f at z0. It is denoted Res(f; z0) .

When f (.) has a simple pole at z0, then the residue is

Res(f ; z0) = lim
z→z0

(z − z0) f (z)

In particular if f (z) = p(z)/q(z) and z0 is a simple zero of q(z),
then

Res(f ; z0) =
p(z0)

q′(z0)

When f (.) has a pole of order m at z0, then the residue is

Res(f : z0) = lim
z→z0

1

(z − z0)m
dm−1

dzm−1
(z − z0)m f (z)



Cauchy’s Residue Theorem

Suppose Γ is a simple, positively oriented closed contour (spocc)
and f (z) is analytic inside and on Γ. except at a finite number of
singularities at z1, . . . , zJ inside Γ. Then∫

Γ
f (z) dz = 2πi

J∑
j=1

Res(f ; zj)

There is a lot available on the internet for example at
blog.wolframalpha.com and complex analysis.



Evaluation of some Trigonometric Integrals

Consider the problem of evaluating∫ 2π

0
v(cos θ, sin θ) dθ

where v is an analytic function. The functions cos θ, sin θ are the
values of the functions

f1(z) :=
1

2
(z +

1

z
) and f2(z) :=

1

2i
(z − 1

z
)

on the unit circle C. ... (Write down a formula for points in C and
substitute.) Define

F (z) :=
1

iz
v

(
1

2
(z +

1

z
),

1

2i
(z − 1

z
)

)



Then the original integral is given by the contour integral of
F around C ∫ 2π

0
v(cos θ, sin θ) dθ =

∫
C

F (z)dz .

That is it can be expressed as a contour integral which can
be evaluated by the calculus of residues. To evaluate these
integrals,

(i) determine F (z) from the formula above.
(ii) Find the poles of F inside C and evaluate the residues

at these poles,
(iii) Use the residue theorem to evaluate the integral.

Sections 6.3 and 6.4 of Kwok are about using the residue
theorem to evaluate certain types of integrals by using complex
variable methods and contour integrals. See also the homework
examples.



Suppose f (z) is a function that is analytic on a domain D
except possibly for isolated poles in D. Such a function is called
meromorphic on D

When f (z) has a zero of order m at a point z0, then
f (z) = (z − z0)mg(z) with g analytic near z0 and g(z0) 6= 0. In
this case z0 is said to be a zero of multiplicity m.

When f (z) has a pole of order m at a point z0, then

f (z) =
g(z)

(z − z0)m
with g(z0) 6= 0

and g analytic near z0. Such a z0 is said to be a pole of
multiplicity m.



The number of zeroes (poles) of a meromorphic function
f (z) inside a closed loop C is

Nz(f ) :=
∑

zj is a zero

mj , Np(f ) :=
∑

zj is a pole

mj

where mj is the multiplicity of zj as a zero, (pole) of f .

Theorem: If f (z) is meromorphic inside a spocc C and analytic
and nonzero on C, then

Nz(f ) − Np(f ) =
1

2πi

∫
C

f ′(z)

f (z)
dz

Corollary: If f (z) is analytic inside and on a spocc C and
nonzero on C, then

Nz(f ) =
1

2πi

∫
C

f ′(z)

f (z)
dz



Both Nz(f ),Np(z) are positive integers so these integrals
must be whole numbers. Numerically one does not have to
compute them very accurately. If one uses approximate numerical
integration and gets an answer of 3.2± 0.4, then the actual value
has to be 3. It used to be that computing an integral was easier
than solving equations but the following result has always been
used extensively.

Theorem (Rouché ) Suppose that f , h are analytic functions
inside and on a spooc C. If |h(z)| < |f (z)| on C then f , f + h have
the same number of zeros inside C.

Example. Show that there are 4 solutions of the equation
6z4 + z3 − 2z2 + z = 1 inside the unit disk B1.

Take this function to be the f (z) + h(z), and choose a
simple function f (z) such that the theorem can be used. Then
show that the difference h(z) obeys the conditions of the theorem.



When Γ is a closed curve in the complex plane and z0 /∈ Γ
then the winding number (or index) of Γ about z0 is the value
of the integral

IndΓ(z0) :=
1

2πi

∫
Γ

dz

z − z0

This integral is always an integer ( possibly negative).

It counts the number of times a closed curve ”winds around”
a point z0. it is negative if the curve goes clckwise. If a closed
contour is not simple then the winding number must be included in
contour integral formulae.


