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J. S. MAC NERNEY: A Personal Memory 

John Sheridan Mac Nerney was a founding member of the editorial board of the 

Houston Journal of Mathematics. 

He was born in New York City on January 10, 1923 and died June 2, 1979 in 

Houston. He attended Trinity College from 1939 to 1941. From the University of 

Texas in Austin, he received his B.A. degree with highest honors in 1948 and his Ph.D. 

degree in Mathematics in !95! under the supervision of Professor H. S. Wall. He had 

worked as a Vibration Analyst at United Aircraft Corporation in East Hartford, 

Connecticut from 1941 to 1943, and had served in the United States Army Air Force 

from !943 to 1946. He taught at Northwestern University (1951-52), the University 

of North Carolina (1952-67), and the University of Houston (1967-79). 

Professor Mac Nerney was a member of the American Association for the 

Advancement of Science, the American Mathematical Society, the Mathematics 

Association of America, the North Carolina Academy of Sciences, the Elisha Mitchell 

Scientific Society, Circolo Matematico di Palermo, Phi Beta Kappa, and Sigma Xi. He 

was president of the North Carolina chapter of Sigma Xi, 1966-67. He was listed in 

American Men of Science and Who's Who in the South and Southwest from which 

much of the above data was obtained. 

John Mac Nerney was a mathematician, a teacher, and a friend. I have the highest 

regard for him in all three categories. His mathematical interests were different from 

mine, so I shall leave as an exercise for the reader to outline the highlights of his 

contributions to Mathematical Analysis. 

I was Mac's colleague at the University of North Carolina during the academic 

year 1964-65, and again at the University of Houston from 1967 until his death. Most 

of the happy memories I have from the year in Chapel Hill are of the friendship of me 

and my wife, Kathie, and Mac and his wife, the lovely Kathleen Mary O'Connor 

Mac Nerney, whom he married December 8, 1945. 

It was Mac and Kathleen who helped us find and move into a house in Chapel 

i 



Hill. I remember Kathleen scrubbing the bathroom of that house from floor to ceiling. 

They lined up a pediatrician for our daughter, Virginia, and an obstetrician at the 

University Hospital for Kathie. When our second daughter, Carolyn, was born in 

November, the only visitors the mother and baby were allowed were the father and 

two sets of grandparents. We listed Mac and Kathleen as one of those sets. 

Once, while we were in North Carolina, Kathie's father sent us a case of Ranch 

Style beans - a Texas delight not obtainable in Chapel Hill - which we shared with the 

Mac Nerneys. When Kathie and our children preceded me home from an 18 month 

stay in Australia in 1973, Mac and Kathleen welcomed them at the Houston Airport 

with a one gallon can of Ranch Style beans. 

As a colleague at Chapel Hill, Mac was the man who stumbled over the ropes with 

me. Mac's comment when I proved a theorem and then found that Burton Jones had 

already done it was that I was lucky. After all, he pointed out, I had proved a good 

theorem; I knew that as fine a mathematician as Burton Jones was interested in it; and 

I didn't have to write it up for publication. One evening I devised what I thought was 

an exceedingly clever argument which seemed to prove something I wanted to know. 

My elation, however, turned first to deflation, when I noticed that if the argument 

were correct, it would also settle the continuum hypothesis, and then to frustration, 

when I could not find the error that I knew had to be there. The next afternoon, Mac 

consented to listen to my argument, which he did until I reached a point at which I 

found an error. And then we traded places for me to hear the argument he had worked 

out the night before. As I recall, that one was a proof. 

One of the stories Mac liked to tell was of a time when, as a graduate student at 

Texas, he was in his office thinking about a problem. His friend Pat Porcelli came into 

his office and sat in a chair. After a couple of hours of complete silence, Pat stood up, 

commented that it had been a very productive afternoon, and left. 

It is easy to paint a portrait of a man as a character. It is hard to paint a portrait 

of a man of character. John Sheridan Mac Nerney was a good man. 

Howard Cook 

Houston 1980 
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FINITELY ADDITIVE SET FUNCTIONS 

I. ORDER-CHARACTERIZATION OF A PRE-RING OF SUBSETS OF A SET 

J. S. Mac Nerney* 

ABSTRACT. Suppose that (E,•<} is an upper semi-lattice D, 
which is an upper extension of the nondegenerate partially 
ordered set R without a least element. It is shown that the 

following statements (1) and (2) are equivalent. (1) There exists 
a function ? from R onto a collection Q of subsets of some set 
such that (a) if u is an element of R and Y is a finite subset of R 

then u • suPDY if, and only if, ?(u) is covered by the ?-image of 
Y, and (b) if G is a finite collection of members of Q then there 
is a collection M of mutually exclusive members of Q such that 
each set in the collection G is filled up by a finite subcollection 
of M. (2) If G is a finite subset of R then there exists a subset M 
of R such that (i) if X is a finite subset of M and y is an 
element of M which does not belong to X then there is no 

element t of R such that t • suPDX and t • y, and (ii) each 
element of G is the supremum in D of a finite subset of M. Proof 

that (1) is a consequence of (2) is effected in terms of (A) the 
set R" to which P belongs if, and only if, P is a subset of R which 
has, and is maximal with respect to having, the property that if Y 
is a finite subset of P then there is an element u of R such that, 

for each element w of Y, u • w, and (B) the function 3' from R 
such that if v belongs to R then 3,(v) is the subset of R" to which 
P belongs if, and only if, v belongs to P. A pre-ring is a collection 
Q of subsets of a set such that the condition (1 ,b) is satisfied. 

Introduction. The reader is invited to consider, as a central theme in much that 

follows, the proposition that if G is a finite collection of (closed and bounded) 

number intervals then there is a collection M of nonoverlapping number intervals such 

that each interval in G is filled up by a finite subcollection of M. 

Suppose that the ordered pair (E,•< } is a partially ordered system D which is an 

upper semi-lattice, and is an upper extension (in J. Schmidt's sense [17])of the 

nondegenerate (i.e., having more than one element) partially ordered set R: R is a 

*Presented to the American Mathematical Society on March 8, 1974. 



2 J.S. MAC NERNEY 

nondegenerate subset of E, the (implicit) partial ordering of R is the intersection with 

R X R of the partial ordering •< of the set E, and each element of E is the supremum 

in D (suPD) of a subset of R. Inasmuch as the present author would find it 
inconvenient to refer to an empty set and does not do so, at least in the present 

context, this initial supposition precludes a least element of E in D unless there is an 

element o of R such that, for each element x of R, o •<x (see [17, page 40] for 

relevant technical comment; there may be a reader who will find it convenient to 

supply one of the implicitly intended phrases non-empty and non-void in each 

instance of current reference to a set or a collection or a family). It should be noted 

that •< is a partial ordering in the sense described by G. Birkhoff [5], rather than in 

the sense described by N. Dunford and J. T. Schwartz [8, page 4]; Birkhoff [5, page 

20] calls the latter type of relation a quasi-ordering. Apparently, therefore, it is 

appropriate here to specify that, if each of x, y, and z is an element of E, (i) x •< x, 

(ii) ifx•<y andy•<x then y is x, (iii) ifx•<yandy•<zthenx•<z, and(iv) ifGis 

a finite subset of E then suPDG is an element v of E such that if u is in G then u •< v 
and, if w is an element of E such that if u is in G then u •< w, v •< w. 

If G is a collection each member of which is a set then G is said to fill up H 

provided H is the set G* (R. L. Moore's terminology and notation [15] for the sum of 

all the sets in the collection G in case G is nondegenerate, and for the only member of 

G in the alternative case); as usual [13, 15], such a collection G is said to cover H 

provided H is a subset of G*. In the case that R is a collection of subsets of a set L and 

•< has the meaning "is a subset of," one upper extension {E,•<} of R, which is an 

upper semi-lattice, is the additive extension of R (T. H. Hildebrandt's terminology 

[12]), wherein H is an element of E only in case H is a subset of L which is filled up 

by a finite subset of R. In this case it has been shown by J. yon Neumann [22] that if 

R is a half-ring of subsets of L then the additive extension of R is a ring of subsets of 

L. One may recall that the essence of yon Neumann's argument [22, page 85 ff.] is a 

proof that if G is a finite set of members of R then there is a collection M of mutually 

exclusive members of R such that each set in the collection G is filled up by a finite 

subcollection of M; similar argument leads to the same conclusion about R provided 

only that R is a semi-ring as defined by P. R. Halmos [9, page 22] (such an argument 
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is indicated by A. C. Zaanen [23, page 26]). The central idea of these arguments is 

termed refinement pre-ring [6] or pre-ring [7] by W. M. Bogdanowicz. 

DEFINITION. The statement that the collection Q of subsets of the set K is a 

pre-ring means that if G is a finite collection of members of Q then there is a 

collection M of mutually exclusive members of Q such that each set belonging to the 

collection G is filled up by a finite subcollection of M. 

The present author is led to this idea from consideration of integrals based on a 

subdivision-refinement process. If F is a family of collections of subsets of a set K such 

that (i) each member of F is a collection of mutually exclusive sets and (ii) if M1 and 

M 2 are members of F then there is a member M 3 of F such that each set belonging to 

M 1 or. to M 2 is filled up by a finite subcollection of M 3, it may be shown that F* is a 
pre-ring of subsets of K. Conversely, if Q is a pre-ring of subsets of the set K and F is 

the family of which M is a member only in case M is a finite collection of mutually 

exclusive elements of Q, it is clear that the family F has the foregoing properties (i) 

and (ii). 

It is also clear that if Q is a pre-ring of subsets of K then the additive extension of 

Q is a ring V such that each member of V either belongs to Q or is filled up by a finite 

collection of mutually exclusive members of Q. Moreover, in this case, a finitely 

additive function from Q to a set of numbers has only one finitely additive extension 

to V. Indeed, one description of the condition that the collection V of subsets of K be 

a ring is the following: if H is a finite collection of members of V then H* belongs to 

V and there is a collection M of mutually exclusive members of V such that each set in 

the collection H is filled up by a finite subcollection of M. It should be noted that this 

notion of a ring of subsets of a set is the one frequently arising in treatments of 

measure theory [9, 12, 22, 23], rather than that cited by Birkhoff [5, page 12]; 

Hildebrandt [12, page 146 ff.] calls the latter an additive and multiplicative class of 

sets. 

Now, here is a description of the Central Problem for which one solution is 

provided in the present report. 

CENTRAL PROBLEM. Find a necessary and sufficient condition on the set R, 

relatively to D, that there should exist a function 'y from R onto a pre-ring of subsets 



4 J.S. MAC NERNEY 

of some set such that if u is an element of R and Y is a finite subset of R then 

u •< suPDY only in case 3'(u) is covered by the 3'-image of the set Y. 
SOLUTION. It is shown that the following is such a necessary and sufficient 

condition: if G is a finite subset of R then there is a subset M of R such that 

(1) if X is a finite subset of M and y is a member of M which does not belong to 

X then there is no element t of R such that t •< suPDX and t •< y, and 
(2) each element of G is the supremum in D of a finite subset of M. 

Geometric Perspectives. In the context in which R is a pre-ring of subsets of a set 

L, it is natural to define a partitioning of a member K of R, as is done by Halmos [9, 

page 31] for the case that R is a semi-ring, to be a finite collection of mutually 

exclusive members of R filling up K. 

In a topological context, however, R. H. Bing [1] and E. E. Moise [14] have 

been led to the notion of a partitioning of a continuous curve L as a finite collection G 

of mutually exclusive connected open sets such that G* is dense in the set L. In the 

case that G is a regular partitioning of L (each member of G being the interior of its 

closure [3]), there is the "equivalent" collection M of closures of members of G: M 

fills up L and no interior point of a member of M belongs to any other set in the 

collection M. A primitive instance, of course, is the case that L is a (closed and 

bounded) number interval and M is a finite collection of nonoverlapping subintervals 

of L filling up L; this instance, and higher dimensional cases, occur in discussions of 

the concept of "an additive function of intervals" (e.g., in Hildebrandt [12]). The 

popular replacement of intervals with left-closed intervals [9] or with right-closed 

intervals [23] may be thought of as an informal description of such a function 3' as is 

mentioned in the Central Problem of the present report. 

There is also the notion of a brick partitioning G of a continuous curve L (the 

elements of the regular partitioning G are further required to be uniformly locally 

connected, as is the interior of the sum of the closures of each pair of elements of G): 

it is known [2; 3, Theorem 10] that each continuous curve has a decreasing sequence 

of brick partitionings. The results of Bing and E. E. Floyd [4] implicitly draw 

attention to the collection R of all elements of the terms of some decreasing sequence 

of brick partitionings of a continuous curve L, and to the upper extension {E,<• } of R, 
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in which E is the collection to which K belongs only in case K is the interior of the 

sum of the closures of the elements of some finite subcollection of R, with •< having 

the meaning "is a subset of" as in the case of the additive extension of R. 

In an investigation of (finitely additive) integrals, J. A. Reneke [16] has found 

convenient the following postulate, among others, concerning a collection R of subsets 

of a set L: there exists a function 0 from R such that if v is a member of R then 0(v) is 

an element of v which belongs to no other member of any finite subcollection M of R, 

containing v, such that no member of R lies in two members of M. A central part is 

then played, in Reneke's investigation, by the family F of all such finite collections M 

of "relatively prime" members of R; it is further postulated there [ 16] that if A and B 

are members of R such that some member of R lies in both of them then there is a 

member M of F filling up B, with a subset filling up the common part of A and B, such 

that if v is a member of M not lying in A then no member of R lies both in v and in A. 

A partitioning of a member K of R is, in that context, a member of F which fills up K. 

By reasoning as indicated in the Proof of [ 16, Theorem 2.1 ], it may be proved that if 

G is a finite subcollection of R then there is a member M of F such that each member 

of G is filled up by a subcollection of M. In one application of Reneke's principal 

results [ 16, page 106 ff.], it seems essential that the members of an element of F not 

be required to be mutually exclusive. 

In consequence of the postulates indicated in the preceding paragraph, each 

member M of the family F has this property: if X is a subcollection of M and y is an 

element of M which does not belong to X then no member of R lies both in X* and in 

y. Suppose, on the contrary, that X is a subcollection of the member M of F and y is 

an element of M which does not belong to X and t is an element of R which lies both 

in X* and in y. There is a member N of F such that if z is t or z belongs to X then z is 

filled up by a subcollection of N; let s be an element of N lying in t. Now, there is an 

element z of X such that s lies in z, since, otherwise, 0(s) would belong to an element 

of N different from s. This involves a contradiction, since the element s of R lies in 

both the elements y and z of M. 

Algebraic Perspectives. There is a connection between present results and M. H. 

Stone's celebrated Representation Theorem for Boolean Rings [ 19, 20, 21, et.seq. ] (J. 
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Schmidt [ 18] has further references; J. L. Kelley [ 13, pages 81-83 and 168-169 ] has 

encapsulated the pertinent portion of Stone's results). Although the Central Problem 

is solved here independently of Stone's Representation Theorem, it may be 

appropriate here to indicate that connection. Suppose that V is a ring of subsets of the 

set L (in the sense previously indicated), and E 0 is the subset of 2 L (the set of all 
functions from L to the set of which the numbers 0 and I are the only elements) to 

which x belongs only in case either x is the zero-function 0 on L or there is a member 

g of V such that x(t) is 1 or 0 accordingly as the element t of L does or does not 

belong to g; let • be the subset of E 0 X E 0 to which {x,y} belongs only in case it is 
true that, for each element t of L, either x(t) is y(t) or x(t) = 0 and y(t) = 1. The 

ordered pair (E0,- •} is a distributive [5, page 12] and relatively complemented [5, 
page 16] lattice with least element 0. The relevant portion of Stone's Representation 

Theorem is that every distributive and relatively complemented lattice with a 

zero-element, and at least two other elements, arises this way - in the sense of 

lattice-isomorphisms [5, page 24]. 

Suppose, now, that {E0,<• 0} is a lattice C which is distributive and relatively 

complemented, with zero-element 0 and at least two other elements in the set E 0. 

Consider the upper semi-lattice D = { E,<• }, where E is the set of all elements of E 0 

different from 0 and •< is the intersection with E X E of the partial ordering <•0 of E 0. 
There are two properties of D which can be established directly (and independently of 

Stone's Theorem, supra): (1) If M is a subset of E and there are not two elements x 

and y of M such that, for some t in E, t <• x and t <• y, then, if X is a finite subset of M 

and y is a member of M which does not belong to X, there is no element t of E such 

that t <• SUPDX and t •< y; (2) if G is a finite set of elements of E then there is a finite 
set M of elements of E such that each element of G is the supremum in D of a subset 

of M and there are not two elements x and y of M such that, for some t in E, t <• x and 

t <•y. From the foregoing considerations, upon requiring R to be all of E in the 

Central Problem and in the indicated Solution, one may see that the present results 

provide an internal characterization of all such semi-lattices D. 

The descriptive term "internal" is used here in contradistinction to such a 

theorem, for example, as that which Kelley [13, page 150] attributes to Alexandroff 



FINITELY ADDITIVE SET FUNCTIONS 7 

and in which a locally compact Hausdorff space is characterized as a space S, with the 

relative topology, obtained from a nondegenerate and compact Hausdorff space S O by 

omitting a single point from S 0. 
Finally, it may be noted that (in the sense of lattice-duality) a similar 

specialization of the present results provides an internal characterization of lower 

semi-lattices with a least element which are obtained from Boolean lattices 

(distributive and complemented lattices with zero- and unit-elements) by omitting the 

unit-element. If (E,•) is a lower semi-lattice A with a zero-element then, in order that 

A should be of this type, it is necessary and sufficient that: if G is a finite subset of E 

then there exists a subset M of E such that 

(1) if X is a finite subset of M and y is a member of M which does not belong to 

X then there is no element t of E such that infAX • t and y • t, and 
(2) each element of G is the infimum in A of a finite subset of M. 

No further attention is called, in the present report, to similarly dual results. 

Necessity of the Condition. The initial supposition from the Introduction is 

hereby invoked: the ordered pair (E,•) is a partially ordered system D which is an 

upper semi-lattice, and is an upper extension of the nondegenerate partially ordered 

set R. 

Here is a notational device which serves to preclude ambiguity in case there is a 

subset of R which is itself a member of R. If'• is a relation with initial set (or domain) 

R then the '•-image function, denoted by '•, is the function to which the ordered pair 

{U,H} belongs only in case U is a subset of R and H is the set to which t belongs only 

in case there is an element s of U such that the ordered pair {s,t} belongs to 

3•: H = '•(U), the '•-image of the set U. 

THEOREM 0. If • is a function from R onto a pre-ring of subsets of the set L 

such that, if u is an element of R and Y is a finite subset of R, u •< suPDY only in case 
'•(u) is a subset of T•(Y)* then the following statements are true.' 

(1) if M is a subset of R then, in order that no element of L should belong to 

two members of 3r'(M), it is necessary and sufficient that if X is a finite subset of M 

and y is an element of M which does not belong to X then there is no element t of R 

such that t •< suPDX and t •< y, and 
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(2) if P is a subset of R, then, in order that it be true that ifY is a finitesubset 

of P then there is an element of L which belongs to every member of 3,-'(Y), it is 

necessary and sufficient that if Y is a fthire subset of P then there is an element u of R 

such that, for each element w of Y, u • w. 

PROOF. With the observation that, under the indicated hypothesis, q, is a 

reversible transformation, the proof is accomplished in four steps. 

STEP l a: Suppose M is a subset of R such that no element of L belongs to two 

members of q,-'(M), X is a finite subset of M, and y is an element of M which does not 

belong to X. Suppose that there is an element t of R such that t • suPDX and t • y, 

so that 3,(t) is a subset both of q,-'(X)* and of q,(y), and let p be an element of q,(t). 

Since p belongs to q,-'(X)*, there is an element u of X such that p belongs to q,(u). 

Since y does not belong to X and 3' is reversible, the element p of L belongs to both 

q,(u) and q,(h). This involves a contradiction. 

STEP lb: Suppose M is a subset of R such that if X is a finite subset of M and y 

is a member of M which does not belong to X then there is no element t of R such 

that t • SUPDX and t • y. Suppose u and w are elements of M and p is an element of 
L which belongs to both q,(u) and q,(w). Since q,-'(R) is a pre-ring, there is a subset Z of 

R such that q,-'(Z) is a collection of mutually exclusive sets and each of q,(u) and q,(w) 

is filled up by a finite subcollection of q,-'(Z). Let v be a member of Z such that p 

belongs to 3,(v): since p belongs to no member of 3,-'(Z) different from 3,(v), 3,(v) is a 

subset of both q,(u) and q,(w). Hence v is an element of R such that v • u and v • w. 

This involves a contradiction. 

STEP 2a: Suppose P is a subset of R such that if Y is a finite subset of P then 

there is an element of L which belongs to every member of q,-'(Y), and Y is a finite set 

of elements of P. Let p be an element of L which belongs to every member of q,-'(Y), 

and Z be a subset of R such that q,-'(Z) is a collection of mutually exclusive sets and 

each member of q,-'(Y) is filled up by a finite subcollection of 3,-'(Z). Let u be a 

member of Z such that p belongs to 3,(u): since p belongs to no member of q,-'(Z) 

different from 3,(u), 3,(u) is a subset of each set in the collection q,-'(Y). Hence, for 

each member w of Y, u • w. 

STEP 2b: If Y is a finite set of elements of R and u is an element of R such that, 
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for each element w of Y, u •< w then each element of '¾(u) is an element of L which 

belongs to every set in the collection '¾-'(Y). 

COROLLARY. The stipulated condition on R, relatively to D, is necessary for 

the existence of a function 'y from R onto a pre-ring of subsets of some set such that if 

u is an element of R and Y is a finite subset of R then u •< suPDY only in case it is 
true that '¾(u) is a subset of 'y•(Y)* 

PROOF. Suppose that 3' is such a function from R onto the pre-ring Q of subsets 

of the set L, and G is a finite set of elements of R. As observed in the Proof of 

Theorem 0, 3' is a reversible transformation. Since Q is a pre-ring, there exists a set M 

of elements of R such that '¾-'(M) is a collection of mutually exclusive members of Q 

and each member of 'y-'(G) is filled up by a finite subcollection of'¾-'(M). By Theorem 

0 (1), if X is a finite subset of M and y is an element of M which does not belong to X 

then there is no element t of R such that t •< suPDX and t •< y. Suppose that K is an 
element of G, and let Z be a finite subset of M such that '¾(K) is filled up by '¾-'(Z). 

Since '¾(K) is the set '¾-'(Z)*, it is true that K •< suPDZ. If x is an element of Z then 

3,(x) is a subset of'¾-'(Z)*, which is '¾(K), so that x •< K. Hence suPDZ •< K, so that K is 
the supremum in D of the set Z. This establishes the Corollary. 

Sufficiency of the Condition. The initial supposition from the Introduction is 

again invoked: the ordered pair {E,•<} is a partially ordered system D which is an 

upper semi-lattice, and is an upper extension of the nondegenerate partially ordered 

set R. There are two types of subsets of R, as indicated in the statement of Theorem 

0, to which attention is now called. 

DEFINITIONS. A type-1 setset of R is a subset M of R such that if X is a finite 

subset of M and y is an element of M which does not belong to X then there is no 

element t of R such that t •< SUPDX and t •< y. A type-2 subset of R is a subset P of R 
such that if Y is a finite subset of P then there is an element u of R such that, for each 

element w of Y, u •< w. IfJ is one of the integers 1 and 2 then a full type-J subset of R 

is a type-J subset of R which is not a proper subset of any type-J subset of R. 

It is clear that, if J is one of the integers 1 and 2, each degenerate subset of R is a 

type-J subset of R and every subset of any type-J subset of R is itself a type-J subset 

of R. Moreover, by the familiar Maximality Principle (as formulated by M. Zorn [24] 
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or, dually, by R. L. Moore [15, Theorem 39] - this is Theorem 121 in the 1932 

Edition of [ 15] ), if J is one of the integers 1 and 2 then each type-J subset of R is a 

subset of a full type-J subset of R. Now, the stipulated condition on R, relatively to D, 

is assumed hereinafter as follows. 

SUBDIVISION AXIOM. If G is a finite subset of R, there is a type-1 subset M of 

R such that each element of G is the supremum in D of a finite subset of M. 

Let R" denote the collection to which P belongs only in case P is a full type-2 

subset of R, and 3' be the function to which the ordered pair {u,lx} belongs only in 

case u is an element of R and h is the set to which P belongs only in case P is a 

member of R" to which u belongs. It may be noted that the assertion, that each 

type-2 subset of R is a subset of a full type-2 subset of R, has the following 

interpretation: if G is a type-2 subset of R then there is an element of R" which 

belongs to every set in the collection 3,-•(G). It is to be shown that 3,-'(R) is a pre-ring of 

subsets of R", and that if u is an element of R and Y is a finite subset of R then 

u •< SUPDY only in case 3,(u) is a subset of 3,-•(Y) *. To this end, here is a sequence of 
nine Theorems based on the Subdivision Axiom. 

THEOREM 1. No type-1 subset of R has two subsets X and Y such that X is 

finite and suPDX = SUPDY. 
PROOF. Suppose, on the contrary, that M is a type-1 subset of R, X is a finite 

subset of M, Y is another subset of M, and suPDX = suPDY. If Y is finite then there is 
an element v of one of the sets X and Y such that, if Z is the other one of the sets X 

and Y, v •< suPDZ but v does not belong to Z; since Z is a finite subset of M, this 
involves a contradiction. Therefore, Y is not finite and so there is an element w of Y 

which does not belong to X. Now, w is an element of M and w •< suPDX. This involves 
a contradiction. 

THEOREM 2. Suppose G is a finite set of elements of R, M is a type-1 subset of 

R, and each element of G is the supremum in D of a finite subset of M. Then the set 

W, to which u belongs only in case u is an element of M and there is an element h of G 

such that u •< h, is finite and SUPDW = suPDG. 
PROOF. By Theorem 1 no element of G is the supremum in D of two subsets of 

M and, since G is finite, W is finite. Let f be the function to which {h,k} belongs only 
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in case h is an element of G and k is the subset of M to which the element u of M 

belongs only in case u •h. Since f*(G) is W and if h is an element of G then 

h = suPDf(h) , it follows that SUPDG = SUPDW. 
THEOREM 3. If M is a subset of R such that if u and v are elements of M then 

there is no element t of R such that t • u and t • v, then M is a type- 1 subset of R. 

PROOF. Suppose that the subset M of R is not a type-1 subset of R. Let X be a 

finite subset of M and y be an element of M which does not belong to X and t be an 

element of R such that t • suPDX and t • y. With reference to the Subdivision Axiom 

and Theorems 1 and 2, let W be a finite type-1 subset of R such that suPDW = SUPDX 
and if s is t or s belongs to X then s is the supremum in D of a subset of W. It follows 

from Theorems 1 and 2 that, if r is an element of W, there is an element u of X such 

that r •u. Let q be an element of W such that q • t, and u be an element of X such 

that q • u. Now, u and y are elements of M and q is an element of R such that q • u 

and q •y. 

THEOREM 4. The subset M of R is a type- 1 subset of R only in case there is no 

element of R" which belongs to two members of 3,-'(M). 

PROOF. Suppose that M is a subset of R. It is clear from the Definitions that, if 

M is a type-1 subset of R, no two members of M belong to any type-2 subset of R so 

that no element of R" belongs to two members of 3,-'(M). If no element of R" belongs 

to two members of 3,-'(M) then no two members of M belong to any type-2 subset of R 

so that, by Theorem 3, M is a type-1 subset of R. 

THEOREM 5. If P is an element of R" and W is a.finite type- 1 subset of R such 

that suPDW belongs to P, then only one element of W belongs to P. 
PROOF. Suppose, on the contrary, that u belongs to the member P of R" and W 

is a finite type-1 subset of R such that u = sUPDW and it is not true that only one 
element of W belongs to P. Since (from the Definitions) no two elements of any 

type-1 subset of R can both belong to some type-2 subset of R, there is no element of 

W which belongs to P. If Q is a finite subset of P to which u belongs then (1) there is 

an element t of R such that if n belongs to Q then t •n, (2) by the Subdivision 

Axiom and Theorem 2 there is a finite type-1 subset X of R such that u = SUPDX and 
if s is t or s belongs to W then s is the supremum in D of a subset of X, (3) it follows 
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from Theorem 2 that if v belongs to X then there is an element y of W such that v •< y, 

and therefore (4) there is an element y of W such that, for some element v of X, v •< t 

and v •< y. Accordingly, there is a function g such that if Q is a finite subset of P then 

g(Q) is the set to which y belongs only in case y belongs to W and there is an element v 

of R such that if n belongs to Q then v •< n and v •< y. If Q1 and Q2 are finite subsets 

of P and y belongs to g(Qi+Q2 ) then there is an element v of R such that if n belongs 

to Q1 or to Q2 then v •< n and v •< y, so that y belongs to g(Q1) and to g(Q2 ). Since 

the set W is finite, there is a finite subset Q0 of P such that, for each finite subset Q of 

P, g(Q0 ) is a subset of g(Q). Let z be an element of g(Q0 ). Since z belongs to W, z does 
not belong to P; if Q is a finite subset of P then z belongs to g(Q) so that there is an 

element v of R such that if n belongs to Q then v •< n and v •< z. Since P is a full type-2 

subset of R, this involves a contradiction. 

THEOREM 6. If u is an element of R then, for each finite type-1 subset W of R 

such that u = SUPDW, 3,(u) is the set 7•(W) *. 
PROOF. Suppose that u is an element of R and W is a finite type-1 subset of R 

such that u = SUPDW. It is clear from the Definitions that, if t belongs to the full 

type-2 subset P of R and t •< u, u must belong to P. Hence, 7•(W) * is a subset of 7(u). 

By Theorem 5, if P belongs to 7(u) then there is only one set in the collection 7-'(W) 

to which P belongs. Hence 7(u) is a subset of 7-'(W)*. 

THEOREM 7. If u is an element of R and Y is a finite subset of R such that 

u •< suPDY, then 3,(u) is a subset of 7-'(Y)*. 
PROOF. Suppose that u is an element of R and Y is a finite subset of R such 

that u •< suPDY. With reference to the Subdivision Axiom and Theorems 1 and 2, let 

V be a finite type-1 subset of R such that suPDV = suPDY and if s is u or s belongs to 
Y then s is the supremum in D of a subset of V. It follows from Theorems 1 and 2 that 

if t belongs to V then there is an element x of the set Y such that t •< x and that there 

is only one subset W of V such that u = suPDW. If t is an element of W then, since 
there is an element x of Y such that t •< x, 3,(t) is a subset of 3,*(Y) *. Now, 3,(u) is a 

subset of 3,*(Y)* since, by Theorem 6, 3,(u) is the set 3,*(W) *. 

THEOREM 8. If u is an element of R and Y is a finite subset of R such that 3,(u) 

is a subset of •,*(Y)*, then u •< SUPDY. 
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PROOF. Suppose that u is an element of R and Y is a finite subset of R and it is 

not true that u •< suPDY. Let G be the sum of the set Y and the set of which u is the 
only element. With reference to the Subdivision Axiom and Theorems 1 and 2, let V 

be a finite type-1 subset of R such that suPDV = suPDG and each element of G is the 

supremum in D of a subset of V. By Theorem 2, suPDY is the supremum in D of the 
set W to which s belongs only in case s is an element of V and there is an element t of 

Y such that s •< t. It follows from Theorem 6 that •,-'(Y)* is •,-'(W)*. Since it is not true 

that u •< suPDW , W is not V: let z be an element of V which does not belong to W, and 
P be a full type-2 subset of R to which z belongs. By Theorem 2 there is an element h 

of G such that z •< h: it follows that h is u, so that P belongs to •,(u). Since z does not 

belong to W, it follows from Theorem 4 that P does not belong to any set in the 

collection '¾-'(W). Therefore, '¾(u) is not a subset of'¾-'(Y)* 

THEOREM 9. The collection '¾-'(R) is a pre-ring of subsets of the set R". 

PROOF. Suppose that G is a finite set of elements of R. By the Subdivision 

Axiom, there is a type-1 subset M of R such that each element of G is the supremum 

in D of a finite subset of M. Since G is nondegenerate, it follows that M is 

nondegenerate. Since, by Theorem 8, the transformation ,¾ is reversible, it follows 

from Theorem 4 that '¾-'(M) is a collection of mutually exclusive sets. It follows from 

Theorem 6 that each set in the collection '¾-'(G) is filled up by a finite subcollection of 

,¾-'(M). Therefore, '¾-'(R) is a pre-ring of subsets of R". 

Realizations. Throughout this section, R is understood to be a collection of 

subsets of a set L and the implicit partial ordering has the meaning "lies in" or "is a 

subset of," and the upper semi-lattice D is understood to be the additive extension of 

R so that if X is a subcollection of R then the assertion that H = suPDX may be 
replaced by the assertion that X fills up H (cf. Introduction, third paragraph). Now, E 

is the collection to which H belongs only in case H is a subset of L which is filled up 

by a finite subcollection of R. 

The Definitions from the preceding section take the following form: a type-1 

subcollection of R is a subset M of R such that if X is a finite subset of M then no 

element of R lies both in X* and in a member of M which does not belong to X; a 

type-2 subcollection of R is a subset P of R such that if Y is a finite set of members of 
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P then some element of R lies in all the sets in the collection Y. The Subdivision 

Axiom takes the following form: if G is a finite subcollection of R then there is a 

type-I subcollection M of R such that each set belonging to G is filled up by a finite 

subcollection of M. 

It can not be proved that if Q is a collection of subsets of L such that the additive 

extension of Q is a ring then Q is a pre-ring; this could not be proved even if it were 

further stipulated that the additive extension of Q be an algebra (a ring to which L 

itself belongs, [9, 12] ) and that the common part of each two intersecting members of 

Q should belong to Q. Consider the following Example. 

EXAMPLE 1. Let L be the right-closed number interval (0,1], and Q be the 

minimal collection of subsets of L determined as follows. Both (0,2/3] and (1/3,1] 

belong to Q; if 0 •<a <b •< 1 and both (a,a+2b/3] and (2a+b/3,b] belong to Q then 

all five of the following sets belong to Q: 

(a,7a+2b/9 ], (8a+b/9,2a+b/3 ], (2a+b/3 ,a+2b/3 ], (a+2b/3 ,a+8b/9 ], and (2a+7b/9 ,b]. 

Clearly the additive extension of Q is an algebra of subsets of L. If u and v are 

intersecting members of Q neither of which is a subset of the other then uv belongs to 

Q, but no one of the three sets u-uv, v-uv, and u+v either belongs to Q or is filled up 

by a finite collection of mutually exclusive members of Q. 

That Theorem 3 is not a consequence of the Definitions, independently of the 

Subdivision Axiom, may be seen by considering the following Example. 

EXAMPLE 2. Let L be the real line, and R be the collection of all number 

intervals [s,t] such that s is an integer and t is s+2. Clearly there are not two members 

u and v of R such that some member of R lies in both u and v. Each member of R, 

however, lies in the sum of two other members of R. 

It follows from the Subdivision Axiom (with the help of Theorem 5) that if P is a 

full type-2 subcollection of R then P is a filter-base, i.e., that if u and v are elements of 

the member P of R" then there is some element of P which lies in both u and v. That 

this is not a consequence of the Definitions, independently of the Subdivision Axiom, 

may be seen from the following Example. 

EXAMPLE 3. Let L be any infinite set, R be the collection of all degenerate 

subsets of L together with all complements (in L) of degenerate subsets of L, and P be 
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the collection of all nondegenerate elements of R. Clearly P is a full type-2 

subcollection of R. There are, however, no two elements of the collection P such that 

some element of P lies in both of them. (This Example was called to the attention of 

the present author by J. A. Schatz in a conversation which took place on May 

8, 1973.) 

The following Theorem may be proved on the basis of the Subdivision Axiom, 

with the help of Theorems 7, 8, and 9. 

THEOREM 10. If u and v are elements of R such that some element of R lies in 

both of them and W is a finite type- 1 subcollection of R of which some subset fills up 

u and some subset fills up v, (i) there is a subset X of W such that X* lies in both u 

and v and each element of R lying in both u and v lies in X*, and (ii) if v is not a 

subset of u then there is a subset Y of W such that Y* lies in v, no element of R lies 

both in u and in Y*, and if t is an element of R lying in v such that no element of R 

lies both in u and in t then t lies in Y*. 

It can not be proved on the basis of the Subdivision Axiom, however, that if u 

and v are elements of R such that some element of R lies in both of them then some 

subcollection of R fills up the common part of u and v, nor that if u is a proper subset 

of v then some element of R lies in v-u, nor that even if some element of R does lie in 

v-u then v-u is filled up by some subset of R. Indeed, none of these propositions could 

be proved even if it were further stipulated that L itself should belong to the 

collection R. Consider the following Example. 

EXAMPLE 4. Let L be the interval [0,4] of real numbers, and R be the 

collection consisting of L itself together with the six subsets of L enumerated as 

follows: t o is the interval [0,3], t 1 is the interval [0,1] together with the number 2, t 2 

is the half-open interval [ 1,2), t 3 is the half-open interval (2,3], t 4 is the interval [3,4] 

together with the number 2, t 5 is the interval [1,4]. Consider the collection M of 

which the elements are the sets tl, t2, t3, and t4: it may be shown that M is a type-1 
subcollection of R filling up L. There are three-element subcollections A and B of M 

filling up t o and t5, respectively. The common part X of A and B is the set of which t 2 

and t 3 are the only elements, but the common part of t o and t 5 is the interval [ 1,3]: 
X* is the sum of the sets [1,2) and (2,3], but no element of R which contains the 
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number 2 is a subset of the interval [ 1,3]. Moreover, t O is a proper subset of L but no 

element of R lies in L-to, and t 1 is a proper subset of t o but t 3 is the only element of 

R which lies in t0-t I . 

Contrary to what might be expected from the instances cited in the section on 

Geometric Perspectives, it can not be proved on the basis of the Subdivision Axiom 

that there is a function 0 from R such that if v is an element of R then 0(v) is an 

element of L which belongs to v but does not belong to any other set in any type-1 

subcollection of R containing v. Consider the following Example. 

EXAMPLE 5. Let L be the interval [0,1] of real numbers, and R be the 

collection of all subsets of L having positive (Lebesgue) measure. This may be shown: 

a subcollection M of R is a type-1 subcollection of R provided there are not two 

elements u and v of M such that some element of R lies in both u and v. 

There are cases in which the pre-ring 7-'(R) of subsets of R" has a simple 

realization. One such case is the primitive instance cited earlier (Geometric 

Perspectives, second paragraph). Consider the following final Example. 

EXAMPLE 6. Let L be the real line, and R be the collection of all number 

intervals. If P is a member of R" then there exists a number c such that either P 

consists of all [a,b] guch that a •< c < b or P consists of all [a,b] such that a < c •< b. 

Let L" be the subset of L X L to which {c,m} belongs only in case m 2 = 1, with the 

familiar lexicographic ordering: { c,m} < {d,n} only in case either c is d and m < n or 

c < d. Let/3 be a function from R" into L" such that ifP is in R" then b(P) is {c,1} or 

{c,-1 }, accordingly as P consists of all [a,b] such that a •< c '( b or of all [a,b] such 

that a < c •< b. Now, /3 is a reversible transformation from R" onto L" and if [c,d] is 

an element of R then the/3-image of the set 'y([c,d ] ) is the L"-interval [ { c, 1 }, (d,- 1 } ]. 

Summary. Suppose that R is a collection of subsets of the set L. It seems that 

the idea of a nonoverlapping subcollection of R is adequately encompassed by the idea 

of a type-1 subcollection of R. Accordingly, the following Definitions seem to be 

appropriate. 

DEFINITIONS. The subcollection M of R is nonoverlapping relatively to R 

provided that if X is a finite subcollection of M then no member of R which is covered 

by X lies in any member of M which does not belong to X. A function f from R to an 
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additive Abelian semigroup is R-additive provided that if M is a finite subcollection of 

R which is nonoverlapping relatively to R and M* belongs to R then f(M*)-- 

Zu in M f(u)' 
It may be noted, in passing, that (i) one might say that the subcollection M of R 

is nonoverlapping relatively to the collection T of subsets of L provided that if X is a 

finite subcollection of M then no member of T which is covered by X lies in any 

member of M which does not belong to X, and (ii) to say that the collection M of 

members of R is nonoverlapping relatively to the collection L' of all degenerate 

subsets of L, in the sense (i), would be equivalent to saying that M is a collection of 

mutually exclusion members of R. 

The Solution given for the Central Problem, in the present report, may be 

interpreted as an assertion that the following Subdivision Axiom is a provision for the 

existence of R-additive functions from R to the real numbers and for such functions 

to be endowed with the usual properties of finitely additive functions. Indeed, it is a 

consequence of that Solution that this Subdivision Axiom is a necessary and sufficient 

condition on the collection R relatively to its additive extension for there to exist a 

function q, from R onto a pre-ring of subsets of some set such that, if u is a set in R 

and Y is a finite subcollection of R, u is covered by the collection Y only in case q,(u) 

is covered by the ')'-image of Y. 

SUBDIVISION AXIOM. If G is a finite subcollection of R then there exists a 

subcollection M of R which is nonoverlapping relatively to R such that each set 

belonging to the collection G is filled up by a finite subcollection of M. 

It may be noted that, in order that this Axiom should be satisfied, it is necessary 

and sufficient that there should be at least one subdivision-refinement process for R, 

i.e., at least one family F such that (i) each member of F is a subcollection of R which 

is nonoverlapping relatively to R, (ii) if M 1 and M 2 are members of F then there is a 

member M 3 of F such that each set belonging to M 1 or to M 2 is filled up by a finite 

subcollection of M3, and (iii) each set belonging to R is filled up by a finite 
subcollection of F*. Moreover, if F is such a subdivision-refinement process for R and 

q, is the function indicated in the section entitled Sufficiency of the Condition, the 

•-image of each nondegenerate member of F is a collection of mutually exclusive sets, 
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and the family 7-•(F) is itself a subdivision-refinement process for the 74mage of the 

collection R. 

Prospectus. In a second report, it will be assumed that R is a pre-fing of subsets 

of a set L, filling up L, and a new representation (cf. Hildebrandt [ 10, 11 ] or Dunford 

and Schwartz [8, page 392 ff.]) will be given for the dual of a normed linear space 

{S,II'll} such that: S is the space to which f belongs only in case f is a finitely additive 

function from R to the (real or complex) numbers and there exists a nonnegative 

number b such that if M is a finite collection of mutually exclusive members of R then 

Zt in M If(t)l •< b, in which case IIfll is the least such b. That analysis will be presented 
in the somewhat more general context wherein the members f of S are functions from 

R to a complete (real or complex) inner product space (Y,(-,-)}, with norm ll'l] 

corresponding to the inner product function (-,-) and the preceding inequalities 

replaced by Z t in M Ilf(t)[1 •<b. Representations are given for the space C of all 

continuous linear transformations in the space (S,I['ll}, for the space D of all 

continuous linear transformations from {S,II'll} to the scalars, and for the space E of 

all continuous linear transformations from {S,Iloll} to {Y,[I-[I}. Each of these 

representations is a linear isomorphism, is an isometry (with respect to the usual 

norm), and is determined by integrals based on the general subdivision-refinement 

process F, to which M belongs only in case M is a finite subcollection of R and no 

element of L belongs to two sets in M. 
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FINITELY ADDITIVE SET FUNCTIONS 

II. LINEAR OPERATIONS ON A SPACE OF FUNCTIONS OF BOUNDED VARIATION 

J. S. Mac Nerney* 

ABSTRACT. Let S be the space of all functions of bounded 
variation on [0,1] which are anchored at 0, S + be the set of all 
real nondecreasing functions in S, and, for each t in [0,1] and f 

in S, Pt f be the function h in S such that h(u) is f(u) or f(t) 
accordingly as u •< t or u •> t. The equations A(X)(t•)(t) = X(Ptt•), 
for 3. in the dual D of S and t• in S + and t in [0,1], define a linear 
isomorphism A from D onto the set of all functions g from S + 
into S such that (1) there is a b •> 0 such that if t• is in S + and 
0 •< u < v •< 1 then [g(t•Xv)-g(t•Xu)l •< b [t•(v)•(u)] { the least 
such b is the norm of the member A'l(g) of D}and (2) ifs and 
15 are in S + and there is a c >0 such that [a(v)•(u)] •< 
c[•v)-•u)] for 0 •< u < v •< 1 then g(t•)(t) = f(•[dg(•dt•]/dO for 
each t in (0,1 ]. If g = A(X) and f is in S then 3.(0 is an integral in 
this sense: for each t• in S + such that Hellinger's 
(subdivision-refinement) integral f•)ldfl2/da exists, 3.(0 = 
f•)[dg(a)df]/da. All this remains true in case, from the 
beginning, all the functions in S are further required to be 
right-continuous at each number between 0 and 1. These, and 
related results about representation of linear operations, are 
presented in the somewhat more general context wherein S is a 
space of finitely additive set functions from a pre-ring R to a 
complete inner product space Y, and the norm of a function h in 
S is the total variation of h relatively to the usual norm on Y. 

There are also, then, representations of the space E of all 
continuous linear functions from S to the evaluation-space Y of 
S: E, with the standard norm, is shown to have the additional 

natural structure of a B*-algebra with an identity. 

Introduction. The reader is invited to consider, as primitive instances of the 

present situation, the following two possible cases: (1) L is the real line (i.e., the set 

of all real numbers) and R is the collection of all right-closed intervals of real numbers, 

and (2) L is the set of all nonnegative integers and R is the collection of all degenerate 

subsets (i.e., one-element subsets) of L. 

*Presented to the American Mathematical Society on November 23, 1974. 
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Initially, in this report, it is supposed that R is a pre-ring oœsubsets of a set L [ 1, 

2, 15 ] filling up L, i.e., that R is a collection of subsets of the set L, filling up L, such 

that if G is a finite collection of members of R then there is a collection M of mutually 

exclusive members of R such that each set belonging to the collection G is filled up by 

a finite subcollection of M; the letter F stands for the family of all finite 

subcollections M of R such that no element of L belongs to two sets in M. If (X,lol) is 

a normed linear space, h is a function from R to X, and K is a subset of L which is 

filled up by some subcollection of R then the statement that T = fK/F h (with respect 
to the norm 1'1), the integral over K relatively to F of the function h, means that T is 

in X and, if e is a positive number, there is a member M of F filling up a subset of K 

such that, if W is a member of F filling up a subset of K and each set in M is filled up 

by a subcollection of W, IT - Z v in W h(v)l < e. This is a slight extension of the usual 
notion of a subdivision-refinement integral, or o-integral, wherein it would be assumed 

that some member of F actually fills up the set K (as, e.g., by T. H. Hildebrandt [8, 

page 27 ff.] and A. Kolmogoroff [11, page 682 ff.]). If X is the real line or the 

complex plane, I' I is understood to be the absolute value or modulus function and the 

parenthetical phrase involving the norm I' I is implicit. 

The ordered pai• (Y,(-,-)) is supposed to be a nondegenerate complete (real or 

complex) inner product space, the norm corresponding to the inner product function 

(',-) is denoted by 1]'I•, and the phrase "the scalars" refers to the real line or to the 

complex plane accordingly as { Y,(-,')} is a real or a complex space. Elementary 

properties of such spaces (as in M. H. Stone [24] and J. yon Neumann [25, 26]) are 

used without explicit reference. The letter j denotes a conjugation in {Y,(-,')}, as 

defined by Stone [24, page 357]: j is a transformation from Y to Y such thatj 2 is the 
identity function on Y and (j•jr/) = (r/,•) for every • and r/ in Y. The set of all linear 

transformations from Y to Y is denoted by L(Y); if B is a member of L(Y) which is 

continuous (with respect to fl-l]) then B* denotes the adjoint of B with respect to the 

inner product (-,-), so that if {•,r/} is in Y X Y then (•,B*r/) = (B•,r/). If G is a function 

from R to L(Y) and • is in Y, G-• is the function from R such that (G-•)(t) = G(t)• 

for t in R. It may be noted that the equations •(r/)(•) = (•jr/) = (r/•j•), for • and r/in Y, 

would define a linear isomorphism • from Y onto the space of all linear functions 
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from Y to the scalars, continuous with respect to [[-[l, and • would be an isometry 

with respect to the usual norm on the •-image of Y. 

Let S O be the family consisting of all functions f from R to Y such that (i) f is 
finitely additive in the sense that if the member M of F fills up the member u of R 

then Z t in M f(t) = flu) and (ii) f is of bounded variation in the sense that there is a 

nonnegative number b such that Z t in M [lf(t)[I •< b for every M in F: the least such 
number b is the total variation of f and is denoted by [Ifil. From the completeness of Y 

with respect to l['fl, it is clear that SO, coupled with the function II'll, is a linear 
normed complete space (a space of type B, a Banach space); in case Y is finite 

dimensional, it is linearly homeomorphic to a space sometimes [3, page 160] denoted 

by ba(L,RA,Y), the points of which are finitely additive extensions of functions in S O 

to the ring R A which is generated by R. Such extensions to RA, although available, 
are of only peripheral interest here. Attention will be drawn to linear operations on a 

certain type of subspace of S 0. 
Of central interest are the following three functions: (1) the function P from R 

such that, for each t in R, Pt is the function from S O to S O such that if f is in S O then, 

for each u in R, Ptf(u) is 0 or Z v in M f(v) accordingly as u does not intersect t or M is 

a member of F filling up the common part of u and t, (2) the function V from S O 

such that if f is in S O then Vf is the function from R such that, for each t in R, 

Vf(t) = IlPtfll (if f is in S O and [ is in Y, Vf-[ denotes the function from R to Y such 

that (Vf-[)(t)= I[Ptfll • for each t in R), and (3) the function J from S O to S O such 

that (Jf)(t) = j(f(t)) for each f in S O and t in R. The following formulas, valid for {u,t } 

in R X R and f in S O and [ in Y, may be noted' PuPt = PtPu , {[PtVf'[[I = [l[[Ift/F[lfll, 
and [IJfl[ = Ilfl{. 

Suppose, now, that S is a nondegenerate linear subspace of SO, closed with 
respect to the norm I[oll, such that if t is in R and f is in S and [ is in Y then the 

function PtVf.[ belongs to S. It may be noted that SO, itself, is such a linear subspace 
S. Here is a description of the Central Problem for which some solutions are provided 

in the present report. 

CENTRAL PROBLEM. Find an isometrically isomorphic representation, which 

is determined by integration over L relatively to F, for each of the following: 
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(1) the linear space D consisting of all continuous linear functions from the 

space {S,II'l[• to the scalars - the norm of the member • of D is the least nonnegative 

number b such that if f is in S then IX(F)[ 

(2) the linear space E consisting of all continuous linear functions from the space 

{ S,II' II} to the space {Y,II'I] } -the norm of the member • of E is the least nonnegative 

number b such that if f is in S then []g(f)l] •< bllfll, and 

(3) a linear space C(S,X) consisting of all continuous linear transformations 

(norreed in the usual way) from (S,II'll> to a linear norreed complete space (X,i'l } of 

functions from some set R 0 into Y with this property: if s is in R 0 then there is a 
positive number p such that, for every member g of X, [[g(s)[1 •< Plgl. 

In connection with the discovery by F. Riesz [21] concerning the dual of the 

space of all continuous (real or complex) functions on the unit interval, there seems to 

be some special interest in the aforementioned linear space D, even when it arises 

subject to the following (admissible) conditions: (i) R consists of all subsets t of [0,1 ] 

such that t is one of the types [0,p], (p,q], and (q,1 ], for numbers p and q such that 

0 < p < q < 1, (ii) the space Y is one-dimensional, and (iii) the subspace S consists of 

all functions f in S O such that, if e > 0 and 0 < p < 1, there is a number r in (p,1] 
such that if q is a number in (p,r] then [f((p,q])[ < e (cf. Chapter III of Riesz and 

Sz.-Nagy [22], concerning the connection between S and the dual of a space of 

continuous functions). There is T. H. Hildebrandt's representation [6,7] for D, under 

the conditions that the space Y is one-dimensional and S is SO, but there [7] the total 
variation norm is replaced by the supremum norm on the finitely additive extensions 

of members of S O to the ring R A generated by R (of. footnote on page 374 and 
remarks on pages 392-393 of Dunford and Schwartz [3]): Hildebrandt's 

representation is determined by Stieltjes-type integration over R A relatively to the 

family of all finite collections of mutually exclusive subsets of R A filling up R A. 
There are, also, R. D. Mauldin's contributions [I 6, 17] to the theory of the space D. 

In Mauldin's departure [17] beyond scalar-valued measures, hypotheses on the space 

(Y,[I'[]•} are relaxed from those of the present treatment but countably additive 

extensions are assumed for the members of S (as in [ 16] ), and questions of cardinality 

persist. The investigation reported here has been independent of Mauldin's work but 
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points of contact occur in use of Hellinger-type integrals for recovery of functionals. 

Description of Solutions. Let S + be the V-image of S and H be a function from 

S + such that, for each cr in S +, H a is the family to which f belongs only in case f is a 
finitely additive function from R to Y and there is a finitely additive function h from 

R to the nonnegative numbers such that fL/F h exists and [lf(t)• 2 •< cr(t)h(t) for each t 
in R - so that f is in S O and Ilfll 2 •< f . cr f h (by Schwarz's inequality). It is clear 

L/F• L/F 
that if f is in S then Vf is a member cr of S •- such that f belongs to H a. 

It is shown that there exists a function Q from S +, opposite to Solutions of the 

Central Problem, such that 

(1) if cr is in S + then H a is a linear subspace of S, Qa is an inner product for H a 
such that the space {Ha,Qo•} is complete, if t is in R then the restriction of Pt to H a is 

a Qcr-orthogonal projection in { Hcr,Qcr}, and the restriction of J to H a is a conjugation 

in { Hcr,Qo•}, 
(2) there is a function ,r from the subset of S + X S + to which { cr,/3 } belongs only 

in case H a is a subset of Hi• , in which case ,r(cr,/3) is a function from H/3 to H a to which 
{ g,h} belongs only in case Qcr(f,h) = Q•3(f,g) for each f in Ha, and 

(3) the ordered triple {H,Q,,r} determines an inverse limit system in the sense 

that if each of cr, I•, and 3' is in S + then (i) If H a is a subset of Hi• then ,r(a,/3) is a 
continuous linear transformation from {Hi•,Q/3 } to {Ha,Qcr} , (ii) if H a is a subset of 
H/3 and H• is a subset of H3, then ,r(a,3,) is the composite transformation 
and (iii) if H a is H/3 then ,r(/3,cr) is the inverse of 

Such a function Q from S + is provided by a variant of an integral which was 

introduced by E. Hellinger [4], and extended by J. Radon [ 18]: the variant is 

Qa(f'g) = fL/F (f,g)/a for each a in S + and { f,g} in H a X Ha, 
with Hellinger's notational convention to the effect that, for each set t in the 

<f(t),g(t)) collection R, (f'g) (t) is 0 or accordingly as a(t) is 0 or not. It is shown that if a •(t) 

each of cr and • is in S + then H a is a subset of H• only in case there is a nonnegative 
number c such that a(t) •< c •(t) for each t in R, in which case the transformation 

,r(a,/3) is given by the formulas 

((,r(a,13)g)(t),•) = ft/F (g,a.•)//3 for g in H•, t in R, and • in Y. 
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Moreover, if each of o• and /5 is in S + then Ho•+/5 is the vector sum of H a and H/5, and 
there is a member •, of S + such that H•, is the common part of H a and H/5, and Q•, is 
Qo•+Q/5 on H•, X H•,. The degenerate space (H0,Q 0} corresponds to the zero member 
of S+: omission of {H0,Q 0} would entail awkwardness of description here, inasmuch 
as it is shown (Theorem 10) that the H-image of S + is a distributive lattice (relatively 

to the relation "is a subset of") with least element H 0. 
Consistently with standard usage (e.g., by J. L. Kelley, I. Namioka, et al. [10, 

page 11]), the inverse limit space determined by the ordered triple {H,Q,rr} is the 

linear space to which g belongs only in case g is a function from S + such that, for each 

o• in S +, g(o0 is a function belonging to H a and if/5 is a member of S + such that H a is a 
subset of H/5 then g(o 0 = rr(a,/5)g(/5): inv-lim-{H,Q,rr} denotes this space. It may be 
noted that there has been no prior assertion of the existence of a non-zero point in 

this inverse limit space. 

REPRESENTATION OF D. The equations L4•(X)(o0(t),j •) = X(Pto•'•), for X in D 
and o• in S + and t in R and • in Y, define a linear isomorphism A from D onto the 

subspace of inv-lim-{ H,Q,rr } to which the point g of inv-lim-( H,Q,rr} belongs only in 

case there is a nonnegative number b such that, for each o• in S + and t in R, 

[[g(o0(t)[] •< b o•(t), in which case the norm of the member A-l(g) of D is the least such 
number b. If the ordered pair (X,g} belongs to A and f is in S then X(f) is an integral 

over L relatively to F in the following sense: for each o• in S + such that f belongs to 

Ho•, k(f) = f L/F (g(a),Jf)/o•. 
Now, let INV-LIM-(H,Q,rr} denote the linear space to which G belongs only in 

case G is a function from S + such that, for each a in S +, G(a) is a finitely additive 

function from R to L(Y) and, if • is in Y, G(a)-• belongs to H a and if/5 is a member 

of S + such that H a is a subset of H/5 then G(a).• = rr(a,/5)(G(/5).•). 
REPRESENTATION OF E. The equations co(g)(a)(t)• = g(Pta-•), for g in E 

and a in S + and t in R and • in Y, define a linear isomorphism co frown E onto the 

subspace of INV-LIM-{H,Q,rr} to which the point G of INV-LIM-{H,Q,rr} belongs 

only in case there is a nonnegative number b such that, for each a in S + and t in R and 

• in Y, l]G(a)(t)•H •< b a(t)•[l, in which case the norm of the member co-l(G) of E is 
the least such number b. If the ordered pair (g,G} belongs to co and f is in S then •(f) 
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is an integral over L relatively to F in the following sense: for each c• in S + such that f 

belongs to H a,/a(f) = fL/FG(OO'f/o• with respect to I•' 
In the preceding Representation, Hellinger's riorational convention persists to the 

effect that, for each set t in the collection R, G(•)'f(t) is the point 0 or 
G(c•)(t)f(t)/c•(t) in Y accordingly as c•(t) is the number 0 or not. Moreover, it is shown 

that if G is in the co-image of E then so is the function G', defined by: G'(c•)(t)= 

G(cO(t)* for c• in S + and t in R. Hence, there is a natural norm-preserving involution in 

E, to which the ordered pair {/a,•'} belongs only in case/a is in E and/a' = co'l(co•)'), 

i.e., (g(Pto•-•),r/) = (•,•'(Pto•-r/)) for o• in S + and t in R and {•,r/) in Y X Y. 
Now, let N be the function from S + such that, for each o• in S +, No• is the norm 

for H a corresponding to the inner product Qo• - so that No•(f ) = Qo•(f,f)1/2 for each f 
in H a. Let C be the space of all continuous linear transformations in {S,[[-II ), normed 

in the usual manner: the norm of the member B of C is the least nonnegative number 

b such that if f is a member of S then [[Bfll •< blffl[. 

REPRESENTATION OF E IN C. The equations (•'Oa)f)(t) = •(Ptf), for • in E 
and f in S and t in R, define an isometric linear isomorphism •' from E onto the 

subspace of C to which the member B of C belongs only in case, for each t in R and f 

in S, B(Ptf)= Pt(Bf). In order that the linear transformation B from S into S should 
belong to the •'-image of E, it is necessary and sufficient that (i) for each t in R and f 

in S, B(Ptf) =,Pt(Bf), (ii) for each o• in S +, B should map H a into Ha, and (iii) there 
should exist a nonnegative number b such that, for each o• in S + and f in Ha, 
No•(Bf) •< b No•(f), in which case the norm of the member •.-1 (B) of E is the least such 

number b. If the ordered pair {•,B} belongs to •' and f is in S then •(f) = fL/FBfwith 
respect to •.[]. 

Each of the foregoing integral representations is effected by the existence of a 

function I1 from S + such that, for each o• in S +, Ilo• is a function from F such that if M 
is in F then Ha(M) is an orthogonal projection in the space {HovQo •} with the 

property that if each of f and g is a member of H a then 

Qo• (f- llo•(M)fig- llo•(M)g) = Qo• (f,g) - Zt in M(--• (t); 
there are, of course, the associated inequalities (for all such o•, M, and f) 
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IIf- IIa(g)fll 2 •< Na(f- lla(g)f)2 fL/F a. 
In terms of the Representation •', there is a natural multiplication defined in E: 

/a 1 -/a 2 = •'-l(•'(/.•l)•'(,•t2)) for (/a 1 ,/a 2} in E X E. The identity element e of E, for this 

multiplication, is given by: e(f) = fL/F f for f in S. It is shown that if/a is in E then, for 
each a in S +, the restriction to H a of •'(•') is the adjoint (with respect to Qa) of the 
restriction to H a of •'(•). Let {X,(',')} be the direct sum over S + of the spaces 
( Ha,Q a): X is the linear space to which f belongs only in case f is a function from S + 
such that, for each • in S +, f• is a member of H•5 and there is a positive number p such 
that Z a in oNa(fa )2 •< p for each finite subset o of S +, and (f,g) = ZaQa(fa,ga) for 
{f,g) in X X X. Now, it is clear from the aforementioned facts about •' and co that the 

equations 

(Z(gt)f,g) = ZaQa(•'(•)fa,ga), forgt in E and {f,g}, in X X X, 

define an isometric involution-preserving algebra-isomorphism Z from E onto what is 

sometimes [20, 23] called a B*-algebra of continuous linear transformations in the 

space (X,(.,.)). Identification of the Z-image of E in the algebra A 0 of all continuous 

linear transformations in {X,(-,')) may be made by considering: the algebra A 1 of all 

members B of A 0 with a representation ,I, such that 

(Bf,g) = ZaQa(XI'(B)afa,ga ) for {f,g} in X X X, 

where, for each a in S +, •I,(B) a is a continuous linear transformation in (Ha,Q a} and 
there is a positive number p such that Na(•I,(B)ah) •< p Na(h) for each a in S + and h in 
Ha; the algebra A 2 of all members-B of A 1 such that ifa is in S + and t is in R and h is 
in H a then •I,(B)aPth = Pt•I,(B)ah; and, finally, the algebra A 3 of all members B of A 2 

such that if a and • are members of S + such that H a is a subset of H•5 then ,I,(B) a is 
the restriction to H a of the transformation •I,(B)g. It is shown (Theorem 25) that the 
Z-image A 3 of E is weakly closed in the algebra A 0. 

It is the aforementioned family of orthogonal projections IIa(M), for a in S + and 
M in F, which makes available the general representation (Theorem 20) for any such 

space C(S,X) as is indicated in the statement of the Central Problem. This latter 

representation f•, defined in terms of INV-LIM-(H,Q,•r), may be viewed as an 

extension of the representation co of the space E. 
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The Inverse Limit System. 

THEOREM 1. Suppose f is a finitely additive function from R to Y, a is in S +, 

and if v is a member of R such that a(v)=O then f(v) =0. Then, if M and Ware 

members of F such that each set in M is filled up by a subset of W, 

2s in M uffs)fl2/a(s) •< 2t in W []f(t)•2/a(t)' 
PROOF. It follows from Schwarz's inequality as applied to finite sums, together 

with Hellinger's notational convention to the effect that []f(v)]]2/a(v) be interpreted as 
the number 0 in case a(v) = 0, that if U is a member of F then 

•Zv in U f(v)•2 •< (Y'v in U uf(v)u)2 •< Y'v in U a(v) Y't in U •f(t)•2/a(t)' 
Hence, the conclusion is a consequence of the finitely additive character of f. 

THEOREM 2. If f is a finitely additive function from R to Y and a is in S + and b 

is a nonnegative number then the following three statements are equivalent.' 

(1) there is a finitely additive function h from R to a set of nonnegative numbers 

such that fL/F h •< b and, for each t in R, flf(t) f12 •< a(t)h(t), 
(2) if g is a member of F then, for each function x from g to Y, 

IZu in g (ffu),x(u))12 •< b Eu in g a(u)•x(u)u2, and 
(3) if v is a member of R such that a(v) = 0 then f(v) = 0 and, for each member 

g ofF, Eu in g •f(u)•2/a(u) •< b. 
PROOF. If the statement (3) is true then it is a consequence of Theorem 1 that 

the equations h(t) = ft/F•f•2/a, for t in R, define a finitely additive function h from R 
which fulfills the conditions given in the statement (1). 

If, now, the statement (1) is true then, for each member M of F and each 

function x from M to Y, 

{Eu in M <f(u),x(u))l •< 23u in g {h(u)a(u)} 1/2Ux(u)•, 
so that the statement (2) is a consequence of Schwarz's inequality. 

If, finally, the statement (2) is true then (i) it is clear that if v is a member of R 

such that a(v) = 0 then f(v) = O, and (ii) if M is a member of F and x is the function 

defined by x(u) = 0 or f(u)/a(u) for u in M, accordingly as a(u) is 0 or not, then the 

inequality indicated in the statement (3) is apparent. 

THEOREM 3. If a is in S + then (1) H a is a linear subspace of SO, (2) there is a 
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norm Nafor H a such that if f is in H a then Na(f) 2 = fL/Fl]f02/a, (3) if f is in H a then 
IIfll 2 • Na(f) 2 fL/F a, and (4) H a is complete with respect to N a. 

Theorem 3 may be proved as a consequence of Theorems 1 and 2, with the help 

of the observations that, for each a in S +, (i) Theorem 2 provides additional 

characterizations of the family H a and (ii) if f is in H a then Na(f) is the square root 

of the least nonnegative number b such that one of the three numbered statements 

indicated in Theorem 2 is true. 

THEOREM 4. If a is in S + then the family U a, to which g belongs only in case 
there is a member M of F and a function x from M to Y such that g is the function 

•;u in MPu a'x(u)' is a linear subspace of H a. 
PROOF. It follows from the definition of the function P that, if u is in R and W 

is a member of F filling up u and f is in S 0, Pu f = 2t in wPt f' It is clear that, if t is in R 

and a is in S + and • is in Y, l](Pta-•)(u)• • a(u)O•0 for each u in R so that the 
function Pta-• belongs to the family H a. 

Suppose a is in S +. It is clear, from the linearity of Ha, that U a is a subset of H a. 
Suppose M is a member of F, x is a function from M to Y, and W is a member of F 

such that each set in M is filled up by a subcollection of W. Let K be a function from 

M such that if u is in M then K(u) is the subset of W to which the element t of W 

belongs only in case t lies in u. There is a function z from W to Y such that (i) if the 

member t of W lies in the member u of M then z(t) is x(u) and (ii) if the member t of 

W does not lie in any member of M then z(t) is 0. If u is in M then K(u) is a member of 

F filling up u; hence 

Zu in MPu a'x(u) = Zu in MZt in K(u)Pt a'x(u) = Zt in wPt a'z(t)' 

The assertion of the Theorem follows, with the help of the fact that if M 1 and M 2 are 

members of F then there is a member W of F such that each set in M 1 or M 2 is filled 
up by a subcollection of W. 

THEOREM 5. If a is in S + and t is in R then each of J and Pt maps H a into H a 

and, for each f in Ha, Na(Jf) = Na(f) and Na(Ptf)2 = f t/F•f•2/a. 
PROOF. Suppose a is in S +. The assertions concerning the function J are 

immediate consequences of the definitions since []jf(t)• = •f(t)• for each f in H a and 

each t in R. Suppose f is in H a, h is such a function from R as is indicated in the 
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statement (1) of Theorem 2 with b = Nc•(f) 2, and t is in R. If u is in R and M is a 
member of F filling up the common part of u and t, 

HPt f(u)l]2 • (2v in M •œ(v)[1)2 • (2v in M (c•(v)h(v)•1/2)2 • c•(u)h(u). 
Hence, Pt f belongs to Hc• and Nc•(Ptf)• Nc•(f). The indicated integral formula for 

Ncr(Ptf) 2 may be verified by considering members of F having subcollections filling up 
t, in conjunction with the formula for Nc• indicated in Theorem 3. 

THEOREM 6. If or is in S +, then (1) there is a function Qcrfrom Her X Her such 

that Qo•(f,g) = fL/F(f,g)/o• for each (f,g) in Ho• X Ho•, (2) Qo• is an inner product for 
Ho• to which No• is the corresponding norm, (3) the restriction of J to Ho• is a 
conjugation in (Ho•,Qo•), and (4) for each { f,g) in Ho• X Ho• and t in R 

Qo•(Ptf,g) = ft/F(f,g)/o•= Qo•(f,Ptg), 
so that the restriction of P t to Ho• is a Qo•-orthogonal projection in (Ho•,Qo•}. 

PROOF. Suppose o• is in S +. The existence of the function Qt• from Ho• X Ho• , as 
indicated in (1), is a simple consequence of the following equations: 

Zu in Mfif(u)+g(u) H2/ø•( u)- Zu in M•f(u)-g(u)fi2/ø•(u) = 4 Re Zu in M (f(u),g(u))/ø•(u) 
for (f,g} in Ho• X Ho• and each M in the family F, with the customary notational 

convention (cf Theorem 1) in case there is a member u of M such that o•(u) = 0. It is 

similarly clear that if f is in Ho• then Qo•(f,f) = No•(f)2 , and that Qo• is an inner product 
for Ho• , so that (2) is true. Moreover, since J maps Ho• into Ho• and j2 is the identity on 
S O and, for each (f,g) in Ho• X Ho• and M in F, 

Zu in M(Jf(u)•jg(u))/ø•(u) = 23u in M (g(u),f(u))/ø•(u), 

it follows that the restriction of J to Ho• is a conjugation in {Ho•,Qo•}. Now, let t be a 
member of R. It is clear that Pt 2 = Pt on S O and, by Theorem 5, Pt maps Ho• into Hoc If 
{f,g ) is in Ho• X Ho• then the indicated integral formula for Qo•(Ptf,g), and that for 
Qo•(f,Ptg), may be verified by considering members of F having subcollections filling 

up t, in conjunction with the formula for Qo• which is given in (1). Thus, the 

restriction of Pt to Ho• is Hermitian with respect to the inner product Qo•, and so is a 
Qo•-orthogonal projection of Ho• onto a closed linear subspace of {Ho•,Qo• ). 

THEOREM 7. If o• is in S + then ( 1 ) if f is in Ho• and t is in R and • is in Y then 
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(f(t),•) = Qc•(f,Ptc•-•) , (2) the family Uc• (as described in Theorem 4) is a dense linear 

subspace of {Hc•,Qc• }, and (3) H a is a linear subspace of S. 
PROOF. Suppose c• is in S +. It should be recalled that if t is in R and • is in Y 

then Ptc•-• is a member of S. Since S is a linear subspace of SO, Uc• is a subset of S; by 

Theorem 4, Uc• is a linear subspace of H a. 

If f is in H a and t is in R and • is in Y then, for every member W of the family F 

filling up the set t, 

(f(t),•) = Z u in W (f(u),•) = Zu in W (f(u),(ø•'•)(u))/ø•(u), 

so that, in accordance with assertion (4) of Theorem 6, 

(fit),•) = ft/F (f,o•. •)/o• = Qo•(f,Pto•-•). 
This establishes assertion (1). Since the space (Ho•,Qo•} is complete, if Uo• were not 

dense in this space then there would be a non-zero member f of H a belonging to the 

Qo•-orthogonal complement (in H a) of Uo• - this would involve a contradiction to (1). 

Hence, assertion (2) is true. 

Suppose, now, that f is a member of H a which does not belong to S. If g is a 

member of the family Uo• then, by the assertion (3) of Theorem 3, 

Ilf- gl[ 2 •< Nc•(f - g)2 fL/FO• ' 
Since Uo• is dense in (Ho•,Qo•}, and S is closed with respect to the norm II'll, this 
involves a contradiction. 

THEOREM 8. Suppose that o• is in S + and, for each M in F, llo•(M) is the 
function from H a determined as follows: if f is in H a and x is a function from M to Y 

such that, for each t in M, x(t) is 0 or f(t)/o•(t) accordingly as o•(t) is 0 or not, then 

llo•(M)f = Zt in MPt ø•'x(t)' Then 

(1) if M is in F, llo•(M) is the Qo•-orthogonal projection from H a onto the subset 

of Uo• (cf Theorem 4) to which the member g of Uo• belongs only in case there is a 

fimction x from M to Y such that g = 23 t in MPt c•'x(t), and 

(2) if (f,g} is in Ho• X Hob and M is in F, 

Qo•( f- Ilo•(M)f,g - IIo•(M)g) = Qo• © - Zt in M(--• (t)' 
PROOF. For each M in F, let Uo•(M) be the subset of Uo• indicated in the 
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assertion (1). If M is in F then, for each function x from M to Y, it follows from 

Theorem 7 that 

Na(Zt in MPt a'x(t))2 = Zt in M a(t)•x(t)H2, 
whence Ua(M) is a closed linear subspace of {Ha,Qa} ß moreover, for each such M and 

x, if f is in H a then by Theorem 7, for each v in M and • in Y, 

Qa (f - Zt in MPta'x(t),Pv a'•) = if(v) -a(v)x(v),•). 

This establishes the assertion (1). Suppose, now, that (f,g} is in H a X H a and M is in 
F: it follows from assertion (1) that 

Qa(f- 11a(M)f,g - Ila(M)g ) = Qa(f,g) - Qa(Ila(M)f, Ila(M)g). 

If each of x and y is a function from M to Y such that, for each t in M, 

x(t) = 0 or f(t)/a(t) and y(t) = 0 or g(t)/a(t) 

accordingly as a(t) is 0 or not, then (again by Theorem 7) 

(f,g) 
Qa(Ila(M)f, Ila(M)g) = Zt in M a(t)(x(t),y(t)) = Zt in •(t). 

THEOREM 9. If each of a and t• is in S + then, in order that H a should be a 
subset of Ht•, it is necessary and sufficient that there be a nonnegative number c such 
that a(t)•< c l•(t) for each t in R, in which case rr(ad3) is a continuous linear 

transformation from {Hfi,Qfi } to (Ha,Qa} given by the formlas 

((rr(a,/•)g)(t),•) = f t/F(g,a'•)/t• for g in Hi3 , t in R, and • in Y. 
PROOF. Suppose each of a and /• belongs to S +. It is clear from Theorem 2 that 

the indicated condition is sufficient for H a to be a subset of H/3. Suppose, now, that 
H a is a subset of H/•. By Theorem 7, if f is in H a and t is in R and • is in Y then 
Qa(f,Pta-•) = (f(t),•) = Q/•(f, Pt/•-•). Therefore, if M is in F and x is a function from M 
to Y then, for each f in H a, 

Qa(f, Zt in MPt a'x(t)) = Q/3(f,Zt in MPt/•'x(t))' 

Since, by Theorems 4 and 7, the family U/• is a dense linear subspace of {H/3,Q/3} , it 
follows that {Ha,Q a} is continuously included in {H/•,Q/3}, i.e., that the identity 
transformation on H a is a continuous linear transformation from {Ha,Qa} into 

{ H/•,Q/•}. Hence, the transformation rr(a,/•), to which {g,h} belongs only in case g is in 
H/3 and h is in H a and Qa(f,g) = Q/•(f,g) for each f in Ha, is a continuous linear 
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transformation from {H/5,Q/5) into {Ha,Qa). Thus, there exists a nonnegative number 
c such that 

Qa(•r(a,•)g,•r(a,/5)g) • c Q/•(g,g) for each g in H/5 , 
and, if t is in R and • is in Y, the ordered pair (Pt•'•,Pta- •) belongs to •r(a,/5) so that 

a(t)g•O 2= Qa(Pta'•,Pta'D •< c Q/5(Pt/5-•,Pt/5-•)= c/5(t)•]•D 2, whence it follows that 
a(t) • c/•(t); finally, if g is in H/• and t is h• R and • is in Y, 

((•r(a,/5)g)(t),•) = Qa(•r(a,/5)g,Pta.•) = Q/5(g,Pta. •) = ft/F(g,a.•)/•, 
the latter formula being justified on the basis of Theorem 6. For the continuous 

inclusion of (Ha,Qa) in (Hg,Qg), one has yon Neumann's extension (see Stone's 
footnote [24, page iv]) of the Hellinger-Toeplitz Theorem (cf. Rudin [23, page 110] ). 

THEOREM 10. If each of a and 15 is in S +, the following statements are true: 

(1) Ha+ • is the vector sum of H a and H•, to which h belongs only in case there 
is a member (f,g) of H a X H[• such that f + g = h, 

(2) the formulas 'y(t) = ft/FOq3/(oetg)fortin R, define a member 3' ors + such that 
H3, is the common part HaH • of H a and Hi5 and Q3' = Qa + Ql5 on H3, X H3,, and 

(3) for every member 3' of S +, the common part of H a and Hg+,y is the vector 
sum of HaH • and HaH3,. 

PROOF. Supposing that each of a and g is in S +, one sees from the linearity of S 

that a+g belongs to S +. It follows from Theorem 9 that each of H a and H• is a subset 
of Ha+/5; moreover, if h is in Ha+/5 then the formulas 

f = •r(a,a+/5)h and g = •r(/5,a+/•)h 

define a member {f,g} of H a X Hi• such that f+g = •r(a+/5,a+/•)h = h. Hence, the 
statement (1) is true. 

Now, by the type of reasoning employed in the Proof of Theorem 6, here are 

formulas for the function 7 which are equivalent to those indicated in (2): 

•(t) = ¬[a(t)+/•(t)] - ¬ ft/F (a-/5)2/(a+J•) for each t in R. 
Hence, the indicated formulas define a finitely additive function 7 from R to the 

nonnegative numbers. Moreover, by Theorem 9, for each • in Y 

•' • = ,r(a,a+•)(•. •) = ,r(•,a+g)(a. •), 
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so that '),'• belongs to Ho• and to H•, '¾ belongs to S +, and H,¾ is a subset of the 
common part Ho•H • of Ho• and H•. Clearly, Qo•+Q• is an inner product Q' for 
such that the space (Ho•H•,Q') is complete. Moreover, if f is in Ho•H • then 

Q' (f,Pt•' •) = Q•(Pt f,•(•,•+•)(• '•)) + Q•Ptf,•(•,•+•)(•' •)) 

= Q•+•Ptf,•.•) + Q•(Ptf,•'•) 

= Qa+•(f,Pt(a+fi)'•) = <fft),•> 
for every t in R and } in Y; hence, if M is in F and x is a function from M to Y, 

let in M <f(t),x(t)>[2 • Q'(f,DZt in M 7(t)•x(t)•2, 

so that, by Theorem 2, f belongs to H7 and QT(f,O • Q'(f,O: thus, HTis H•H•. Since 
(by the foregoing secondary description of 7) [•(t)+•(t)]7(t)• •(t)•(t) for each t in 

R, it follows that if f is in H7 then, for each M in F, 

Zu in M• tu) + Zu in M (u) • Z u in M (u), 

so that N•(O 2 + N•O 2 • NT(O 2. Therefore, Q•(f,O + Q•f,O = QT(f,O for every f in 
HT. Now, by the type of reasoning indicated in the first part of the Proof of Theorem 
6, Q• + Qfi = Q7 on H7 X HT. Therefore (2) is true. 

Apropos of the statement (3), now, let 7 be any member of S +. By (1), H•+7 is 
the vector sum of H• and HT; hence, the vector sum of HaH• and HaH7 is a subset of 
HaH•+7. By (2), there is a member 6 of S + such that, for each t in R, 

b(t) = f t/F •'(•+•)/(•+•) • f t/F•/(•) + f t/F•/(•+•) 
and H b is HaH•+7; by (1) and (2) and Theorem 9, H b is a subset of the vector sum of 
HaH• and HaHT. This completes the Proof of Theorem 10. 

Representation of Linear Operations. It should be recalled that •v-lim-{H,Q,n } 

denotes the linear space to which g belongs only in case g is a function from S + such 

that, for each a in S +, g(a) is a member of Ha and if • is a member of S + such that Ha 
is a subset of H• then g(a) = n(a,•)g(•); and INV-LIM-{H,Q,n) denotes the linear 
space to which G belongs only in case (i) G is a function from S + to a set of finitely 

additive functions from R to L(Y) and (ii) if W is in Y then there is a member g of the 

space inv-lim-{H,Q,n } such that g(a) = G(a)-W for evew a in S +. One may note that, 
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by Theorem 9, if B is in L(Y) then there is a member G of INV-LIM-{H,Q,rr } such 

that, for each cr in S + and t in R and • in Y, G(cr)(t)• = cr(t)B•. 

THEOREM 1 1. If cr is in S + and g is a finitely additive function from R to Y and 

b is a nonnegative number, then the following two statements are equivalent.' 

(1) if t is in R then •g(t)[1 •< b cr(t),and 

(2) g belongs to H a and, for each f in H a, IQcr(g,f)l •< bllfll. 

PROOF. Suppose cr is in S + and g is a finitely additive function from R to Y and 

b is a nonnegative number. If the statement (2) is true and t is in R then 

I(g(t),•>l = IQcr(g,Ptcr'•)l •< b[IPtcr'•11 = b cr(t)[]•[] 

for each • in Y, so that Hg(t)• •< b or(t). 

Suppose that if t is in R then Hg(t)• •< b or(t). It follows from Theorems 2 and 3 

that g belongs to H a and Nor(g) 2 •< b 2 If f is in H a then fL/F or' 
(g,13, ,, Mb•f(u)• •< bllfll 12;u in lVI•a tull •< 23u in 

for each M in F, so that lQcr(g,f)l •< b[lf[I. 

THEOREM 12. The equations (A(X)(cr)(t)3•) = X(Ptcr'X), for X in D and cr in S + 
and t in R and • in Y, define a linear isomorphism A from the space D onto the 

subspace of inv-lim-(H,Q,rr} to which the point g of inv-lim-(H,Q,rr} belongs only in 

case there is a nonnegative number b such that, for each cr in S + and t in R, [lg(cr)(t)[] •< 

b or(t), in which case the norm of the member A-l(g) of D is the least such number b. 

If the ordered pair {X,g} belongs to A and f is in S then X(f) is an integral over L 

relatively to F in the following sense.' for each cr in S + such that f belongs to Ha, X(f) = 

f L/F(g(cr),J f)/or. 
PROOF. Suppose that b is the norm of the member X of D. It is clear that the 

equations (g(cr)(t)•j•) = X(Ptcr-•) , for cr in S + and t in R and • in Y, define a function g 
from S + to a set of finitely additive functions from R to Y, and that (for each such 

t, and •) I(g(cr)(t)•j•)] •< b cr(t)fl•; by Theorem 1 1, if or is in S +, g(cr) belongs to H a and 
IQcr(g,f)l •< bllfll for each f in H a. If or is in S + and M is in F then, for each f in Ha, 

23u in M (g(cr)'Jf)(u) = X(llcr(M)f) 

so that, by Theorems 3 and 8, X(f) = Qcr(g(cr),Jf). If cr and /3 are members of S + such 
that H a is a subset of H/3 then, for each f in Ha, 
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Qo•(g(o0,f) = X(Jf) = Q•(g(•),f) 
so that g belongs to inv-lim-{H,Q,rr}. All other allegations involved in Theorem 12 

may be established by similar appeals to preceding Theorems, with the help of the fact 

that the H-image of S + fills up the space S (cf. Theorem 7, and remarks accompanying 

the initial description of the function H). 

THEOREM 13. Suppose each of c• and fi is in S +, mo• 5 is the set to which P 
belongs only if case F is a function from R X R such that (i) if t is in R then each of 

F(.,t) and P(t,-) is a finitely additive function from R to L(Y) and (ii) there is a 

nonnegative number b such that if M is a member of F and each of x and y is a 

function from M to Y then 

12; {u,v} in M X M (x(u),F(u,v)y(v))12 •< b22;u in Mø•(u)•x(u)[]22;v in M •(v)•y(v)•2, 
and Tc• • is the set to which B belongs only in case B is a continuous linear 
transformation from {H•,Q• } to { Ho•,Qo•}. Then the equations 

cI)(B)(u,v)• = B(Pv•-•)(u), for B in Tc• • and {u,v} in R X R and • in Y, 

define a reversible linear transformation ß from To43 onto too43, such that if the 
ordered pair {B',F } belongs to ß then 

(1) in order that the nonnegative number b should satisfy the condition (iO it is 

necessary and sufficient that, for each member f of H•, No•(Bf) •< b N•(f), 
(2) for each member f of H•, and each t in R and r? in Y, the function I'(t,.)*r/ 

belongs to H• and (Bf(t),r/) = Q•(f,I'(t,.)*r/), and 
(3) for each f in H•, Bf is an integral over L relatively to F in the following 

sense.' the function h from R to a set of functions from R to Y, such that if t is in R 

then h(t) is the constant 0 or the function I'(',t)f(t)/l•(t) accordingly as •(t) is the 

number 0 or not, maps R into H a and Bf = fL/F h with respect to Nc•. 
PROOF. Suppose B is a member of Toefl, and let k be the least nonnegative 

number b such that if g is in H• then No•(Bg ) •< b N•(g). It is clear that there is a 
function F from R X R to L(Y) such that 

P(u,v)• = B(Pv•' •)(u) for each {u,v } in R X R and • in Y, 

and that if t is in R then each of I'(',t) and P(t,-) is finitely additive. If M is in F, each 

of x and y is a function from M to Y, 
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f = Zu in MPu ot'x(u), and g = Z v in MPv/•'y(v), 

then {f,g} is in Uot X Ui3 (cf. Theorem 4) and it follows from Theorem 7 that 

Qot(f,Bg) = 2; {u,v} in M X M (x(u),I'(u'v)y(v))' 

Not (f)2 = 2;u in M ot(u) •x(u)[]2, and 

N• g)2 = 2;v in M 13(v)•y(v)[12: 
hence, the condition (ii) is satisfied with b the number k, and F belongs to mo•. Now, 
(a) it follows from the pattern of argument indicated in the Proof of Theorem 4 that if 

{ f,g } is in Uot X Ui3 then there is a member M of F, a function x from M to Y, and a 
function y from M to Y such that {f,g } is determined by the foregoing formulas, and 

(b) by Theorem 7, Uot is dense in {Hot,Qot} and Ui3 is dense in {H13,Qi3}: hence, k is 
the least nonnegative number b such that the condition (ii) holds. Let A denote the 

{ Qot'Qi3 }-adjoint of B, so that A is a continuous linear transformation from (Hot,Qot } 
to { H/•,Q/• } and 

Qot(f,Bg) = Ql3(Af,g) for each {f,g} in Hot X Hi3. 
If t is in R and r/is in Y then by Theorem 7, for each u in R and • in Y, 

(r(t,u)•,r/) = Qot(B(Pul3' •),Ptot'r/) = Q13(Pui3' •,A(Ptot'r/)) = (•,A(Ptot'r0(u)), 

so that I'(t,u)*r/= A(Ptot-r/)(u); therefore, if t is in R and r/ is in Y, the function 

F(t,-)*r/belongs to H/• and, for each g in H/•, 

(Bg(t),r/) = Qot(Bg,Ptot'r/) = Q/•(g,r(t,')*r/) = fL/F <r(t,.)g,n)/g. 
Suppose, now, that F belongs to mo• and that k is the least nonnegative number 

b such that the condition (ii) holds. In consequence of Theorems 2, 4, and 7, the 

equations 

B0(2;v in MPv t3'x(v)) = 2;v in M F(',v)x(v), 

for members M of F and functions x from M to Y, define a linear transformation B 0 

from U/• into Hot such that Not(Bog) •< k Nl3(g) for each g in U/•. Inasmuch as Ui3 is 
dense in {H13,Qi3 } (by Theorem 7), it follows that there is only one member B of Totl3 
of which B 0 is a subset, and that if f is in Hi3 then Not(Bf) •< k N•f). 

The foregoing arguments suffice to establish all but assertion (3) of this Theorem; 
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(3) is a consequence of Theorem 8, since 2; t in M h(t) = B(IIi(M)f) for f in H i and h 
the indicated function from R (to H a) and M in the family F. 

THEOREM 14. Suppose each of o• and i is in S +, mc•i(P ) is the set to which G 
belongs only in case (i) G is a finitely additive function from R to L(Y) and (ii) there 

is a nonnegative number b such that 

I(•,G(t)r/)l 2 •< b2cr(t)i(t)D•D2Drl[]2 for each t in Rand (•,r/} in Y X Y, 

and Toni(P) is the set to which B belongs only in case B is a continuous linear 
transformation from the space {Hi,Qi} to the space {Hc•,Qtx} such that, for each t in 
R and f in Hi, B(Ptf) = Pt(Bf). Then the equations 

ß (B)(t)• = B(l'•)(t),for B in ToqS(P) and t in Rand • in Y, 

define a reversible linear transformation • from ToqS(P) onto moji(P) such that, if the 
ordered pair {B,G} belongs to ß then 

(1) in order that the nonnegative number b should satisfy the condition (ii) it is 

necessary and sufficient that, for each member f of Hi, Nc•(Bf) •< b Nil(f), 
(2) for each member f of H l, and each t in R and rl in Y, the function G'r/ 

belongs to H i and (Bf(t),r/) = Ql(Ptf,G*r/), and 
(3) in case o• is l, in order that the nonnegative number b should satisfy the 

condition (ii) it is necessary and sufficient that, if f is in Hi, IIBfll •< b Ilfll. 
PROOF. Suppose B is a member of Toqs(P), and let k be the least nonnegative 

number b such that if f is in H i then Ncr(Bf) •< b Nil(f). It follows from Theorem 3 

that if • is in Y then t'• is in H• and Ni(t-•) 2 = •112fL/Fi: hence, there is a finitely 
additive function G from R to L(Y) such that 

G(t)• = B(i'•)(t) for each t in R and • in Y, 

and that if • is in Y then the function G-• belongs to H a . With ß the function as 
described in Theorem 13, let F = •(B): if {u,v } is in R X R and • is in Y, 

F(u,v)• = B(Pvi'•)(u) = Pv(B(i-•))(u) = Pv(G-•)(u); 

hence, if M is in F and each of x and y is a function from M to Y, 

2;(u,v} in M X M (x(u),p(u,v)y(v)) = 23u in M (x(u),G(u)y(u)), 
so that, by Theorem 13, the condition (ii) of the present Theorem is satisfied with b 
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the number k. Therefore G belongs to mc•/3(P). From the implicit symmetry of the 
aforementioned condition (ii), if t is in R and r/is in Y then the function G'r/belongs 

to H/3 and F(t,-)*r/= Pt(G'r/)' the assertion (2) follows from the assertion (4) of 
Theorem 6 and the assertion (2) of Theorem 13. 

Suppose, now, that G belongs to mc•(P ) and that k is the least nonnegative 
number b such that the condition (ii) holds. If r/is in Y then, for each t in R, 

HG(t)r/[I 2 •< k2o•(t)/5(t)•r/• 2 and •G(t)*r/[I 2 •< k2o•(t)/5(t)•n• 2, 

so that the function G'r/belongs to H a and the function G'r/ belongs to H/5: hence, 
there is a function F from R X R to L(Y) such that 

F(u,v)• = Pv(G'•)(u) for each {u,v} in R X R and • in Y. 

It is clear that if t is in R then eqch of F(-,t) and F(t,-) is finitely additive and, for 

each r/ in Y, F(t,')*r/= Pt(G'r/). Moreover, if M is in F and each of x and y is a 
function from M to Y, then 

IZ {u,v} in g X g (x(u),F(u,v)y(v))12 

= IZu in g (x(u),G(u)y(u))12 

•< k2Zu in gø•(u)[lx(u)[12Zv in g/5(v)fly(v)[12, 
so that the condition (ii) of Theorem 1 3 is satisfied with b the number k; hence, the 

function F belongs to the set mc•. With cI) the function as described in Theorem 13, 
let B = cI)-I (F). If f is in H/5 then, by Theorems 6 and 1 3, 

No•(Bf) •< k N/5(f) and (Bf(t),r/) = Q/5(Ptf,G*r/) for t in R and r/in Y: 

it follows that, if f is in H/5 and u is in R, B(Puf) = Pu(Bf) so that B belongs to Toq•(P). 
If M is in F and x is a function from M to Y then 

B(Zu in MPu/5'x(u)) = 23u in MPu (G'x(u)): 

thus, the reversibility of q• follows from the density of U/5 in the space {H/5,Q/5 }. 
Suppose, finally, that o• is/5 and the ordered pair {B,G} belongs to q•. If b is a 

nonnegative number such that the condition (ii) holds then, for each f in H/5 and t in R 
and r/in Y, •G(t)*r/• •< b/5(t)[Ir/• so that, by Theorem 1 1, 

I(Bf(t),r/)[ = IQ•Ptf,G*r/)l •< bllPtfll In[I, 



FINITELY ADDITIVE SET FUNCTIONS 41 

whence flBf(t)l]• < bllPtfl[: therefore I[Bfll•<bllfll. Suppose, then, that b is a 

nonnegative number such that if f is in Hi3 then IIBfll •< bl[fll. If t is in R and r/is in Y 
then 

l]g(t)r/0 = {]B(/•'r/)(t)fl •< [IPt(B(i3.r/))l[ = IlB(Pt/•.r/)ll •< bllPti3.r/ll = b/•(t)llr/fl, 

so that the number b satisfies the condition (ii). This completes the proof. 

THEOREM 15. Suppose 1• is in S +, and the sets mi3/•(P), TI3/•(P), and qg are as 
described in Theorem 14 (with c• = 1•). The following statements are true.' 

(1) if {B,G} belongs to ,J,, and A is the ad]oint of B with respect to Qi•' so that 
Q•(f,Ag) = Q/•(Bf,g)for each {f,g} in Hi• X Hi•, then {A,G* } belongs to •, 

(2) if c• is a member of S + such that H a is a subset of Hi3 and G is in mi3/•(P) and 
K is a function from R to L(Y) such that K'r/= rr(a,i3)(G-r/) for each rl in Y, then K 

belongs to the set mozoz(P) and K*• = rr(oz,/•)(G*•)for each • in Y, and 

(3) if each of {B1,G'} and {B2,G" } belongs to ß and G = xI,'(B1B2) then, for 

each t in R and rl in Y, G(t)r/= f t/FG'G"rl/l• with respect to the norm •' •. 
PROOF. Suppose (B,G} belongs to 'J,' and A is the adjoint of B with respect to 

Q/•: if t is in R and {f,g } is in H/• X Hi3 then, as justified by Theorem 6, 

Q/•(A(Ptf),g ) = Q•(Ptf, Bg) = Q/•(f,Pt(Bg)) 

= Qi3(f,B(Ptg)) = Q/•(Af,Ptg ) = Qi3(Pt(Af),g). 

Therefore A belongs to Ti313(P). If t is in R and {•,r/} is in Y X Y then, with 
computations justified by Theorems 6 and 7, 

fiG* •)(t),r/) = (G(t) *•,r/) = (•,G(t)r/) = (•,B(/•-r/)(t)) 

= Qi3(Pti3' •,B(i3'r/)) = Q/•(A(Ptl 3 -•),i3.r/) 

= QI3(Pt(A(/•-•)),i3'r/) = QI3(A(/•' •),Pt/• 'r/) = (A(/•. •)(t),r/). 
Hence, for each • in Y, G*• = A(i3-•) so that (A,G*} belongs to 

Suppose oz is a member of S + such that H a is a subset of Hi3, G is in m/•(P), and 
K is a function from R to L(Y) such that K-r/= rr(oM•)(G-r/) for each r/in Y. Let b be 

a nonnegative number such that (cf Theorem 14) 

•G(t)r/• •< b i3(t) •r/{] for each t in R and r/in Y. 

Ift is in R and (•,r/} is in Y X Y then by Theorems 6 and 9 
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(•,K(t)r/) = (•,•r(c•,fi)(G'r/)(t))= Qfi(Ptc•'•,G-r/), 
so that, by Theorem 1 1, 

I(•,K(t)r/)l •< IIPta'•llb[lr/fl = b a(t)• fir/fl. 

Therefore, the function K (clearly finitely additive) belongs to marx(P). Now, if t is in 

R and (•,r/) is in Y X Y then, from the formulas in Theorem 9, 

((K*•)(t),r/) = (•,K(t)r/) = ft/F(a'•,G'r/)/fi = ft/F(G*•,a'r/)/fi, 
whence K*• = •r(a,fi)(G*•). 

Finally, the assertion (3) is justified by Theorems 13 and 14, with the help of the 

fact that if t is in R and f is in Hfi then •f(t)[1 •< fi(t)l/2Nfi(f). 
THEOREM 16. Suppose that B is a linear transformation from S into S O which 

is continuous with respect to the norm ]l' II, and that if t is in R and f is in S then 

B(Ptf ) = Pt(Bf). Then (i) if a is in S + then B maps H a into H a, so that B maps S into 
S, and (ii) if b is a nonnegative number then the following two conditions are 

equivalen t: 

(1) if f is in S then IlBfll •< bllfll,and 

(2) if rxis in S+ and f is in Hathen No•(Bf) •<b No•(f). 
PROOF. Suppose that b is a nonnegative number such that if f is in S then 

IIBfll •< bllfll. It may be noted that, if t is in R and f is in S, 

IlPtBf[I = IIBPtfll •< b IIPtfll. 

Suppose, now, that c• is in S + and f is a member of Ha: by repeated application of 
Theorems 2, 3, and 5, it follows that if t is in R then 

0Bf(t)• 2 •< IlPtBfll 2 = IIBPtfll 2 •< b2llPtfll 2 •< b2c•(t) Nc•(Ptf)2, 
and, from this, that Bf belongs to H a and Nc•(Bf) •< b Nc•(f). Therefore, if c• is in S + 
then B maps Hc• into Hc• and condition (1) implies condition (2). That (1) is implied 

by (2), is a consequence of the terminal assertion in Theorem 14, and the fact that if f 

is in S then, for some c• in S +, f belongs to the set Hc•. 
THEOREM 17. The equations (•'(•)f)(t) = •(Ptf), for tJ in E and f in S and t in 

R, define a linear isomorphism •' from the space E onto the collection of all 

continuous linear transformations B in {S,II' II} with the property that if t is in R and f 
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is' in S then B(Ptf)= Pt(BE). If the ordered pair {/a,B} belongs to •' and b is a 
nonnegati•'e number, then (i) the following three conditions are equivalent.' 

(1) if f is in S then •/a(f)• •< bilE[l, 

(2) if f is in S then liBEl[ •< bllfl], and 

(3) if cr is in S + and f is in H a then Ncr(Bf) •< b Ncr(f), 

and (ii) for each f in S, g(f) = fL/FBf with respect to the norm {]. •. 
PROOF. Suppose g is in E and b is a nonnegative number such that condition 

(1) holds. Clearly there is a linear transformation B from S such that if f is in S then Bf 

is a finitely additive function from R to Y and 

BE(t) = g(Pt f) for each t in R. 

If f is in S then, for each member M of the family F, 

Zt in M fiBf(t)O •< b Z t in MlIPtfll 

so that Bfis in S O and ]lBf[l •< bllf[l;if f is in S and each of t and v is in R, 

Pt(Bf)(v) = g(PtPv f) = g(PvPtf) = B(Ptf)(v ) 

so that B(Ptf) = Pt(Bf). By Theorem 16, B maps S into S, if c• is in S + then B maps H a 
into Ha, and conditions (2) and (3) hold. 

Suppose, now, that B is a continuous linear transformation in { S,[l-II) with the 

property that if t is in R and f is in S then B(Ptf ) = Pt(Bf). By Theorem 16, if c• is in 

S + then B maps Hc• into Hc• and, for each nonnegative number b, the conditions (2) 
and (3) are equivalent. Let b be a nonnegative number such that condition (2) holds. 

Clearly there is a linear transformation g, from S to Y, such that if f is in S then 

g(f) = fL/FBf with respect to the norm [J' •. 
If f is in S then, for each member M of the family F, 

[lEt in M Bf(t)fl •< Zt in M [IBf(t)[j •< IlBf[l •< bllfl[, 

so that •g(f)• •< bllfll. Hence, g is in E and, for each {t,f} in R X S, 

g(Pt f) = fL/FB(Pt f) = fL/FPt(Bf) = j't/FBf = Bf(t). 
The foregoing arguments suffice to establish Theorem 17. 

THEOREM 18. The equations cogt)(a)(t)• =/,t(Pta.•), for t• in E and cr in S + and 
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t in R and • in Y, define a linear isomorphism co from E onto the subspace of 

INV-LIM-{H,Q,rr} to which the point G of INV-LIM-{H,Q,rr} belo•tgs o•tl)' i•t case 

there is a nonnegative number b such that, for each c• in S + and t i•r R a•td • in Y, 

•G(c0(t)•l] •< b c•(t)I]•l], in which case the norm of tlre member co-1 (G) of E is the least 
such number b. If the ordered pair {/x,G} belongs to co and f is in S theft /x(f) is art 

integral over L relatively to F in the following sense.' for each c• i•t S + stroh t/tat f 

belongs to H a, t•(f) = fL/FG(COf/c• witIt respect to •. •. 
Theorem 18 may be proved as a consequence of Theorems 14, 15, 16, and 17, 

with the help of Theorem 8: regarding the nature of the integral representation, one 
G(o0f 

lets --•-•(t) denote 0 or G(c0(t)f(t)/c•(t) accordingly as c•(t) is 0 or not. 
In the next two Theorems, it is supposed that {X,l'l } is a linear norreed 

complete space of functions from a set R 0 into Y such that, if s is in R 0, there is a 
positive number p such that, for every member g of X, [lg(s)• •< Plgl. The linear space 

C(S,X), of all continuous linear transformations from {S,Iloll • to the space {X,l' I}, is 

norreed in the usual manner: the norm of the member B of C(S,X) is the least 

nonnegative number b such that if fis in S then Igfl •< bllfll. 

THEOREM 19. Suppose c• is in S +, mc•(X) is the set to which F belo•tgs only in 
case F is a function from R 0 X R to L(Y) such that (i) if {t,r/} is in R X Y then 

P(.,t)r/ is in X, (ii) if u is in R 0 then F(u,') is finitely additive, and (iii) tit ere is a 
nonnegative number b such that if M is a member of tile family F and x is a fit•tctiort 

from M to Y then 

I•;t in M F("t)x(t)l •< b •;t in M c•(t)•x(t)•, 

and Tc•(X) is the set to which B belongs only in case B is a linear tra•tsformatio•t from 

H a to X and there is a nonnegative number b such titat, jbr each member f of H a, 
lBf[ •< bllfll. Then the equations 

Zoe(B)(u,t)r/= B(Ptc•'rl)(u),for B in Tc•(X)and {u,t} in R 0 X Ra•M r• in Y, 

define a reversible linear transformation Za from To•(X) ottto mc•(X), sttch that if the 

ordered pair {B,F} belongs to Za then 
(1) in order that the nonnegative number b should satisfy the conditio•t (iii) it is 

necessary and sufficient that, for each member f of Hc•, [Bfl •< bllfl[, 

(2) for each member f of H a, and each u in R 0 and • in Y, tire fimctio•t F(u,' )'*• 
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belongs to H a a•d (Bf(u),•) = Qo•(f,F(u,')*•), and 

(3) for each f in H a, Bf is at• integral over L relatively to F in the following 

se•se.' if h is the function from R to X such that, for each member t of R, h(t) is the 

constant 0 or F(-,t)f(t)/o•(t) accordingly as o•(t) is the number 0 or not, then 

Bf = fL/F h with respect to the norm I' I. 
PROOF. Suppose B is a member of To•(X), and let k be the least nonnegative 

humber b such that if f is in H a then IBfl •< bllfll. It is clear that there is a function F 

from R 0 X R to L(Y) such that 

F(u,v)r/= B(Pto•'r/)(u) for each {u,t} in R 0 X R and r/in Y, 

and that, for each such {u,t} and r/, F(u,') is finitely additive and F(',t)r/is in X. IfM 

is in F and x is a function froln M to Y and f = •t in MPt ø•'x(t) then f is in H a and 

Ilfll = •t in M c•(t)•x(t)l]: hence the condition (iii) is satisfied with b the number k, and 

F belongs to mo•(X). Moreover, if u is in R 0 then there is a positive number p such 
that, for every t in R and r/in Y, 

•F(u,t)r/[I •< plE(',t)r/I •< p k o•(t)Dr/•, so that 

•F(u,t)*•l] •< p k o•(t)D• for every • in Y: 

hence, if {u,t} is in R 0 X R and {•,r/} is in Y X Y, F(u,-)*• is in H a and 

(B(Pto•' r/),ti) = (F(u,t)r/,ti) = (r/,r(u,t)*ti) = Qo•(Pto•- r/,r(u, ')*ti). 

Assertion (2) follows since, by assertions (3) of Theorem 3 and (2) of Theorem 7, the 

family Uo• is dense in H a with respect to the norm I1' II. 

Suppose, now, that F belongs to mo•(X) and that k is the least nonnegative 

number b such that the condition (iii) holds. It follows that the equations 

B0(Xt in MPt ø•'x(t)) = Xt in M F("t)x(t)' 

for members M of F and functions x from M to Y, define a linear transformation B 0 

from Uo• into X such that Ig0f[ •< kllfll for each f in Uo•. By the density of Uo• in Ho• 
with respect to II olI, as noted in the preceding paragraph, there is only one member B 

of To•(X) of which B 0 is a subset and, if f is in Ha, IBfl •< kllf[l. 
As in the Proof of Theorem 13, the foregoing arguments suffice to establish all 

but assertion (3) of this Theore,n; (3) is again a consequence of Theorem 8. 
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THEOREM20.The equations 12(B(c•)(u,t)r/=B(Pta-rl)(u), for B in C(S,X) 

and c• in S + and (u,t} in R 0 X R and rl, in Y, define a liteear isomorphism 12 from 
C(S,X) onto the set to which F belongs only in case F is a function from S + to a set of 

functions from R 0 X R to L(Y) such that (i) if cr is in S + and t is i•t R and rl, is in Y 
then F(a)(.,t)r/ belongs to X, (ii) if u is in R 0 then there is a member G of 
INV-LIM-{H,Q,•r} such that, for each a in S +, G(o 0 = F(c•)(u,-), and (iii) there is a 

nonnegative number b such that, for each member M of F and each function x from M 

to Y, 

IZt in M l-'(a)(',t)x(t)l •< bZ t in M a(t)•x(t)[]' 

in which case the norm of the member 12 -1 (P) of C(S,X) is the least such number b. If 

the ordered pair {B,I-'} belongs to 12 and f is in S then Bf is an integral over L 

relatively to F in the following sense: for each member a of S + such that f belongs to 

H a, if h is the function from R to X such that if t is in R then h(t) is the constant 0 in 

X or P(c•)(.,t)fft)/a(t) accordingly as o•(t) is the number 0 or not, Bf = fL/F h with 
respect to the norm I'1. 

Theorem 20 may be proved as a consequence of Theorem 19 - with the help of 

assertion (2) of Theorem 15, the type of argument given in the first paragraph of the 

Proof of Theorem 19, and the fact that the H-image of S + fills up S. 

THEOREM 21. If the ordered pair {B,I-'} belongs to the isomorphism 12, defined 

in Theorem 20, then the following two statements are equivalent: 

(1) if f is in S then IBf[ = Ilfil, and 

(2) if c• is in S + and M is in F and x is a function from M to Y then 

IZt in M p(a)(',t)x(t)l = Z t in M a(t)•x(t)•' 

PROOF. If (1) is true then, for each such a and M and x as indicated, 

IB(Zt in MPt a'x(t))l = IlZt in MPt a'x(t)ll = zt in M a(t)•x(t)fl 

whence (2) is true. Suppose that (2) is true. For each a in S + and each g in the family 

U a, [Bg[ = [Igll: hence (1) is true, since the H-image of S + fills up S and, for each a in 
S +, the family Uo• is dense in H a with respect to II' [I. 

THEOREM 22. Suppose that (1) if l• is in E then n•) denotes the norm olin, 

(2) (X,t'l } is the norreed linear space of all continuous linear transformations from 
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(E,n) to (Y,•'[]), and (3) o is the member of C(S,X) given by o(f)ix = ix(f), for fin S 

and lx in E. Then o is an isometry: if f is in S then [o(f')[ = ]Ifil. 

PROOF. It should be noted that {X,['[} is an example of the type of space 

indicated in the Central Problem (and in Theorems 19 and 20): for each nonzero 

member Ix of E, n(g) is a positive number p such that ]•}•)] •< p[l•] for every member 

0J of X. Therefore the notation C(S,X) is appropriate in this context. 

Moreover, it is clear that the indicated transformation o belongs to C(S,X) and 

that if f is in S then Io(01 •< [Ifil, since •ix(01] •< Ilflln(ix) for Ix in E. 

Suppose, now, that f is a nonzero member of S. To know that Io(f)l = 11fll, it will 

suffice to have a member Ix of E such that nqu) = I and •(0[] = Ilfll. In accordance 

with the Hahn-Banach extension theorem (or the Bohnenblust-Sobczyk version 

thereof in the case of complex scalars [3, page 861 ), there is a member 3, of D such 

that X(f) = Ilfll and IX(g)l •< Ilgll for every g in S. Let • be a member of Y such that 

[I•D = 1: the equations Ix(g)= X(g)•, for g in S, define a member Ix of E with the 

indicated property. This completes the Proof. 

REMARK 1. By Theorem 12, a second description of the norm of a member 3, 

of the space D is: the least nonnegative number b such that if o• is in S + and t is in R 

then []A(X)(o0(t)• •< bo4t). In accordance with Theorems 17 and 18, there are four 

descriptions of the norm n for the space E: if g is in E then n(ix) is the least 

nonnegative number b such that 

(1) if f is in S then •ix(f)l] •< bllfll. 

(2) if f is in S then II•'(ix)fl[ •< bllfll. 

(3) ifo• is in S + and f is in Ho• then No•(•'(ix)f ) •< bNo•(f ). 
(4) if o• is in S + and t is in R and • is in Y then •co(ix)(o0(t)• •< b o•(t)[]•[1. 

Variants of these descriptions are available from the observation (cf Theorem 8) that 

if f is in S then, for each M in F and o• in S + such that f belongs to Ho•, 

Iln•(M)fll = Z t in M flf(t)•- 

REMARK 2. If f is in S and M is in F then lie tinMPt fl[ = 2;tinMllPtf[[- 

whereas, for each o• in S + such that f is in Ho• ,(cf Theorem 6) 

No•(Zt in MPt f)2 = 23t in MNo•(Pt f)2. 
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This seeming anomaly may be resolved by showing that if f is in S then Vf is a member 

b of S + such that, for each t in R, IIPtfl] -- Nb(Ptf)2: a proof may be based on such a 
system of inequalities as is indicated in the Proof of Theorem 1. 

Modification of the Initial Supposition. Henceforth, instead of supposing that R 

is a pre-ring of subsets of the set L filling up L, it is supposed only that the following 

Axiom holds. 

SUBDIVISION AXIOM. The collection R of subsets of the set L fills up Land, 

if G is a finite subcollection of R, there is a subcollection M of R such that 

(i) if X is a finite subcollection of M then no member of R which is covered by 

X lies in any member of M which does not belong to X, and 

(ii) each set in the collection G is filled up by a finite subcollection of M. 

It has been shown earlier [15] that this Axiom is a necessary and sufficient 

condition on the collection R (relatively to its additve extension) for there to exist a 

function 3' from R onto a pre-ring of subsets of some set such that, if u is a member of 

R and G is a finite subcollection of R, u is covered by G only in case 7(u) is covered 

by the '),-image of G. The following definitions have been introduced [15]:(1) the 

subcollection M of R is nonoverlapping relatively to R provided that condition (i) of 

the Subdivision Axiom holds, and (2) the function f from R to an additive Abelian 

.semigroup is R-additive provided that if M is a finite subcollection of R which is 

nonoverlapping relatively to R and M fills up the member u of R then 

2;t in M f(t) = f(u). If '), is a function from R, of the type indicated earlier in this 
paragraph then, inasmuch as [ 15, Theorem 0] the '),-images of those nondegenerate 

subcollections of R which are nonoverlapping relatively to R are the collections of 

mutually exclusive members of the '),-image of R, it is clear that '), and 7 -1 provide for 
a translation of all the results from the preceding sections of this report to the present 

context. A more direct transition is available here: let the letter F now stand for the 

family of all finite subcollections M of R such that M is nonoverlapping relatively to 

R, and let "R-additive" replace "finitely additive" everywhere the latter has appeared. 

Only one more change need be made, this in the definition of the function P, in 

order to validate the resulting body of propositions: P is now a function from R such 

that, for each t in R, Pt is a function from S O to S O such that if f is in S O then, for 
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each u in R, Ptf(u) is 0 or 'Y'v in M f(v) accordingly as (i) no member of R lies both in 
u and in t or (ii) M is a member of F such that each set in M lies both in u and in t and 

each set in R which lies both in u and in t is covered by M. This change is sufficient: 

by [ 1 5, Theorem l 0], if u and t are sets in R such that some set in R lies in both of 

them and W is a me•nber of F of which some subcollection fills up u and some 

subcollection fills up t, there is a subcollection M of W such that each set in M lies in 

both u and t and each set in R which lies in both u and t is covered by M. The change 

is necessary: there may be sets u and t in R such that some set in R lies in both of 

them but there is no subcollection of R which fills up the common part of u and t 

[ 1 5, Example 4]. 

REMARK. The primitive instance of the Subdivision Axiom is the case that L is 

the real line and R is the collection of all (closed and bounded) intervals of real 

numbers. Another instance, one where the existence of a function q, (of the type 

indicated) from R onto a pre-ring of subsets of some set is perhaps somewhat less 

obvious, is the case that L is the ordinary Euclidean plane and R is made up of all 

subsets t of L such that t consists of a triangle plus its interior. 

Continuous and Quasi-Continuous Functions. Suppose, for the purposes of 

illustration in this section, that L belongs to the collection R and (X,I' 1} is the usual 

norreed algebra of all continuous linear transformations in {Y,(-,')}: if the member k 

of L(Y) belongs to X, [kl is the least nonnegative number b such that if • is in Y then 

l]k•] •< b[]•[]. If 13 is a function from L to a bounded subset of (X,l'l } and t is in R 

then 101 t denotes the least upper bound of 10(P)I for p in t; there are the implicit 
multiplication and involution, in the class of such functions 0, as determined by the 

equations 

(0102)(p) • = 01(P)02(p) • and 0'(P) = 0(P)*, for p in L and • in Y, 

as well as the customary addition among functions from a set L to a linear space. 

Let A(R,X) denote the set of all function 0 from L to X such that if e > 0 then 

there is a member M of F filling up L such that, if t is in M and both p and q belong to 

t, 10(P)-0(q)] < e. Let B(R,X) denote the closure, with respect to I' I L, of the set of all 
finite linear combinations (with coefficients from X) of characteristic functions of sets 

in R. It is clear that A(R,X) is an involution-algebra, that B(R,X) is a linear space, and 
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that each of A(R,X) and B(R,X) is complete with respect to the norm lOlL . It can be 

shown that if R is a pre-ring of subsets of L then B(R,X) is A(R,X); it can happen, 

however, that B(R,X) is an algebra of which A(R,X) is a proper subalgebra. Consider 

the following Example. 

EXAMPLE 1. Let L be the unit interval [0,1] and R be the collection of all 

subintervals of [0,1]: A(R,X) is the set of all continuous functions from L to X, and 

B(R,X) is the set of all quasi-continuous functions from L to X which are continuous 

at 0 and at 1, i.e., the set of all functions • from [0,1 ] to X such that • is continuous 

at 0 and at 1 and such that if p is a number between 0 and 1 then each of the limits 

0(P-) and O(p+) exists (with respect to i'[). It may be shown that if [a,b] is an interval 

lying in (0,1) then the set QC([a,b] ,X) of all quasi-continuous functions from [a,b] to 

X is the set of restrictions to [a,b] of members of B(R,X). If R 1 is the collection 

consisting of [0,1 ] together with all subsets t of [0,1 ] such that either t is degenerate 

or there is a member [p,q] of R such that t is the open interval (p,q), then A(R 1 ,X) is 

the set QC([0,1 ],X). (From investigations by J. A. Reneke [19, pages 106-112], there 

are other cases of this type of example - with L a rectangular interval in some 

Euclidean space.) 

As implicitly suggested by Reneke [19], if 0 is a function from L to X and fis 

R-additive from • to Y then the Stieltjes integral fLOf (of • "with respect to f") may 
be interpreted as a member TofY such that, if c is a choice function for R (i.e., c is a 

function from R such that if u is in R then c(u) is in u), then T = fL/FO[C] f with 
respect to •'U 0 in the sense previously indicated in the Introduction, with h the 

function given by h(u)= O(c(u))f(u), for u in R. Here, now, is an adaptation to the 

present context of one of T. H. Hildebrandt's results [6] (which might be termed the 

Hildebrandt-Fichtenholz-Kantorovitch Theorem, see [3, argument pages 258-259 and 

comment page 373] ). The adaptation seems to include some instances of A(R,X) as a 

linear subspace of QC([0,1],X); for such instances, with Y the complex plane and X 

identified with Y, cf. G. F. Webb [27]. 

THEOREM 23. If R is a pre-ring, then the Stieltjes integral equations 

A(f)(0) = fL0f, for f in S O and • in A(R,X), 
define an isometric linear isomorphism A from (S0,ll ß II > onto the space consisting of 
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all continuous linear functions X from (A(R,X),I'I L) to {Y,•'•), normed in the usual 
manner, such that ilk is in X and 0 is in A(R,X) then •,.(k0) = k•,.(0). 

INDICATION OF PROOF. For each t in R let 1 t be the function from L to X 

defined by It(P) = j2 or 0, for p in L, accordingly as p is or is not in t. Since R is a 
pre-ring of subsets of L, it follows that A(R,X) is B(R,X), as noted previously, and 

that if X is such a function as indicated then the function f defined by fit) = X(1 t), for 

t in R, is finitely additive and is clearly the candidate to be a member of S O such that 
X = A(F). The essence of the Theorem will therefore be established provided that 

(given a nontrivial X, and an f which is so defined) if W is in F then there is a member 

M of F filling up L, such that each set in W is filled up by a subcollection of M, and a 

member 0 of A(R,X) such that 101 L= I and flX(0)[I = Z t in M [If(t)ll' This may be 
shown as follows. 

Suppose X is a nontrivial linear function, as indicated, and that f is the function 

defined by fit) = X(I t), for t in R. Since A(R,X) is B(R,X), there is a member u of R 

such that f(u) 4= 0; let W be a member of F. There is a member M of F filling up L, 

with a subcollection filling up u, such that each set in W is filled up by a subcollection 

of M: there is at least one t in M such that f(t) is not 0 (in Y). Let • be a member of Y 

such that • = 1, let k be a function from M to X such that if t is in M and r/is in Y 

then 

(r/,f(t))•: k(t)r/= 0 or •f(t)[l ' accordingly as fit) is 0 or not, 
and let 0 = Et in Mk(t)l t , so that 

X({3) = Et in M l]f(t)• and []M0)[] = Et in M []f(t)•- 

Now, if p is in L, there is only one t in M which contains p: therefore, if r/is in Y then 

•0(p)r/• = []k(t)r/[I •< •r/•, whence I•(P)I •< 1. Since there is some t in M such that 

fit) 4=0 and, for each p in t, [l(•(p)f(t)[I = Ill(OH, it follows that 1•1L = 1. This 
completes the suggested argument. 

As an instance of this type of theorem, for a case where the collection R is not a 

pre-ring and S is not all of S 0, the lollowing Example is basic. 
EXAMPLE 2. To establish connection with the Riesz Theorem alluded to in the 

Introduction, let (i) L be [0,1 ] and R be the collection of all subintervals of [0,1 ], 
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(ii) Y be the complex plane, j be ordinary complex conjugation, and (',-) be the usual 

complex inner product for Y given by (•,r/)= •j(r0, and (iii) S be the set of all 

functions f in S O such that, if e > 0 and 0 < p < 1, there is a number r in (p,1 ] such 
that if q is a number in (p,r] then If([P,q] )l • e. Inasmuch as Y is one-dimensional, 

there is the usual identification of X with Y: the space D from the Central Problem of 

this report is the same as E, the space INV-LIM- {H,Q,rr} is identified with the inverse 

limit space inv-lim{H,Q,rr}, and there is a coalescence of Theorems 12 and 18. A 

statement of the Riesz Theorem is this: the Stieltjes integral equations 

A(f)(0) = fL0f, for f in S and 0 in A(R,X), 
define an isometric linear isomorphism A from {S,II'[I } onto the dual of the normed 

linear space {A(R,X),I.IL} (cf. Example 1). Hence, the space {E,n} (Theorem 22) is 

identifiable as the second dual of {A(R,X),I'iL} with the natural embedding 6 of 

A(R,X) in E taking the form 6(0)(f) = A(f)(0), for 0 in A(R,X) and f in S. Composites 

of the isomorphisms •' and co (Theorems 17 and 18) with 6 have the forms 

(•'(6(0))f)(t) = ft0f and co(6(0))(a)(t) = ft0a, 
for 0 in A(R,X) and f in S and t in R and a in S +. It follows from Theorems 15, 17, 

and 18 that the •'-image of E is commutative and it may be seen, with the help of these 

Theorems, that •'[6 ] is an involution-preserving algebra-isomorphism. 

It can be proved, independently of the special suppositions of this section, that 

(in the context of Theorem 18) if the ordered pair (/•,G} belongs to co and a is in S + 

then /•(f) = fL/FG(a)f/a, with respect to •-[1, for every f in the closure of H a with 
respect to the norm II'll - one might invoke the obvious extension of each Ila(M) (for 

M in F) to include f by the formulas from Theorem 8, and then use the consequent 

inequalities [lIla(M)f- II•(M)gll •< IIf-gll (in continuation of the observation at the end 
of Remark 1 after Theorem 22), with which the identities 

tiilla(M)f) = Zt in lVl• •tt•, for M in F, 

serve to establish the result. There is, however, a limitation to the procedure. 

It can not be proved that if the ordered pair (/a,G} belongs to co, and a is a 

positive member of S +, then (cf. Theorem 18)/a(f) = fL/FG(a)f/a for every f in S such 
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that the latter integral exists. This could not be proved even in the real version of 

Example 2. Consider the following Example. 

EXAMPLE 3. Let (i) L be [0,1] and R be the collection of all subintervals of 

[0,1], (ii) Y be the real line, j be the identity function on Y, and (',')be real 

multiplication so that (•,r/) = •r/ for • and r/in Y, and (iii) S be the set of all functions 

f in S O such that, if e > 0 and 0 < p < 1, there is a number r in (p,1 ] such that if q is a 
number in (p,r] then If([P,q])l <e. Consider the member o• of S + defined by 

o•([p,q]) = q-p, for [p,q] in R: let c be a number between 0 and 1,0 be the function 

defined by 0(P) = Ip-cl, for p in L, and f be the member of S defined by f([p,q]) = 1 

or 0, for [p,q] in R, accordingly as the number c does or does not belong to (p,q]. Let 

?, be the function defined by the Stieltjes integral equations X(g) = fLOg, for g in H a' 
it may be shown that Ilfll -- 1 and that, if g is in Ha, Ilf-gll = 1 + Ilgll >• I + IX(g)l so that 

X(g)- 11f-gll •< -1 < 1 •< X(g) + Ilf-gll. 

According to the Hahn-Banach extension process, E contains extensions IX 1 and IX2 of 

2, such that /.tl(f) = -1 and/.t2(f) = 1 and n(ixl) = n(ix2) = 1: identifying L(Y) with Y 

itself as in the complex case, one may see that if IX is IX 1 or IX2 and G -- coO. t) then 

G(o0(t) = ft0o•, for each t in R, and fL/FG(rz)f/• = 0 4 = Ix(f). 
As recorded, e.g., by Dunford and Schwartz [3, pages 373-381 ], there have been 

extensions of the Riesz Theorem to contexts more general than that in which L is the 

unit interval. Accordingly, it seems appropriate to record some consequences of 

present results in a theorem in which the Riesz Theorem (in the form suggested in 

Example 2) is taken to be part of the hypothesis. The space E is regarded as an 

involution-algebra with multiplication induced by •' and involution induced by co (as 

indicated in the section Description of Solutions, justified by Theorems 15 through 

18). With these conventions, the following is such a Theorem. 

THEOREM 24. Suppose S is a linear subspace of S O such that (i) S is closed 

with respect to the norm II ß II, (ii) if t is in R and f is in S and • is in Y then the 

function PtVf-• belongs to S, and (iii) the Stieltjes integral equations 

A(f)(fJ) = fLCf, for fin S and 0 in A(R,X), 
define an isometric linear isomorphism A from (S,II' II } onto the space consisting of all 



54 J.S. MAC NERNEY 

continuous linear functions )t from •A(R,X),I'IL• to •Y,0'fl•, normed in the usual 
manner, such that if k is in X and 0 is in A(R,X) then )t(k0) = k)t(0). Then (1) the 

equations 5(0)(f)= A(f)(0), for 0 in A(R,X)and f in S, define an isometric 

involution-preserving algebra-isomorphism • from •A(R,X),l-lL• into the normed 
algebra •E,n• (taking the multiplicative identity in A(R,X) to that in E), 

(2) composites of • and co with • are given by the Stieltjes integral equations 

(•(fi(0))f)(t) = ftOfand co($(O))(o0(t)• = ftOo•-•, 
for 0 in A(R,X) and f in S and t in R and a in S + and • in Y, and (3) if At is in E and 0 

is in A(R,X) then, for each a in S + and t in R and • in Y, 

co(•-I (•'(5(0))•(/.t)))(a)(t)• = ft0co(/.t)(a)'•. 
INDICATION OF PROOF. Since flA(f)(0)• •< 10lLllf[[ for 0 in A(R,X) and f in S, 

the indicated equations clearly define a linear transformation 5 from A(R,X) into E 

such that if 0 is in A(R,X) then n(5(0))•< [0[L: suppose 00 is in A(R,X) and 

n(5(00)) (1001L ß There is a member p of L such that n($(00))( 100(P)l and, 

therefore, a member • of Y such that fl•H = 1 and n(5(01)) • 000(P)•[1. Let X be the 
function defined by X(0) = •(P)•, for • in A(R,X): there exists a member f of S such 

that IlfH •< 1 and if 0 is in A(R,X) then X(0) = fL0f. Now, 
n(5(00)) < l100(P)•ll = [IX(00)H = U5(00)(•O •< n(5(Oo))llfll • n(5(00)). 

This involves a contradiction, so that 5 is an isometry. The other assertions of the 

Theorem may be established with the help of Theorems 15, 17, and 18. 

There is another type of problem, involving cases where R is not a pre-ring, which 

falls within the scope of the present report. In 1962, in connection with a survey [ 14] 

of some investigations concerning the notion of an ordinary linear differential 

equation, I presented a result (loc. cit., pages 321-322) from which it is easy to arrive 

at the following Example. 

EXAMPLE 4. Let L be the unit interval [0,1] and R be the collection of all 

subintervals of [0,1 ]: co, Cl, and c 2 denote choice functions for R such that ift is the 

member [p,q] of R then co(t) = p < cl(t) < q = c2(t). If X is such a linear function 
from QC([0,1 ],X) to a set of R-additive functions from R to Y that, if k is in X and 0 
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is in QC( [0,1 ] ,X), X(k0) = dX(0), then the following two conditions are equivalent: 

(i) there is an R-additive function 18 from R to the nonnegative numbers such 

that if0 is in QC([0,1 ],X) and t is in R then I]X(O)(t)• •< 101tfi(t), and 

(ii) there is a member {f0,fl,f2} of S 0XS 0XS O such that if I• belongs to 
QC([ 0,1 ] ,X) and t is in R then 

= f0 + ft/Fl•[Cl ] fl + ft/F½[C2 ] f2' X(0)(t) ft/F0[C0 ] 
Let A(f0,f l,f2) denote X in (ii), and note that Theorems 1-22 are applicable with the 

interpretation that S is S O . For f in S O and 0 in QC([0,1],X), it may be seen that 
A(f,-f,f)(0) is W. H. Young's version [28] of the Lebesgue-Stieltjes integral designed to 

yield interval-additive functions, i.e., R-additive X(0). A substitution theorem for the 

Young integral [8, page 91 ], readily adaptable to the present context, can be used to 

produce an algebra-isomorphism b, from the space {QC([0,1],X),IO[L } into {E,n}, 
having the same character as that in Theorem 24 and justified by much the same type 

of argument as indicated there. Thus, W. H. Young's idea may be regarded as 

producing a somewhat general notion of integral. 

There is another interpretation of the result from [14] cited in Example 4, 

making explicit use of the possible multi-dimensional character of the space Y in the 

present report. J. A. Reneke [19] has discovered higher dimensional versions of the 

result, with Y the complex plane and X identified with Y, exhibiting (for each positive 

integer r) a set qb of 3 r+l choice functions for the collection R of all rectangular 
subintervals of [ 0,1 ] r+ 1 such that the integral equations 

A(f)(0)(t) = I2c in qbft/F½[C] fc, 
for f in S• and 0 in QC([0,1]r+I,x) and t in R, define a linear homomorphism /x 
from the set S• of all functions from qb into S O onto the set consisting of all linear 
functions X from QC([0,1]r+I,x) into S O such that, for some R-additive 18 from R to 
the nonnegative numbers, flX(0)(t)• •< 101t18(t) for each function 0 in QC([0,1]r+I,x) 
and each set t in R. Reneke's results are readily adaptable to the present situation by 

adding the condition X(k0) = kX(0) for k in X. More generally, however, Reneke has 

investigated conditions on the ordered pair {L,R} which imply [15, Geometric 

Perspectives] the Subdivision Axiom (but are not implied by it [ 15, Example 5] ) and 
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which, together with the assumption that the set B(R,X) is an algebra, are consistent 

with the existence of a finite set ß of choice functions yielding A(f)(0 ) as above, for f 

in S0• and 0 in B(R,X). Now, supposing only such a finite set •, consider the following 
procedure: replace the space (Y,(',')} by the product space (Y•,(-,')• }, where 

(•,*/)• = Zc in •(•c,*/c ) for • and ,/in Y•, 
throughout appropriate earlier sections of this report, and regard X • as a subset of 

L(Y •) in the usual way - (k•,r/)• = Z c in •(kc•c,r/c) for k in X •. Because of the finite 
cardinality of •, S0(Y•) is easily identified with S0•, and certain linear embeddings of 
Y in Y• can be made to yield linear embeddings of B(R,X) in the algebra E 

corresponding to S0(Y•). To avoid notational complications here, details and 
variations of all this are left to suggest themselves to the reader. 

Finally, to see that certain types of linear subspaces of S O which sometimes occur 

in measure theoretic investigations (with bounded nonnegative measures) are instances 

of the tyep S of the present report, consider the following Example. 

EXAMPLE 5. Independently of the special suppositions of this section, let b be 

a nontrivial R-additive function from R to the nonnegative numbers such that fL/F b 
exists, and let S be the closure with respect to the norm I['[[ of the space U b as 

described in Theorem 4. Note that Theorems 1-22 hold with S taken to be S O and that 

b belongs to S• and that, for each • in Y, b'• belongs to H b. Now, by Theorem 7, U b 
is dense in H b with respect to N b and therefore, by Theorem 3, with respect to II ß I[: 

hence, S is the closure with respect to [l' II of H b. If g is in U b and • is in Y then it may 

be seen that Vg.• is in U b; by Theorem 5, if t is in R then Pt maps H b into H b; from 

this it may be argued that if t is in R and f is in S then PtVf'• belongs to S: thus, S 
satisfies the condition stipulated in stating the Central Problem of this report. 

Moreover, since b-• belongs to H b for each • in Y, the function b belongs to S +. 
Therefore, Theorems 1-22 hold as stated for this space S and, as has been noted in the 

first paragraph following Example 2, if/a is in E and G = coO. t) then/aft) = fL/FG(b)f/b 
for every function f in S. A similar result holds of course for each o• in S + such that Uo• 
is dense in (S,II ø II }. 

REMARK 1. Suppose Y is the complex plane, X is identified with Y, and R is a 
+ 

pre-ring. Let o• be a nontrivial member of S 0, M be a member of F, x be a function 
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from M to Y, and g be the member Z u in MPu ø•'x(u) of the family Ua: it may be 

shown in this case that if G is the member Z u in MX(U)lu of B(R,X) then 

g(t) = ftGa, for each set t in R, and Ilgl[ = fLlGIoc 
Thus, some of the present results have obvious measure theoretic interpretations. 

REMARK 2. One effect of the introduction of the Subdivision Axiom has been 

provision of a framework witttin which the Hildebrandt-Fichtenholz-Kantorovitch 

Theorem (in the form of Theorem 23) is seen as the instance of the Riesz Theorem in 

which R is a pre-ring and S is all of S 0. This suggests an inquiry, then, as to the general 

existence of such a subspace S of S O as postulated in Theorem 24. 
REMARK 3. The questions of cardinality alluded to in the Introduction, in 

connection with R. D. Mauldin's investigations [16, 17], may be viewed (in the 

general context of Theorems 1-22) as suggesting an inquiry as to conditions on the 

ordered pair (R,S) which might insure that, if ?• is in D and g = A(?•) as in the 

statement of Theorem 12, there exists a member a of S + such that 

?•(f) = fL/F(g(oO,JD/o• for each f in S. 
The effect of Examples 3 and 5 is not represented as obviating any such inquiry. 

THEOREM 25. In the algebra A 0 of all continuous linear transformations in the 
product space (X (H,Q),Q^), the Z-image of E is closed in the weak operator 

topology - the represen ta tion Z being given by 

Q^(Z(#)f,g) = Zo•Qo•(•(la)fo•,go•) for Ia in E, f and g in X {H,Q). 

REMARK. The indicated weak operator topology is that introduced by yon 

Neumann (cf. [9, page 53] ), and the indicated product space is the direct sum over S + 

of the spaces {Ho•,Qo•) which was denoted by {X,(',')) in the section entitled 
Description of Solutions. As indicated in that section, and as now justified by 

Theorems 14-18, the Z-image of E is the B*-algebra A 3' A 1 denotes the algebra of all 

members B of A 0 iwith a representation ,I, such that 

Q^(Bf,g) = ZaQa(•(B)afa,ga) for f and g in • (H,Q) 

where, for each a in S +, ,I,(B)a is a continuous linear transformation in (Ha,Qa), A 2 
is the algebra of all members B of A 1 such that if o• is in S + and t is in R and h is in Ho• 
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then •(B)o•Pth = Pt•(B)o•h, and A 3 is the algebra of all members B of A 2 such that if 

o• and t3 are members of S + such that H a is a subset of H13 then •(B)o • is the restriction 
to Ho• of •(B)13. Hence, it is asserted here that the Z-image of E is what is called a 
(W*)-algebra in the case of complex scalars (cf [9, page 161] ). It should become clear 

that this assertion is independent of the special supposition of this section that L 

belongs to the collection R. 

PROOF. Suppose B is in the weak closure of the Z-image A 3 of E. For each 

Q"-orthogonal projection ß in the commutant (in A 0) of A 3 and each/,t in E, 

Q"(B•f- •Bf,g) = Q"((B-Z(/,t))•f,g) + Q" ((Z(/a)-B)f,•g) 

for all f and g in X {H,Q}: since each weak neighborhood of B contains Z(/.t) for some 

/a in E, it follows that B• = •B. It is immediate that B belongs to A 1; by considering 

•t = Z(•-I (Pt)) for each t in R, one may see that B belongs to A 2. If o• and 13 are in S + 
and H a is a subset of H/3 then, for each h in H a and t in R and r/in Y and/,t in E, 

(•(B)13h(t) - •(B)o•h(t),r/) = Q•(•(B)13- •(/a))h,Pt/3'r/) + Qo•((•'0x)-•(B)o)h,Pto•-r/). 
It follows, as above, that B belongs to A 3. This completes the Proof. 

Hierarchy of Dual Spaces in the Scalar Case. Suppose, throughout this section, 

that the space Y is one-dimensional, and that the algebra { X,I'[} of the preceding 

section is identified with the scalars in the usual manner, L(Y) being all of X. There 

are three Observations which are useful in this special situation. 

OBSERVATION 1. In every instance of a triple {L,R,S} as postulated in the 

Introduction, it follows from assertion (3) of Theorem 15 that the multiplication 

induced in E by the representation • (cf Theorem 17) is commutative. In the case of 

real scalars, each member of the Z-image A 3 of E (cf Theorem 25) is seen to be 
Hermitian with respect to the inner product Q"; in the alternative case of complex 

scalars, each member of A 3 is normal with respect to Q". Since Theorem 25 implies 

that A 3 is closed in the strong operator topology for A0, it follows that in either case 

the spectral resolution of each member of A 3 has all of its values in A 3 (this may be 
seen from the argument due to Riesz [22, pages 272-288] for Hilbert's spectral 

theorem). Therefore A 3 is the closure, with respect to the uniform operator norm for 

A 0, of the set of all finite linear combinations (with coefficients from X) of nonzero 
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Q"-orthogonal projections belonging to A 3. Of course, if B is such a linear 

combination Zp in M k(p)p and pq = 0 for each two members p and q of M then 
n(Z-I(B)) = SUpp in M Ik(p)l' 

One may note in passing that is a consequence, due to Stone (cf [9, pages 

162-163] ), of Theorem 25 that the set of all Q"-orthogonal projections belonging to 

A 3 is a complete Boolean lattice relatively to the usual partial ordering that is induced 

by the inner product Q". 

OBSERVATION 2. In amplification of the pattern of ideas from Observation 1, 

let R' be the z-l-image of the set of all nonzero Q"-orthogonal projections in A 3 and 
<• denote the partial ordering determined for R' by the Q"-induced partial ordering of 

the Z-image of R': if each of/a 0 and/a I is in R' then the statement that/a 0 <•/a I means 
that Q•'(f,Z(/a0)f) <• Q"(f,Z(/al)f ) for every f in X (H,Q}, clearly equivalent to saying 
that if o• is in S + then Q•(f,•'(•0)f) •< Qo•(f,•'½ 1)f) for every f in Ha, this latter in turn 
being equivalent to saying that if o• is in S + and t is in R then co(/a0)(o0(t )•< 
co½ 1)(o0(t) (cf Theorems 17 and 18). If/a is in E and 6 > 0, there exists a function k 

from a finite subset M of R' into X such that Z(p)Z(q) = 0 for each two members p 

and q of M, ZpinMZ(p) is the identity transformation on X(H,Q}, and 
nqu - Zp in M k(p)p) < 6. It may be noted that, in order that the nonzero member/a of 
E should belong to R', it is necessary and sufficient that ifo• is in S + and t is in R then 

co(/a)(o0(t) be real and •'(/a) 2= •'(/a), i.e., ft/FCO(la)(•)2/• = co(/a)(o0(t ) (cf Theorem 
15). 

OBSERVATION 3. With (R', <•} the upper semi-lattice from Observation 2, let 

R" be the collection of all subsets x of R' such that x has, and is maximal with respect 

to having, the property that if g is a finite subset of x then there is a member p of R' 

such that p <• q for each q in g. Let 7 be a function from R' such that if p is in R' then 

7(P) is the subset of R" to which the member x of R" belongs only in case p belongs 

to x. In consequence of the properties of the algebra A 3 from Observation 1, 
especially the commutativity of multiplication, it follows from [15] that the 

collection •'->(R'), the •'-image of R', is a pre-ring of subsets of R" to which R" 

belongs and that, if p is an element of R' and M is a finite subset of R', p <• 

sup {R,,<•}M only in case the set 7(P) is covered by the collection 7->(M). Moreover, 
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from Observation 2, there exists an isometric involution-preserving 

algebra-isomorphism, here denoted simply by the suffix ", from the •'-image of E onto 

the space B(q, (R),X), determined by the formulas 

•'(Zp in M k(p)p)" = Zp in Mk(p)lq,(p) 
for functions k from finite subsets M of R' to X, and taking the identity on the space 

S to the constant 1 on the set R". Hence, the Hildebrandt Theorem (scalar version of 

Theorem 23, Hildebrandt-Fichtenholz-Kantorovitch Theorem) may be seen to yield a 

representation of the dual of B(q,-•(R'),X) as the space S0(q,-•(R')), of all finitely 
additive functions of bounded variation from q,-•(R') to the space Y. 

The suggested hierarchy now emerges. Explicitly, one may imagine starting with 

a triple • L1,R1,S 1) such as postulated in the Introduction, or as amended in the 
section Modification of the Initial Supposition, and such that if t is in R 1 then fit) 4:0 

for some fin Si: use Theorems 17 and 18 to arrive at •' and co for the dual space E 1 so 

that Theorem 25 is applicable; use Observations 1, 2, and 3 to determine the set L2, 

the pre-ring R 2 of subsets of L 2 to which L 2 belongs, and the space S 2 as S0(R2); the 

way is now open to repeat this procedure starting with the triple (L2,R2,S2). 
Integrals of the Hellinger and Stieltjes type arise, alternately, as this process is 

continued indefinitely. Integral formulas, for the transition from {Lk,Rk,Sk,Ek) to 

the next stage (Lk+ 1 ,Rk+ 1 ,Sk+l,Ek+l), may be written as follows: 

= •(•)"o (?•), (•'(/•)f)(t) ft/Fkco(i.•)(oOf/o• and ?•(•'(/•)") = fLk+l 
where F k is the family of all finite subcollections of R k nonoverlapping relatively to 

Rk, •' and co are the functions from E k as determined by Theorems 17 and 18, the 

notation •'(gt)" (for gt in E k) describes the representation of •'(•) as a member of the 

space B(Rk+ 1,X) as in Observation 3, and o is the Hildebrandt mapping (inverse to the 

/x of Theorem 23) from the dual of B(Rk+ 1 ,X) onto Sk+ 1 . 
Implicit in the foregoing hierarchy, also, are the following functions: 

(1) with P(R k) the function from R k into the •'-image of E k as amended from 

the Introduction, there is the inclusion-preserving mapping, from R k into Rk+ 1, to 

which the member (t,T) of R k X Rk+ 1 belongs only in case t is in R k and T is the 

subset of Lk+ 1 to which a point x of Lk+ 1 belongs only in case P(Rk)•(x) = 1' 
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(2) with the assurance of isometry provided, e.g., by Theorem 22, there is the 

linear isomorphism from S k into Sk+ 1 which consists of all ordered pairs of the form 

{f,o(Xf)} such that f is in S k and Xf is the member of the dual of B(Rk+ 1,X) 

determined by the equations Xf(•'(•)")= •(f) for • in E k [with the mapping (1)from 

R k into Rk+l, in view of the integral formulas f(t) = fLk+lP(Rk)•'o(Xf) for t in Rk, 
one might regard o(Xf) as an extension to Rk+ 1 of an f in Sk]; and 

(3) there is the isometric linear isomorphism from E k into Ek+ 1 which consists 

of all ordered pairs of the form (•,b(•'(•)")} such that • is in E k and b is the linear 

function from B(Rk+ 1,X) into Ek+ 1 determined by the formulas 

b(0)(o(X)) = 3,(0) = fLk+lOO(X) for 0 in B(Rk+ 1 ,X) and 3, in its dual. 
REMARK. Independently of the dimensionality of the space Y, it may be seen 

from Theorem 15 that the center of the Z-image A 3 of E (cf. Observation 1) is the 
Z-image of the set of all • in E such that if a is in S + and t is in R then the 

transformation co(/a)(a)(t) is in the center of the algebra X, i.e., is a scalar. Hence, the 

heuristic evidence of the scalar case suggests that in general R' be the Z -1-image of the 

set of all nonzero Q"-orthogonal projections in the center of A 3, with <• the partial 
ordering indicated in Observation 2. There is the natural multiplication of members of 

E by members of X, leading one to note that if k is a function from a finite subset M 

of R' into X such that Z(p)Z(q)= 0 for each two members p and q of M then 

n(2;p in M k(p)p) = SUpp in M lk(p)l as in the scalar case. Therefore, the •'-image of the 
closure in {E,n} of the set of all such finite linear combinations (with coefficients 

from X) of members of R' has a representation as B(•?(R'),X), just as in the scalar 

case (Observation 3). Thus the question naturally arises as to whether or not that 

closure is all of E. 

Recapitulation and Extension of Results. The pattern of ideas in Theorems 1 

through 10, and the arguments given in support of those theorems, have been 

presented in such a way as to allow for an extension, with minor modifications, to a 

somewhat more general situation. This section includes a re-examination of that 

pattern from such a viewpoint. The Subdivision Axiom, as previously enunciated, 

continues to supplant the pre-ring hypothesis, and the propositions arising from the 
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aforementioned Theorems by taking S to be all of S O are designated as Theorems 1-0 

through 10-0. Let S 2 be the set of all R-additive functions f from R to Y such that, for 
some nonnegative R-additive function o•, •f(t)• •< o•(t) for each t in R; let the functions 

+ 

Pt (for t in R) and V and J be extended to S 2 in the natural way; let S 2 be the 

V-image of S 2, i.e. , the set of all nonnegative R-additive functions. It may be noted 

that if t is in R then Pt maps S 2 into S O and []Ptf• = ft/Fllfll for each f in S 2. 
Attention is now directed to the intermediate set S 1 to which f belongs only in 

case f is an R-additive function from R to Y and, for some member h of S• and some 
member o• of S•, if t is in R then •f(t)fl 2 •< h(t)o•(t): let H now denote a function from 
S• such that, for each o• in S•, H a is the set to which f belongs only in case fis in S 1 
and, for some h in S•, the preceding inequalities hold for each t in R. By definition, 
now, S 1 is filled up by the H-image of S•. It can happen that S O is a proper subset of 
S 1 and S 1 is a proper subset of S2: the case in which L is an uncountable set, and R is 
the collection of all degenerate subsets of L, may easily be seen to present such a 

siutation (with R a pre-ring). 

There now arise Theorems 1-1 through 10-1, from Theorems 1-0 through 10-0, 

upon (i) replacing S• by S• throughout, (ii) changing assertions (1) and (3) in 
Theorem 3-0 to read, respectively, that H a is a linear subspace of S 1 and that ift is in 

R and f is in H a then IIPtf[12• < No•(f)2o•(t), and (iii) deleting assertion (3) from 
Theorem 7-0. A survey of the indicated arguments reveals the necessity of two explicit 

+ + 

modifications, called for since S O may not be all of S2: 

(1) In the first paragraph of the Proof for Theorem 4-0, Pto•'• may be shown to 

belong to H a by computation (from Theorem 2-0) yielding No•(Pto•-•)2 = o•(t)fl•[12. 
(2) The second display in the second paragraph of the Proof of Theorem 10-1 is 

Pu'•' • = rr(o•,o•+/3)(Pu/3' •) = X(/3,o•+/3)(PuO• ß •), 

asserted as holding for each u in R and • in Y, and showing U,• to lie in Ho•H/3. Only 
minor modifications, consistent with (1) and (2), now serve to establish the suggested 

sequence of theorems; and the H-image of S• is a distributive lattice. 
What is intended, now, is to provide an extension co 1 of co[• '-1 ] as described in 

Theorems 17 and 18 to a collection of linear transformations in the space S 1. The 

function rr having been defined (in Theorem 9-1) on the subset of S• X S• to which 
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{a,is} belongs only in case H a is a subset of His, INV-LIM-{H,Q,rr} is now taken to 
denote the linear space to which G belongs only in case G is a function from S• such 
that if ot is in S• and • is in Y and t is in R then (i) G(a) is an R-additive function 
from R to L(Y), G(ot)-• belongs to S2, and PtG(ot)-• belongs to Hot, and (ii) if isis a 

+ 

member of S 2 such that H a is a subset of Hi5 then 

PtG(a) ß • = • a,is)(P t G(is)' •). 

On the foregoing basis, the following Theorem may be interpreted as arising from the 

circle of ideas indicated in Theorems 16, 17, and 18 (with S taken to be SO), and as 

being a part thereof in case the collection R is such that S 1 is S 0. 

THEOREM 26. Suppose (X,l'l } is a normed linear space such that B is in X only 

in case B is a linear transformation in S 1 such that (i) if t is in R and f is in S 1 then 

B(Ptf ) = Pt(Bf), (ii) if ot is in S• then B maps Hot into Hot, and (iii) there is a 
nonnegative number b such that Not(Bf) •< b Not(f) for each ot in S• and each f in Hot, 
in which case IBI is the least such number b. Then, the equations col(B)(ot)(t)• = 

fL/FB(Ptot'•), for B in X and ot in SJ and t in R and • in Y, define a linear 
isomorphism co 1 from X onto the subspace of INV-LIM-{H,Q,rr} to which the point G 
of INV-LIM-{H,Q,rr} belongs only in case there is a nonnegative number b such that if 

+ 

ot is in S 2 and t is in R and • is in Y then [IG(ot)(t)•H •< bot(t)•[], in which case ico•l(G)l 
is the least such number b. If the ordered pair {B,G} belongs to col and f is in S 1 then 

Bf is an integral over L relatively to F in the following sense.' for each member ot of S• 
such that f is in Hot, if h is the function from R to Hot such that if t is in R then 

h(t) = 0 or 1 PtG(ot).f(t) accordingly as ot(t) is the number 0 or not, Bf = fL/F h with ot(t) 

respect to the norm Not - in particular, for each member ot of S• such that f is in Hot 

and each set u in R, Bf(u) = fu/FG(ot)f/ot with respect to the norm fi' H. 
INDICATION OF PROOF. It may first be noted that Theorem 13, and its Proof, 

hold as stated with S• replacing S+: let Theorem 13-1 denote the result when so 
amended. Similarly, a result which may be designated as Theorem 14-1 arises from 

Theorem 14 with this same replacement and the following amendments: 

(1) the displayed description of the transformation ß should be made to read 

"xI,(B)(t)• = fL/FB(Ptis-•), for B in ToqS(P) and t in R and • in Y," 
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(2) the assertion (2) should be made to read, in part, "PtG*r/belongs to H/• and 
(Bf(t),r/) = Q•f,PtG*r/)," with similar amendments in the Proof, and 

(3) the assertion (3), and the last paragraph of the Proof, should be deleted. 

l•inally, a suitable Theorem 15-1 is available from Theorem 15, and its Proof, as 

amended consistently with (2) of Theorem 14-1. Theorem 26 may now be established 

directly on the basis of the emerging pattern of ideas. 

REMARK 1. There is a context in which the present results may be given an 

interpretation analogous to that suggested in Remark 1 following Example 5. One 

may, e.g., start with a sequential-ring (or o-ring [8, page 147] ) •; of subsets of L filling 

up L and a (nontrivial and finite-valued) nonnegative measure 6 on •;, and let R be the 

collection of all members of •; having positive 6-measure. It is not difficult to see that 

the Subdivision Axiom is satisfied, and that members of S 2 (suitably extended to •;) 
are absolutely continuous with respect to the measure 6. 

REMARK 2. With the help of the Theorem 15-1, the algebra X in Theorem 26 is 

equipped with a natural norm-preserving involution and is amendable to the type of 

representation indicated, in Description of Solutions, for the •'-image of E. 

REMARK 3. The algebra X in Theorem 26 contains the identity transformation 

on S 1 as well as, for each t in R, the restriction of Pt to S 1. It also contains certain 
transformations arising from Stieltjes integral equations of differential type [14]. 

Suppose, e.g., that W is a function from L to a bounded collection of continuous 

linear transformations in the space {Y,(',-)} and that c is a choice function for R such 

that ft/FW[C]O•'• exists with respect to •-•] for each t in R and o• in S•and • in Y' it 
may be shown that the equations Blf(t ) = ft/FW[C] f, for f in S 1 and t in R, define a 
member B 1 of X and that if {B2,G 2} belongs to co I and G = col(BIB2) then 

G(o0(t)• = ft/FW[C] G2(o0-• for all o• in S• and • in Y. 
It can not be proved that if S O is a proper subset of S 2 then S 1 is a proper subset 

of S 2. Consider the following Example: 
EXAMPLE 6. Let L be the real line and R be the collection of all intervals of 

real numbers, and suppose f is a member of S 2 which does not belong to S 1 ß let • be a 

member of S• such that •f(t)•] •</•(t) for each t in R. There exists a continuous 
function p, from L to the positive numbers, such that the Stieltjes integral equations 
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h(t) = ft•/3, for tin R, define a member h of S•: let & be the member of S• defined by 
the Stieltjes integral equations c•(t) = ft p/5, for t in R. It may be seen that if t is in R 
then •f(t)• 2 •< h(t)c•(t): the function f thus belongs to Ha, and so to S 1. This involves 
a contradiction. Apropos of the foregoing Remark 3, there are special interpretations 

in this instance of the algebra {X,l'l} from Theorem 26, which are available by 

analogy with Theorem 16. 

REMARK 4. There is a simple device for contemplating additive extensions of 

members f of such spaces as SO, S 1 , or S 2, which is somewhat in the spirit of the Riesz 
and Daniell approaches [22] to measurable sets in the sense of postponement until 

after identification of certain dual spaces. Typically, one might replace each f (from 

the appropriate space S) by a function • defined on the Boolean ring which is 
generated by the restrictions to S of members of the P-image of R - by setting 

f(PtPu ) = Ptf(u) and f(Pt + Pu ' PtPu ) = f(t) + f(u) - Ptf(u), for (t,u} in R X R. There 
are then extrapolations of the functions f to some of the idempotent elements of an 

algebra of operators, closed with respect to one of the usual linear operator topologies, 

which includes the aforementioned Boolean ring. 

Apropos of lattice-theoretic questions, it can not be proved that if c• and/5 are in 

S• and H a is a proper subset of H/3 then there is a nontrivial member 3' of S• such that 
the intersection HAH,), is H 0. Consider the following final Example. 

EXAMPLE 7. Let L be the set of all nonnegative integers, and R the pre-ring of 

all degenerate subsets of L; let Y be the real line, with (-,-) ordinary real multiplication 

(as in Example 3). There is a natural identification of Y-valued R-additive functions 

with infinite real number sequences, i.e., with functions on L to Y: with this 

identification, let c• and/5 be members of S• such that if m is in L then c•(m) = (m+l)-4 
and /5(m) = (m+l)-2. It follows from Theorem 9-0 that H a is a proper subset of 
and from Theorem 10-1 that if 'y is in SJ and HAH,), = H 0 then c•(m)q,(m) = 0 for each 
m in L- so that 'y is the constant 0. 

+ 

Prospectus. Consider the family S 4, consisting of all functions c• from R to 

L(Y) such that c• is R-additive and (c•(t)•,r/) = (•,c•(t)r/) and (•,c•(t)•) •> 0, for each t in R 

and {•,r/} in Y X Y. Special members c• of S•, such that if • is in Y then fL/FC•'• = 
with respect to flo•, are important in the general theory of Hilbert spaces; the entire 
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family S• is important in the theory of Stieltjes integral equations of differential type 
(as indicated in [14, page 328] ). In extrapolation of an idea introduced in [13], the 

(R-additive) function f from R to Y is said to be of bounded variation with respect to 

the inner product (',') provided there is a member h of S•and a member o• of S 1 such 
that I(f(t),•)l 2 •< h(t)(•,o•(t)•), for each t in R and • in Y' let S 3 denote the set of all 
such functions f. In a third report it will be shown that the pattern of ideas from 

Theorems 1-1 through 10-1 can be extended to the family S3, with loss only of the 
distributivity which is indicated in Theorem 10-1, but with a corresponding extension 

of Theorem 26. This proposed extension involves, in part, integrals of the 

Hellinger-type which were indicated in [13, pages 76-77], and includes the ideas 

introduced in [ 12] when there seemed to be a technical convenience in requiring that, 

for each t in some such collection as R, the o•(t)-image of Y be closed with respect to 

the norm {]-fl. It may be noted that Hellinger's ideas originally [4,5] involved a study 

of the scalar functions g(t;•) = (f(t),•> derived from the aforementioned functions f, a 

study incorporated in [24, Chapters V-VII] by use of Radon-Stieltjes integrals. 

Suppose, however, that R is the collection of all right-closed intervals lying in (0,1 ] 

and S• is identified as a subset of S• in the natural way and, for each/3 in S•, H/3 is the 
subset of S 3 clearly suggested above - it will be seen that if Y is infinite dimensional 

then there is a projection-valued member/3 of S 1 such that (1) /3((0,1 ] ) is the identity 
j2 on Y, (2) if o• is in S• and H a is a subset of H/3 then o•= 0, and (3) there is no 
member 3' of S d- such that H/3 lies in H3,: in this case, H/3 consists of all R-additive f 
from R to Y such that if t is in R then f(t) is in the l•(t)-image of Y, and Q/3(f,g) = 

fL/F(f,g) for f and g in H/y 
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III. THE LINEAR SPAN OF A FAMILY OF FUNCTIONAL HILBERT SPACES 

J. S. Mac Nerney* 

ABSTRACT. Let R be a pre-ring of subsets of the set L filling up 
L, F be the family of all finite subcollections M of R such that 
no element of L belongs to two sets in M, {Y,(-,')} be a 
complete inner product space with [l'I] the norm corresponding 
to the inner product (','), and L(Y) + be the set of all 
nonnegative Hermitian linear transformations in { Y,(-,')}. 
Suppese H is a linear space of finitely additive functions from R 

to Y, and for each {t,f } in R X H, Ptf(s) is 0 (in the space Y) or 
Y•vinM f(v) accordingly as s does not intersect t or M is a 
member of F which fills up the common part of s and t. 
THEOREM. In order that Q should be an inner product for H 

such that (i) { H,Q } is complete, (ii) if s is #• R then evaluation 
at s is continuous from {H,Q} to {Y,(-,-) }, and (iii) for each t 
in R, Pt maps H into H and is Hermitian with respect to Q, it is 
necessary and sufficient that there be a finitely additive function 
a from R to L(Y) + such that (1) H consists of all finitely 
addt'tive functions f from R to Y such that if u is in R then f(u) is 

•'n a(u)l/2(Y) and, for some b >• 0, Z v in M •a(v)'l/2f(v)•2 •< b 
for each M in F, and (2) fi•r each { f,g } it• H X H, Q(f,g) is the 
integral f(a '1/2f,a'l/2g) over L relate'rely to the 
subdivision-refinement process F. The class of all such spaces Ha, 
with an inner product Q as in the Theorem, is shown to be closed 
with respect to intersection and vector addition: this fact leads 
to integral representations for certain linear operations on the 

linear span S of a family of such spaces H a. 

Introduction. Throughout the body of this report, except where explicit 

relaxation of the condition is indicated, it is assumed (as in [ 12] ) that R is a pre-ring 

of subsets of a set L filling up L, i.e., that the collection R of subsets of the set L fills 

up L and has the property that, if G is a finite collection of members of R, there is a 

collection M of mutually exclusive members of R such that each set belonging to G is 

filled up by a finite subcollection of M. The letter F again stands for the family of all 

*Presented to the American Mathematical Society on January 22, 1976. 
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finite subcollections M of R such that no element of L belongs to two sets in M. If K is 

a member of R or is L itself, and h is a function from R to a norreed linear space, the 

notion of the integral over K relatively to F of the function h is that introduced in 

[12]. 

However, (Y,(',-)) is now taken to be a complete complex inner product space, 

i.e., either a complex Euclidean space or a Hilbert space or a hyper-Hilbert space (in 

the terminology followed by J. von Neumann [25, especially 96-104] shortly after his 

introduction [23] of the phrase "a Hilbertspace"): most of what is used here, 

concerning continuous (or bounded) linear transformations in and between spaces of 

this type, is adequately described in von Neumann's lectures [25] and in the book 

[20] by M. H. Stone, with some augmentation from the book [14] by F. Riesz and B. 

Szokefalvi-Nagy. The norm D 'D for Y is that arising from the inner product (',-), so 

that • = (•,•)1/2 for • in Y, L(Y) is the set of all linear transformations from Y to Y, 
and L(Y) c is the set of all members of L(Y) which are continuous with respect to • 'fl. 

If B is in L(Y) c then B* denotes the adjoint of B with respect to the inner product 

(','), and B -1 denotes the inverse of the restriction of B to the D-l]-closure of the 
B*-image of Y; L(Y) + denotes the set of all nonnegative and Hermitian members of 

L(Y) c, i.e., all B in L(Y) such that if • is in Y then (•,B•) is a nonnegative real number; 

if B is in L(Y) + then B 1/2 denotes that square root of B which belongs to L(Y) +, and 
B -1/2 denotes (B1/2) -1. Customary identification of complex scalars with members of 
L(Y) c leads to this notational convention: if B is a complex number then B* denotes 

the complex conjugate of B. 

Now, for each set t in R, Pt is a transformation such that if k is a finitely additive 

function from R to Y or to L(Y) then Pt k is a function from R determined as follows: 

is s is in R, Ptk(s)--0 or Zv in M © accordingly as s does not intersect t or M is a 
member of F which fills up the intersection st of s with t. In [12] it was established, 

among other things, that if S O is the linear space of all finitely additive functions from 

R to Y which are of bounded variation with respect to fl -D and S O is coupled with the 
total variation norm I[oll then members of the space E (of all continuous linear 

functions from œSo,II.ll} to {Y,11'I]}) may be described in terms of integrals over L 
relatively to F: these representations were seen to arise from the existence of a family 



FINITELY ADDITIVE SET FUNCTIONS 71 

of complete inner product spaces (of finitely additive functions from R to Y) 

{ Ha,Qa} , indexed by the finitely additive functions a from R to the nonnegative real 

numbers such that fL/F a exists, having certain special properties including the 
following. (1) In each {Ha,Qa}, if t is in R, evaluation at t is continuous from 

{Ha,Qa) to (Y,(',')} had the restriction to H a of Pt is an orthogonal projection 

relatively to the inner product Qa; (2) as a ranges over the indicated class, the spaces 

H a constitute a lattice with respect to intersection and vector addition, and the linear 

span of the H a is all of S O . 
The following Central Problem of the present report is thus seen to involve a 

pattern of ideas which includes the development in the preceding report [ 12] as an 

instance in which attention was focussed on bounded variation with respect to • 'D. 

CENTRAL PROBLEM. Characterize those complete inner product spaces 

{H,Q}, of finitely additive functions from R to Y, such that if t is in R then 

evaluation at t is continuous from (H,Q} to {Y,(-,-)} and the restriction to H of Pt 
maps H into H and is Hermitian with respect to Q; investigate intersections and vector 

sums of pairs of such spaces H (each with such an inner product Q); seek integral 

formulas for continuous linear transformations in and between such spaces {H,Q}, 

and for certain linear operations on the linear span S of a family of such spaces H; and 

,investigate the possible existence of a significant norm for such a linear span S. 

After the (essentially self-contained) presentation in Theorems 1-7 of some 

elementary arithmetic about complete inner product spaces { H,Q } of functions from 

a (nonstructured) set R to Y such that evaluation at each element of the set R is a 

continuous linear transformation from {H,Q} to (Y,(',-)}, all such spaces (H,Q} as 

specified in the Central Problem are characterized. It is shown (cf. Abstract and 

Theorems 8-13) that the only such spaces are those Hellinger integral spaces generated 

by finitely additive functions from R to L(Y) +. Namely, in order that (H,Q} should 

be such a complete inner product space as indicated in the Problem, it is necessary and 

sufficient that there be a finitely additive function a from R to L(Y) + such that (i) H 

is the set H a consisting of all finitely additive f from R to Y such that if u is in R then 

f(u) is in the a(u)l/2-image of Y and, for some nonnegative number b, if M is in F 

then 2; v in M Ila(v)-l/2f(v)[12 •< b and (ii) Q is the function Qa from H X H such that 
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if {f,g} is in H a X H a then Qa(f,g) is the integral f(a-1/2f,a -1/2g) over L relatively to 
the family F, i.e., 

Qa(f,g) -- fL/F h, with h(u) = (a(u) '1/2f(u),a(u) -1/2g(u)) for each u in R; 
moreover, for each finitely additive function a from R to L(Y) +, the indicated set H a 
is a linear family of functions and the foregoing formulas do define an inner product 

Qa for H a such that the space {Ha,Qa} is complete. 
As a special instance of the results described in the preceding paragraph, it may 

be noted that, in case L is the real line and R is the pre-ring of all bounded right-closed 

intervals of real numbers and a is a finitely additive function from R to the 

(orthogonal) projections in L(Y) +, the space {Ha,Qa} is as follows: H a is the space of 
all firdtely additive functions f from R to Y such that if u is in R then f(u) is in the 

a(u)-image of Y and, for some nonnegative number b, if M is in F then 

23v in M l]f(v)ll2 •< b; and Qa(f,g) = fL/F(f,g) for each (f,g} in H a X H a. 
In Theorems 14-20, there are developed integral representations for all the 

continuous linear transformations in and between (the pairs of) Hellinger integral 

spaces {Ha,Q a} generated by the members a of an unrestricte family •2 of finitely 
additive functions from R to L(Y) +. Peculiar to the context of finitely additive set 

functions are the representations (Theorems 17 and 20) for the transformations 

which, for each set t in R, commute with the restrictions of Pt• to the appropriate 

Hellinger integral spaces. In particular, for a and 15 in •2 such that H a lies in (i.e., is a 

subset of) H15, the special transformation rr(a,15) which is determined by 
Qa(f,rr(a,/3)g) = Q15(f,g) for {f,g} in H a X H15 is also given (Theorem 18) by 

rr(a,15)g(s) = rs/F[15 -1/2a] ,15-1/2g with respect to [1 '[1, for each s in R. 
In this same Theorem 18, it is shown that if a and/3 are in •2 then Ha+15 is the vector 
sum H a -• H15 of H a and H15 and that the formulas, for (t,,? } in R X Y, 

(a:15)(t)r/= ftlF [(a+15)-1/2a] * [(a+15)-1/215],1 with respect to D '[1, 
define a finitely additive function a:15 (the parallel sum of a and 15) from R to L(Y) + 

such that Ha:15 is the intersection of H a with H15 and Qa:15 = Qa + Q15' For any 15 in •2, 
the space of all continuous linear functions from {H15,Q15} to {Y,(-,-)) is characterized 
(Theorem 15) in terms of the Hellinger operator integrals studied by Yu. L. Shmulyan 
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[ 17] (see Remark 2 following Theorem 15; the papers by Shmulyan [ 18] and by 

Habib Salehi [16] are concerned with the case of finite dimensional Y) and this new 

connection between those integrals and the space {H/3,Q/3} is shown to arise as one 
case of the somewhat more general Theorem 5 reinforced by Theorem 14. 

After Theorem 20 it is assumed that if c• and/3 are such members of the set •2, of 

finitely additive functions from R to L(Y) +, that neither of H a and H/3 lies in the 
other then both of c•+/3 and c•:/3 belong to •2. The linear span of the spaces H a, for c• in 

•2, is denoted by S(•2): there are integral representations for certain normed spaces of 

linear functions from S(•2) to Y, and for certain normed algebras of linear 

transformations from S(•2) to S(•2). These algebras have (Theorem 25)isometric 

algebra-isomorphisms onto weakly closed algebras of continuous linear 

transformations in the direct sum {Zi2{H,Q},i2i2} of the spaces {Hc•,Qc•} (for c• in 
•2). It is the space S(•2) to which reference is made in the title of this report, as a 

linear span of a family of functional Hilbert spaces, although it may happen that some 

of the spaces {Ha,Qa} are finite dimensional and some fail to be separable. 
Finally, in Theorem 26, it is further assumed that if a is in •2 and } is in Y then 

c•-} belongs to Hc• (i.e., the integral œL/Fa'} exists with respect to • -[]): a norm II 'll for 
S(•2) is then described by such a procedure that, in the case [12] of each member of 

•2 being (real) scalar valued, II'll is the total variation norm. The miscellany of 

examples illustrates some effects of this and of other procedures. 

Elementary Arithmetic of Kernel Systems. A kernel system (relatively to the 

space {Y,<-,-)}) is a sequence {K,R,H,Q} such that {H,Q} is a complete inner product 

space of functions from the set R to the linear space Y and K is a function from 

R X R to L(Y) such that if {t,,/} is in R X Y then K( ',t),/is in H and, for each fin H, 

Q(f,K(-,t),/) = <fit),,/). The Examples 5 and 6, at the end of the present report, may be 

viewed as models of the general notion of a kernel system, described here but taken 

from [8, page 259]. 

In this section, no special structure need be assumed for the set R. All the results 

accumulated here in Theorems 1,2, and 3, together with the special cases of Theorems 

1 sp, 2 sp, and 3 sp, have been customary classroom exercises in my usual introductory 

Hilbert Spaces course since the paper [8] was written in 1955 (see Abstracts 
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728t-733t, Bull. Amer. Math. Soc., 61(1955), 537-539). Proofs may be based on the 

Hellinger-Toeplitz Theorem, as extended by von Neumann [24] (Stone's footnote 

[20, page iv], and Rudin's contemporary version [15, page 110], may be noted)and 

incorporated in the following Theorem which is stated here for easy reference. 

THEOREM 0. If the inner product space {H 1,Q1 } is complete, D is a dense set 

in the inner product space {H2,Q2}, A is a function from H 1 to H 2, and B is a 
function from D to H 1 such that Ql(x,By) = Q2(Ax,y) for each {x,y} in H 1 X D, 
then (i) A is linear and continuous from { H 1,Q1 } to {H2,Q2}, (ii) there is only one 
linear extension C of B mapping H 2 to H 1 such that Ql(x,Cy) = Q2(Ax,y)for each 

(x,y} in H 1 X H2,,and (iii) the norm of A is the norm of C, in the sense that ifb >• 0 
then, in order that Q2(Ax,Ax)•< b2Q1 (x,x) for each x in H 1, it is necessary and 
sufficient that Q1 (Cy,Cy) •< b2Q2(y,y) for each y in H 2. 

INDICATION OF ELEMENTARY ARGUMENT FOR CONTINUITY. Let N 2 

be the norm for H 2 corresponding to the inner prottuct Q2' Suppose k is a 

nonnegative number and x is a point in H 1 such that k < N2(Ax ). Let u = Ax/N2(Ax), 

so that N2(u) = 1 and N2(Ax) = Q2(Ax,u): there is a number e such that 0 < 2e < 1 

and such that if v is a point in H 2 and N2(v-u ) < 2e then k < IQ2(Ax,v)l. Let y be a 

point in D such that N2(Y-(1-e)u) < e: 

N2(Y ) •< N2(Y-(1-e)u ) + (l-e) < 1 and N2(Y-U ) •< N2(Y-(1-e)u ) + e < 2e, 

so that k < {Q2(Ax,y)l = IQ1 (x,By)I. There is a positive number r such that if N 1 is the 

norm for H 1 corresponding to Q1 and z is in H 1 and Nl(Z-X) < r then 

k < ]Q1 (z,By) l = [Q2(Az,y) l •< N2(Az)N2(Y) < N2(Az). 

Now, this lower semi-continuity with respect to N 1 of the composite of N 2 with A, 

coupled with the completeness of H 1 with respect to N1, leads directly to the 

N2-boundedness of the A-image of some N 1-open set in H 1; continuity then follows 
from the easily established linearity of the transformation A. 

THEOREM 1. If {H,Q} is a complete inner product space of functions from the 

set R to the space Y then the following are equivalent: 

(1) there is a dense linear subspace D of {Y,(',')) and a function g from R X D 

to H such that, for each {f,t,r/} in H X R X D, Q(f,g(t,r/)) = (f(t),r/), 
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(2) for each t in R, evaluation at t is a continuous linear transformation from the 

space { H,Q} to the space { Y,(', -> }, and 

(3) there is a function K from R X R to L(Y) such that if {t,r/} is in R X Y then 

K( -,t)r/is in H and, for each f in H, Q(f,K(-,t)r/) = ff(t),r/). 

THEOREM 1 sp. If Q is an inner product for the linear subspace H of Y such that 

{ H,Q • is complete then the following are equivalent: 

(1) there is a dense linear subspace D of {Y,(',')} and a function g from D to H 

such that, for each {x,r/} in H X D, Q(x,g(r/)) = (x,r/), 

(2) the identity function is continuous from (H,Q) into (Y,(-,-)•, and 

(3) there is a member A of L(Y) such that if • is in Y then AT is in H and, for 

each x in H, Q(x,Art) = 

Theorem 1 is a direct consequence of Theorem 0 as applied, for each t in R, to 

the pair (H,Q) and (Y,(-,')) of spaces, with A the function consisting of all ordered 

pairs (f,f(t)) for f in H. Theorem 1 sp arises from Theorem 1 in the case that the set R 

is degenerate, with the identification of functions from R to Y as points in Y, and of 

functions from R X R to L(Y) as elements of L(Y). 

TERMINOLOGY. In a kernel system C K,R,H,Q), the function K is the 

evaluation kernel (or reproducing kernel, or kernel function, or kernel) in the space 

(H,Q), and functions of the form E t in MK(-,t)x(t) (for functions x from finite 
subsets M of R to Y) are called K-polygons. The latter terminology seems appropriate 

from the observation that, for K(s,t)= 1 + infCs,t) on [0,1] X [0,1], each function f 

on [0,1 ] which is polygonal in the usual sense may be represented in this form: one 

has f= Z•K(-,Up)Xp for some increasing number sequence Cup} • with u 0 = 0 and 
un= 1,f(u0)= ZgXp, and f(uj)-f(uj_l)=(uj-uj_l)Z•x p (j= 1 .... ,n). 

OBSERVATIONS. If CK,R,H,Q} is a kernel system then (cf. [8, page 256 ff.]) 

(1) for each (s,t } in R X R and (•,rt} in Y X Y, 

(K(t,s)•,rt) = Q(K( ',s)•,K(',t)rt) = (•,K(s,t)n), 

so that, by Theorem 0, K(s,t) is in L(Y) c and K(s,t)* = K(t,s); it may be shown by this 

type of computation that OH,Q) uniquely determines the function K. 

(2) for each finite subset M of R and each function x from M to Y, 

Cs,t) in M X M (x(s)'K(s't)x(t)) • 0 
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since this sum is Q(22 s in MK(',s)x(s),22t in M K(',t)x(t)); the fact that each such 
double sum is real implies Observation 1, since complex scalars are assumed. 

(3) The set of all K-polygons is a dense linear subspace of {H,Q}: if this were 

not dense then, since {H,Q} is complete, there would be a nontrivial member f of H in 

the Q-orthogonal complement of that set - an immediate contradiction. Thus one sees 

that if f is in H then Q(f,f) is the least nonnegative number b with the property that if 

g is a K-polygon then IQ(f,g)12 •< b Q(g,g). 
That the foregoing Observations serve to identify the space { H,Q} in terms of the 

function K on R X R, is the essence of Theorem 2 (cf [8, pages 257-258] ). 

THEOREM 2. If R is a set and K is a function from R X R to L(Y) then, in 

order that there should exist a complete inner product space { H,Q} o f functions from 

R to Y such that if {t,r/} is in R X Y then K(-,t)r/ is in H and, for each f in H, 

Q(f,K(',t)r/) = (f(t),r/), it is necessary and sufficient that, for each function x from a 

finite subset M of R to Y, 

Z{s,t } in M X M (x(s),K(s,t)x(t)) •> 0; 
in case this latter condition is satisfied, there is only one such complete space {H,Q}: 

a function f from R to Y belongs to H only in case there is a nonnegative number b 

such that, for each function x from a finite subset M of R to Y, 

let in M (f(t),x(t))12 •< bZ{s,t } in M X M (x(s),K(s't)x(t)), 
in which case Q(f,f) is the least such number b. 

THEOREM 2 sp. If A is a member of L(Y) then, in order that there should be a 

complete inner product space {H,Q} such that H is a linear subspace of Y which 

includes A(Y) and such that if {x,r/} is in H X Y then Q(x,Ar/) = (x,•), it is necessary 

and sufficient that A belong to L(Y)+; in case A does belong to L(Y) +, then there is 

only one such complete space {H,Q}.' for each member B of L(Y) c such that BB* = A, 

H = B(Y) and Q(x,y) = (B -1 x,B -1 y) for each (x,y } in H X H - a point z of Y is in H 
only in case there is a nonnegative number {3 such that, if rl is in Y, I<z,n)l •< t•B*nrl, in 

which case [lB -1 zfl is the least such number [3. 

A proof of those assertions in Theorem 2 not covered by the preceding set of 

Observations is given in [8, Theorem 2.5 and 2.7] and is based on identification of the 

sequential completion of the space of K-polygons with a space of functions; as with 
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Theorem lsP, Theorem 2 sp arises from Theorem 2 in the case that the set R is 

degenerate, with the identification of functions from R to Y as points in Y, and of 

functions from R X R to L(Y) as elements of L(Y). Alternatively, there is an argument 

[7, Theorem 1, page 665] for Theorem 2sP which is readily accessible independently 

of the present somewhat more general considerations, and from which (as many 

students have seen in classroom exercises) the remaining assertions from Theorem 2 

emerge in consequence. Some detail is included here because the pattern of argument 

seems essential to Theorems 10, 11, and 12 of the present report. It is, therefore, 

supposed that K is a function from R X R to L(Y) satisfying the nonnegativeness 

condition indicated in the statement of Theorem 2, that H is the set of all functions f 

from R to Y as there indicated, and that if f is in H then N(f) is the square root of the 

least nonnegative number b such that the indicated inequalities hold for each function 

x from a finite subset M of R to Y. 

INDICATION OF LINEARITY AND NORMABILITY. As indicated in 

Observation 2, the K-image of R X R lies in L(Y) c and K(s,t)* = K(t,s) for each {s,t } 

in R X R. Since it is true that if f is in H then I(f(t),,/)l 2 •< N(f)2(,/,K(t,t),/) for each 
{t,,/} in R X Y, it follows that if N(f) = 0 then f is the constant 0 from R to the space 

Y. It follows directly from the definition of H and N that, if {f,g } is in H X H and c is 

a scalar, then (i) f+g is in H and N(f+g) 2 •< [N(f)+N(g)]2 and (ii) cf is in H and 
N(ct) 2 •< Ic[2N(f)2: hence, H is linear and N is a norm on H. 

INDICATION OF COMPLETENESS. Suppose that f is an infinite H-sequence 

which is (Cauchy) convergent with respect to the norm N. Letting e be a positive 

number and j a positive integer such that N(fj+ m - fj+n) < e for m,n = 1,2,3,..., the 
first inequality in the preceding paragraph (with the completeness of {Y,(-,-)}) yields 

a function g from R to Y which is the pointwise limit of the sequence f on R with 

respect to the norm •-•. Now, for e and j as above, it follows from the defining 

inequalities for N that (for n = 1,2,...) g-fj+n belongs to the space H and N(g-fj+n) •< e. 
Hence, with the help of the linearity of the space H, one sees that g itself belongs to H 

and is the N-limit of the infinite sequence f. 

INDICATION OF THE INNER PRODUCT Q. Attention is now drawn to the 

collection R fi of all finite subsets of R and also, for each set M in Rfi, to the complete 
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inner product space (yM,(.,.)M) of all functions from M to Y with the customary 

(x,Y)M = Zt in M (x(t),y(t)) for œ x,y } in yM X yM. 
For each M in R fi and f in the space H, let N(f;M) be the square root of the least 
nonnegative number b such that if x is in yM then 

[Zt in M ff(t),x(t))[2 • bZ (s,t) in M X M (x(s),K(s,t)x(t))' 
If f is in H and M 1 and M 2 are members of R fi such that M 1 is a subset of M 2 then, 
since each function x from M 1 to Y has an extension z to M 2 such that z(t): 0 in Y 

for each t in M 2 - M 1 , it is clear that N(f;M 1) • N(f;M2): hence, for each f in H and 

e > 0, there is a member M 0 of R fi such that 
N(f) - e < N(f;M) • N(f) for every M in R fi which includes M 0. 

Now, with a view to applying Theorem 2 sp in each of the spaces (yM,(., .)M ) , it may 
be noted that if M is in R fi then the restriction to M X M of K determines, by 

AMX(S) = Zt in M K(s,t)x(t) for each x in yM and s in M, 

a member A M of L(yM)+: with the obvious notational conventions, if f is in H and M 
is in R fi, it follows from the suggested application of Theorem 2 sp that fl M (the 
restriction to M of f) belongs to AI•2(Y M) and that •A•/2(fIM)•M = N(f;M). For f 
and g in H and M in R fi, one has QM(f,g) = (A•/2(fIM),Afi/2(gIM))M and 

N(f+g;M) 2- N(f-g;M) 2 = 4 Re QM(f,g); 
hence, one has an inner product Q for H such that Q(f,f) = N(f) 2 for each f in H and 

such that, if {f,g} is in H X H and e > 0, there is an M 0 in R fi such that 
IQ(f,g) - QM(f,g)l < e for every M in R fi which includes M 0. 

INDICATION OF ACTION OF K IN {H,Q}. Suppose f is in H, t is in R, and ,/is 

in Y. Let M be any member of R fi which contains t, and x be a member of yM such 
that if s is in M then x(s) = r/of 0 accordingly as s is or is not t. It may be seen that, in 

the notation of the preceding paragraph, AMX = K(',t)r/I M so that it follows from 

Theorem 2 sp (still as applied in {yM,(., .)M }) that 

QM( f,K( -,t )7) = (A•/2(flM),A • / 2(AMX))M = (flM,X)M = (f(t),•). 
It follows from the definition of the function Q that Q(f,K(',t)r/) = (f(t),r/). 
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INDICATION OF UNIQUENESS OF (H,Q). Supposing that (H 1,Q1) is also a 
complete inner product space of functions from R to Y in which K is the evaluation 

kernel, it follows (see Observation 3 preceding Theorem 2) that the set H 0 consisting 
of all K-polygons is dense both in (H,Q) and in (H 1 ,Q1 ); moreover Q1 agrees with Q 
on H 0 X H 0. It follows that if f is an infinite H0-sequence with limit g in (H,Q) then f 
is (Cauchy) convergent in (H 1 ,Q1), and so has a limit h in (H 1 ,Q1): since 

Q(fn,K(',t)rt) = (fn(t),rt) = Q1 (fn,K(-,t)•) for (t,rt) in R X Y (n = 0,1 ,...), 

it follows that h = g. By symmetry, H 1 is a subset of H, and so is H. Now, by 
Observation 3 again, Q1 (f,f) = Q(f,f) for each f in H. From the familiar 

4 Re Q1 (f,g) = Q(f+g,f+g) - Q(f-q,f-q) = 4 Re Q(f,g) 

for (f,g) in H X H, it follows that Q1 is Q. This completes the argument. 

THEOREM 3. If (K 1,R,H 1,Q1) and (K2,R,H2,Q2) are kernel systems then 
(1) H 1 is a subset of H 2 only in case there is a nonnegative number b such that, 

for each function x from a finite subset M of R to Y, 

2 {s,t) in M X M(X(s),K1 (s,t)x(t)) • b2• (s,t) in M X M(X(s),K2(s,t)x(t) ), 
and in this case the least such b is the least nonnegative number c such that 

Q2(f,f) • c Q1 (f,f) for each f in Hi, 

(2) there is a kernel system (K3,R,H3,Q3) such that K 3 = Ki+K2, H 3 is the 
vector sum H 1 $H 2 of H 1 and H 2, and if h is in H 3 then Q3(h,h) is the minimum value 
Of Ql(f,f)+Q2(g,g) for all fin H 1 and g in H 2 such that f+g = hand 

(3) there is a kernel system (K4,R,H4,Q4) such that H 4 is the common part 
H 1H 2 of H 1 and H2, Q4 = Q1 +Q2' and K 4 is given by the formulas (with Q3 as in (2)) 

(•,K4(s,t)rt) = Q3(K1 (',s)•,K2(',t)rt) 

= ¬((•,(K 1 +K2)(s,t)rt) 

- Q3 ((K 1 -K2)( -,s)[,(K 1 -K2)(',t)rt)) 

for each { •,rt ) in Y X Y and (s,t• in R X R. 

THEOREM 3 sp. IrA and B are members of L(Y) + then 

(1) A1/2(Y) is a subset of B1/2(Y) only in case there is a nonnegative number b 
such that, for each • in Y, (•,A•) • b(•,B•), and in this case the least such b is the least 
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c >• 0 such that lIB -1/2x[12 •< cBA -1/2x[12 for each x in A 1/2(y), 
(2) A+B is a member C of L(Y) + such that C 1/2(y) is the vector sum of A 1/2(y) 

and B1/2(Y), and if z is in C1/2(Y)then •]C-1/2zl] 2 is the minimum value of 
llA-1/2x•2+[lB-1/2y•2 for all {x,y} in A 1/2(y) X B 1/2(y) such that x+y = z, and 

(3) there is a member D of L(Y) + such that D1/2(Y) is the common part of 
A 1/2(y) and B 1/2(y), (D-1/2x,D-1/2y) = (A-1/2x,A-1/2y) + (B-1/2x,B-1/2y)for each x 
and y in D 1/2(y), and D is given by the formulas (with C = A+B) 

D = [C-1/2A] *[C-I/2B] = ¬{C- [C-1/2(A-B)] *[C'I/2(A-B)] }. 

As with Theorems 1 sp and 2 sp, Theorem 3 sp arises from Theorem 3 in the case 

that the set R is degenerate, with the identification of fucntions from R to Y as points 

in Y, and of functions from R X R to L(Y) as elements of L(Y). 

INDICATION OF PROOF OF 3(1). The sufficiency is a consequence of 

Theorem 2. If H 1 is a subset of H 2 then Ql(f, Kl(-,t)r/) = (f(t),r/) = Q2(f,K2(',t)r/) for 

all f in H 1 and {t,r/} in R • Y; density in (H2,Q 2} of the set of all K2-polygons then 
makes Theorem 0 directly applicable (A being the identity function from H 1 to H2). 

INDICATION OF PROOF OF 3(2). By Theorem 0, 2, and 3(1), there exists a 

linear transformation A from H 3 to H 1 such that Q1 (f,Ah) = Q3(f,h) for all f in H 1 

and h in H3: in particular, for each (t,r/} in R X Y, Kl(',t)r/= A(K3(',t)r/) so that 

(1-A)(K3(-,t)r/) = K2(-,t)r/. Therefore, 1-A maps H 3 into H 2 and, for each {g,h} in 

H 2 X H3, Q2(g,(1-A)h) = Q3(g,h). Now, for each h in H3, 

Qi(Ah,Ah) + Q2((1-A)h,(1-A)h) = Q3(Ah+(1-A)h,h) = Q3(h,h). 

If {f,g} is in H 1 X H 2 and x is a function from a finite subset M of R to Y then (with 

23 M denoting 2;{s,t } in M X M ) 

123t in M (f(t)+g(t),x(t))[ 

•< [Q1 (f,f)2;•l(x(s),K1 (s,t)x(t))l 1/2+ [Q2(g,g)2;,i•l(X(s),K2(s,t)x(t))] 1/2 
•< [Ql(f,f) + Q2(g,g)] 1/2[2;M(X(S),(K 1 + K2)(s,t)x(t))] 1/2, 

so that (by Theorem 2) f+g is in H 3 and Q3(f+g,f+g) •< Q1 (f,f) + Q2 (g,g)' 
INDICATION OF PROOF OF 3(3). Note that the linear transformation A from 

the preceding argument is Hermitian with respect to Q3; moreover, the first formula 
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defines K4(-,t)r/= (A-A2)(K3(-,t)r/), belonging to H 1 and to H 2 for each (t,r/) in 
R X Y and is equivalent to the second since A-A 2 = 1/4(1-(2A-1)2}. Since it is clear 

that Qi+Q2 is an inner product Q4 for the common part H 4 of H 1 and H2, such that 

the space (H4,Q4} is complete, there remains only the computation 

Q4(f, K4(',t)n) = Q1 (f,A(K2( ',t)r/))+Q2(f,(1-A)(K 1 (',t)n)) = Q3(f,K3(',t)n), 

which is (fit),r/), for f in H 4 and (t,r/• in R X Y, to establish the result. 
REMARK 1. An argument for Theorem 3 has been recorded by P. H. Jessner 

(his 1962 Dissertation [6, Chapter II], Theorems 2.1 and 2.2, and Corollaries), whose 

primary interest was the "approximate inclusion" relation between kernel systems: 

(H 1,Q1 • is said to be approximately included in (H2,Q2} provided that H 1 contains 
a subset of H 2 which is dense in (H1,Qi•. Among other things [6, Theorem 3.1], 
Jessner showed that this provision is equivalent to each of the following: 

(1) there is a function F from R X R to L(Y) c such that if (s,t• is in R X R then 

F(s,t)* = F(t,s) and, for each (•,r/} in Y X Y, F(-,t)n is in H 2 and 

(•,K 1 (s,t)n) = Q2(F( ',s)•,F(',t)n), 

(2) H 2 is dense in the space (H3,Q3) of the present Theorem 3(2), and 
(3) if A is the transformation given in the Indication of Proof for Theorem 3(2) 

and C is the square root of A-A 2 which is Hermitian and nonnegative with respect to 

the inner product Q3 and M is the function from R X R to L(Y) c given by the 

equations M(s,t)n = C((Ki+K2)(',t)n)(s) for (s,t) in R X R and r/in Y, then 

(•,K 1 (s,t)r/) = Q2(M( ',s)•,M(-,t)r/). 

As I have shown elsewhere [10], if the space Y is not finite dimensional then this 

approximate inclusion relation is not transitive. Neither Jessner's results nor my 

example constitutes an integral part of the present development, but there is a 

Comment following Theorem 18 with an illustrative application of his main results. 

TERMINOLOGY. If each of (K1,R,H1,Q1} and (K2,R,H2,Q2} is a kernel 

system, the parallel sum of K 1 and K2, denoted by Ki:K2, is the function K 4 

described in Theorem 3(3), so that (K4,R,H4,Q4} -- (K 1 :K2,R,H 1H2,Q1 +Q2 } . From 
the Observation 1 preceding Theorem 2, to the effect that if (K,R,H,Q} is a kernel 

system then the function K is uniquely determined by (H,Q}, it is clear that parallel 
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summation is both commutative and associative: viz., if each of {Kj,R,Hj,Qj} 
(j = 1,2,3) is given then K 1 :K 2 = K2:K 1 since H1H 2 = H2H 1 and Qi+Q2 = Q2+Q1 , 

and also K 1 :(K2:K3) = (K 1 :K2):K 3 since Hi(H2H3) = (H1H2)H 3 and Qi+(Q2+Q3 ) = 

(QI+Q2)+Q3 . 

REMARK 2. The foregoing terminology and notation are consistent with those 

used by W. N. Anderson and R. J. Duffin [1], who have investigated this idea in 

considerable depth for the matrix algebra case (R a finite set and Y the complex plane; 

or, alternatively, R a degenerate set and Y finite dimensional) using the generalized 

inverses of nonnegative definite Hermitian matrices. Attention should be drawn, in 

passing, to the penetrating study by M. R. Hestenes [5] of the idea of the generalized 

inverse (generalized reciprocal, pseudo inverse). An extension of the parallel sum idea 

to the intermediate case of Theorem 3 sp (Y unrestricted) has been recorded in 1971 

by P. A. Fillmore and J.P. Williams [4, page 276 ff.]: there A:B was taken to mean 

A1/2[(A+B)-I/2AI/2]*[(A+B)-I/2B1/2]B1/2, and this is easily seen to be the D 
indicated in the former of the last two formulas in 3sP(3) (another notation, A:B = 

A(A+B)'IB, has already been justified [7, Theorem 4 and the Defintition, pages 
666-667]; see, also, discussion on page 277 of [4] ). It seems, from the comments and 

query bridging pages 279-280 of the latter paper [4], that the affirmative answer to 

the general question about the associativity of the parallel summation was not noticed 

in that intermediate context at that time. 

REMARK 3. One of the remarkable discoveries by Anderson and Duffin [1] 

was that, in the notation of Theorem 3 sp with Y finite dimensional, if each of A, B, C, 

and D belongs to L(Y) + then so does (A+C):(B+D) - (A:B + C:D). A digression seems 

in order here for the purpose of exhibiting in retrospect a general case of that 

Anderson-Duffin result in the form of a Corollary to the present Theorem 3. 

COROLLARY TO THEOREM 3. (Anderson-Duffin). If each of K1, K 2, K 3, 

and K 4 is the evaluation kernel in a complete inner product space of functions from 

the set R to {Y,(-,-) } then so is the function (Ki+K3):(K2+K4) - (K 1 :K 2 + K3:K4). 

PROOF. Suppose that (for j = 1,2,3,4) {Kj,R,Hj,Qj} is a kernel system, and that 
{ K0,R,H 1H2•-H3H4,Q 0 } and { K 5,R,(H 14-H3)(H24-H4),Q5 } are the kernel systems 
with K 0 = K 1 :K 2 + K3:K 4 and K 5 = (Ki+K3):(K2+K4) provided by Theorem 3, and 



FINITELY ADDITIVE SET FUNCTIONS 83 

with •- denoting vector sum. By Theorem 3, one has the systems 

{Ki:K2,R,H1H2,Qi*Q2} and {K3:K4,R,H3H4,Q3+Q4}; also, the assertion to be 

established is equivalent to the assertion that H1H2-•H3H 4 is a subset of 
(Hi-i-H3)(H2•-H4) and that Qs(h,h) •< Q0(h,h) for each h in H1H2•-H3H 4. Inasmuch 
as the indicated inclusion is clear, let h be a member of H1H2•-H3H 4. By Theorem 
3(2), there exists a member f0 of Hi H 2 and a member go of H3H 4 such that 

f0+g0 = h and 

Q0(h,h) = (Ql+Q2)(f0,f0) + (Q3+Q4)(g0,g0). 

Also by Theorem 3(2), there exists a member {fl,gl } of H 1 X H 3 and a member 
{f2,g2 } ofH 2 X H 4 such that fl+gl = h = f2+g2 and 

Q5 (h,h) = { Q1 (fl ,fl )+Q3 (g 1 ,g 1 )} + {Q2(f2 ,f2)+Q4(g2,g2 ) } 

and such that both the following statements are true: 

(i) Ql(fl,fl)+Q3(gl,gl) •< Ql(f,f)+Q3(g,g) for {f,g} in H 1 X H3, f+g = h. 

(ii) Q2(f2,f2)+Q4(g2,g2) •< Q2(f,f)+Q4(g,g ) for {f,g} in H 2 X H4, f+g = h. 
As a particular consequence, there is the inequality: 

Qs(h,h) •< {Q1 (f0,f0)+Q3(g0,g0) } + {Q2(f0,f0)+Qa(g0,g0)} = Q0 (h,h)- 

Thus the equivalent assertion is established, and the Proof is complete. 

REMARK 4. As a prelude to the next Theorem, one might consider the 

following special situation: let R be the set of all nonnegative integers and C0,C 1 .... be 
an infinite sequence of Hermitian members of L(Y) c. The condition that, for each 

finite subset M of R, there should exist an interval [aM,b M] of real numbers such that 

if x is a function from M to Y then (with 22•1 denoting Z{s,t} in M X M ) 

aM•l•(S(x),Cs+tX(t)) •< •l(x(s),Cs+t+l x(t)) •< bM•I•(x(s),Cs+tX(t)) 

is equivalent [9] to the condition that C be a special type moment sequence. Only for 

the case that some interval [o•dS] includes all the [aM,b M] does such a moment 
sequence fall within the scope of Sz.-Nagy's Principal Theorem [22] concerning the 

representation of a *-semi-group by a family of continuous linear transformations in 

an extension space of {Y,(',-)). In any case, however, with K(s,t) = Cs+ t for {s,t} in 
R X R, the kernel system {K,R,H,Q) plays a central role, and {H,Q) provided a 

realization of the extension space, with C O = 1 as added hypothesis. It may be noted 
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that if (K,R,H,Q} is any kernel system such that K(e,e) = 1 for some element e of R 

then the equations 3`(r/)(s) = K(s,e)r/, for (s,r/} in R X Y, define a linear isometry 3` 

from (Y,(-,-)} into (H,Q}, the Q-orthogonal projection rr from H onto 3`(Y) being 

given simply by rrf = K(',e)f(e) for f in H. 

THEOREM 4. If {K,R,H,Q} is a kernel system and e is an element of the set R 

and Z is the • '•-closure of K(e,e) 1/2(y), then 
(1) the equations 3`(r/)(s) = [K(e,e)-l/2K(e,s)] *r/, for (r/,s } in Z X R, define a 

linear isometry 3, from the space {Z,( ', ') } into { H,Q), 

(2) the equations rrf(s)= [K(e,e)-l/2K(e,s)]*K(e,e)-l/2f(e), for {f,s} in H X R, 
define the Q-orthogonal projection rr from H onto 3`(Z), and 

(3) if (f,r/} is in H X Z then Q(f, 3`(r/)) = (K(e,e)-l/2f(e),r/), from which it follows 
that the Q-orthogonal complement of 3`(Z) in H is the subset of H to which the 

member f of H belongs only in case fie) = 0. 

The result enunciated here as Theorem 4, is the first step established in the 

inductive proof of Lemma 11 in [9, page 58]: there, e was the zero in the set R of all 

nonnegative integers, but the argument was independent of the character of R. That 

argument, it may be recalled, commences with two applications of the present 

Theorem 2 sp [9, Lemma 1 ] to show that if f is in H then fie) is in K(e,e)l/2(Y) and 
•K(e,e)-l/2f(e)•2 •< Q(f,f) so that, in particular, if s is in R and r/ is in Y then 
[lK(e,e)'l/2K(e,s)r/l] •< l]K(s,s)l/2r/{], whence K(e,e)-l/2K(e,s) is in L(y)C; the 
argument is essentially completed with identification of the function F, 

F(s,t) = K(s,t) - [K(e,e) -1/2K(e,s)] * [K(e,e) -1/2K(e,t)], 

as a matrix representation of a Q-orthogonal projection in the sense of Theorem 6 to 

be enunciated presently (an alternate argument may be based on the Theorems 1 and 

2). The following interim result serves to characterize, for a kernel system {K,R,H,Q}, 

those functions G from R to L(Y) c such that G-*• is in H for • in Y; it will be the 

basis for Theorem 15, even as Theorem 4 will be for Theorem 14, and a proof is given 

for Theorem 5 which established a pattern adaptable to Theorem 6. 

THEOREM 5. If (K,R,H,Q} is a kernel system then the equations, 

o(#)(t)r/= #(K(',t)r/) for {t,r/) in R X Y, 

define a reversible linear transformation o from the collection of all continuous linear 
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functions I.t from {H,Q) to (Y,(-,-)) onto the collection of all functions G from R to 

L(Y) c such that G '*• is in H for each • in Y, and if {#,G} is in o then 

(1) for each fin Hand • in Y, (#(f),•) = Q(f,G-*•), and 

(2) o is an isometry in the sense, that, if b • O, these are equivalent.' 

(i) D#(f)02 •< b2Q(f,f) for each fin H, and 
(ii) Q(G-*•,G-*•) •<b20•2 for each • in Y. 

PROOF. Suppose # is a continuous linear function from (H,Q} to {Y,(',')} and 

b •> 0 such that 0#(f)•2 • b2Q(f,f) for each f in H: let G be a function from R to L(Y) 
such that G(t)t/= #(K(',t)t/) for ( t,r/} in R X Y. Inasmuch as, for each such 

I[G(t)t/[[ 2 •< b2(t/,K(t,t)t/), G maps R into L(Y) c. If x is a function from a finite subset 
M of R to Y then, for each • in Y, 

let in M(G(t)*•,x(t) ) 12 = [(•,#(Et in M K(', t)x(t)))[2 

•< [l•[1262E (s,t } in MXM(X(s),K(s,t)x(t) ), 
so that, by Theorem 2, G-*• is in H and Q(G'*•,G-*•) •< b2•f12; moreover, 

(#(Et in MK(',t)x(t)),• ) = Et in M(x(t),G(t)*• ) = Q(Et in MK(',t)x(t), G'*•), 

so that assertion (1) follows from the density in {H,Q} of the set of K-polygons. 

Suppose, now, that G is such a function from R to L(Y) c that G-*• is in H for 

each • in Y: for functions x from finite subsets M of R to Y, the formulas 

Q(Et in M K(',t)x(t),G'*•) = E t in M(x(t),G(t)*• ) = (MEt in M K(',t)x(t)),•), 

define a linear function •t from a dense subset of (H,Q) to (Y,(-,-)) so that, by 

Theorem 0, there is only one linear extension /a of )t mapping H into Y such that 

Q(f,G-*•) = (#(f),•) for each (f,•) in H X Y,/a is continuous from (H,Q} to the space 

(Y,(-,-) •, and if b •> 0 then conditions (i) and (ii) are equivalent. 

REMARK 1. From Theorem 5 there is available some sharpening of Theorem 1, 

in the following sense. Suppose that, for some r in R, #(f) = f(r) for f in H and let 

G=o(#): for each t in R, G(t)=K(r,t). If • is in Y, G-*•= K(-,r)• and 

Q(G-* •,G' * •) = (•,K(r,r)•); hence, if b •> 0, the following are equivalent: 

(i) ]f(r)• 2 •< b2Q(f,f) for each f in H, and 
(ii) (•,K(r,r)•) •< b2[]•[] 2 for each • in Y. 
REMARK 2. If, in the context of Theorem 5, L(H,Y) denotes the collection of 
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all continuous linear functions from {H,Q} to {Y,(',') } then the o-image of L(H,Y) is 

complete with respect to the norm indicated implicitly in Theorem 5(2); one may 

introduce an L(y)C-valued inner product for the o-image of L(H,Y) by the equations 

Q(G 1 -*•,G2-*•) = (•,(G 1,G2)•) for {•,•} in Y X Y, 

whereupon (-,') is readily seen to have the following properties: 

(i) (G1 +G2,G 3) = (G 1 ,G 3) + (G2,G 3) and (kG 1 ,G 2) = k(G 1 ,G 2) for k in L(Y) c, 
(ii) (G 1 ,G2)* = (G2,G1), (G,G) is in L(Y) + and is 0 only in case G is 0, 
(iii) (G,K(t,-)) = G(t) for each t in R, and 

(iv) I(•,(G 1 ,G2)•)I 2 •< (•,(G 1,G 1)•) (•,(G2,G2)•) for each {•,• } in Y X Y, 
and if t• is in L(H,Y) and G = o(#), the aforementioned norm of G is the least 

nonnegative number b such that •(G,G)1/2• •< b• for each • in Y. In case Y is finite 
dimensional, this norm may be shown to be equivalent to that corresponding to the 

complex-valued inner product q: q(G 1 ,G 2) = trace of (G 1 ,G2). 
REMARK 3. With K(s,t) = 1 or 0 accordingly as s is or is not t, {H,Q} is seen to 

be the familiar "direct sum of R copies of the space {Y,(-,-) }" described as follows: H 

is the set of all functions f from R to Y such that there is a nonnegative number b such 

that •;t in M Bf(t)Q2 •< b for each finite subset M of R, and Q(f,g) = •;t in R (f(t),g(t)) 
for {f,g } in H X H - in the sense that if e is a positive number and { f,g } is in H X H 

then there is a finite subset M 0 of R such that IQ(f,g) - •;t in M (f(t),g(t))l < e for each 

finite subset M of R which includes M 0. The final set (or range) of the transformation 
o from Theorem 5 is the set of all functions G from R to L(Y) c such that if • is in Y 

then there is a nonnegative number • such that •;t in M (•,G(t)G(t)*•) •< • for each 

finite subset M of R: assertion 5(1) may be read as (#(f),•) = •;t in R (G(t)f(t),•)' It will 

follow from Theorem 15(1) that #(f) = •;t in R G(t)f(t) with respect to B'[I, but this 
may also be proved directly from Theorem 5 because of membership in L(Y) c of the 

weak (hence, strong) limit •;t in R G(t)G(t)*' Finally, in connection with the preceding 

Remark 2, the formulas (G 1 ,G 2) = •;t in RGI(t)G2(t)* may be noted. 

THEOREM 6. If each of {Kc•,R,H•,Q •} and (K•,R,H•,Q•} is a kernel system, 

mc• • is the set to which F belongs only in case (i) F is a function from R X R to the 
set L(Y) and (ii) there is a nonnegative number b such that, if each of x and y is a 

function from a finite subset M of R to Y, 
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IZ•I(X(S),F(s,t)y(t))l 2 • b2Z•l(x(s),Ka(s,t)x(t))Z•l(Y(s),K (s,t)y(t)) 

(with 2I• denoting • {s,t} in M X M ), and Tc• is the space of all continuous linear 
transformations from {H/•,QB) to •Ha,Qa•, then the equations 

ß (C)(s,t)• = C(KB(-,t)•)(s), for C in Tc•, • s,t ) in R X R, and • in Y, 

define a reversible linear transformation ß from TaB onto mc• such that, if the 
ordered pair •C,F ) belongs to ß and A is the (adjoint) transformation from H a to 
determined by Qa(f,Cg) = QB(Af,g) for { f,g• in H a X Hl•, then 

(1) in order that the nonnegative number b should satisfy condition (ii), it is 

necessary and sufficinet that, for each g in H/•, Qa(Cg,Cg) • b2Q•(g,g), 
(2) F(s,t)*• = A(Ka(-,s)•)(t) for each {s,t) in R X R and • in Y, 

(3) (Af(t),•) = Q•(f,F(-,t)•) for each f in H a and •t,• ) in R X Y, 

(4) (•,Cg(s))= QB(F(s,')*•,g) for each g in HBand •s,•) in R X Y,and 
(5) in case a is Band each of •C 1 ,F 1) and •C2,F 2) belongs to eo and C = C 1 ,C 2, 

(•,F(s,t)•?) = QB(Fl(S,')*•,F2(',t)•) for {s,t) in R X R, •,•) in Y X Y; 

if, moreover, H a is a subset of Hl• and •r is the member of Tc• determined by the 
condition that Q•(f,•rg) = Q/•(f,g) for all •f,g) in H a X H/•, then •(rr) = K a. 

Theorem 6 arises as in instance of Theorem 3.1 of [8, pages 259-260], with the 

three Corollaries there indicated, but a proof may be constructed with the help of the 

present Theorems 0, 1, and 2 along the lines of the Proof which has been given for 

Theorem 5. The somewhat more general Theorem 3.1 of [8] allows a possibility of 

different underlying sets R a and RB for the two kernel systems: the present Theorem 
5 is seen to arise therefrom by taking the first set R a to be degenerate. 

COROLLARY 6.1. In the context of Theorem 6, if F is a function from R X R 

to L(Y) c then, in order that P should be such a member of mc• that •-1 (p) is a linear 
isometry from {H•,Q•} onto {Ha,Qa}, it is necessary and sufficient that, for each 
{s,t} in R X R and {•,r/} in Y X Y, I'(-,s)• be in H a, I'(t,')*• be in H•, 

Q•(I'(.,s)•,I'(.,t)n) = (•,K•5(s,t)•), 
and 

Q•I'(s,-)* •,I'(t,- )*r/) = (•,K•(s,t)n>. 
INDICATION OF PROOF. As to the necessity, with A the adjoint (as in 
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Theorem 6) of C = •-I(F), the conditions are consequent to: CA = 1 on H a, and 

AC = 1 on H13. Regarding the sufficiency, supposing F as indicated, it must be shown 
that F belongs to ma13: if each of x and y is a function from the finite subset M of R 
to Y then (by Schwarz's inequality for Qa, with Z M as before) 

IZl•iX(s),F(s,t)y(t) >12 = IQa(Zs in MKa (' ,s)x(s)'Zt in M F(',t)y(t)) ]2 
•< Zl•(X(s),Ka(s,t)s(t)) ZM(Y(s),K13(s,t)y(t)), 

whence F is in mo•13. Now, with C and A as before, if {s,t } is in R X R and {•,r/} is in 
Y X Y then 

(•,CA(Ka(' ,t)•)(s)) = Q13(F(s,-)* •,AKa(-,t)•) = Q13(F(s,-)*•,F(t,' )*•), 
and 

(•,AC(K13(-,t)r/)(s)) = Qa(F(' ,s)•,CK13(',t)r/) = Qa(F(' ,s)•,F(',t)r/), 
so that CA = 1 on the Ka-polygons and AC = 1 on the K•polygons. Continuity and 
density, on and in the respective spaces, insure the asserted conclusion. 

COROLLARY 6.2. If, in the context of Theorem 6 with a = 13, F is a function 

from R X R to L(Y) then, in order that F should be such a member of m1313 that 

ß -I(F) is a Q•orthogonal projection, it is necessary and sufficient that, for each {s,t } 
in R X R and {•,r/} in Y X Y, F(-,s)• be in H13and 

Q13(F(' ,s)•,F(' ,t)r/) = (•,F(s,t)r/>. 
INDICATION OF PROOF. As to the necessity, with C = •-1 (F), the condition is 

a consequence of: C = C 2 and is Hermitian with respect to Q13. Regarding the 
sufficiency, supposing F as indicated, if each of x and y is a function from the finite 

subset M of R to Y then (with Z M as before), seriatim, 

Zl•(Y(s),F(s,t)y(t)) = Q13(Zs in M TM',s)y(s),Zt in M F(' ,t)y(t)) •> 0 
(so that F maps R X R into L(Y) c and F(s,t)* = F(t,s) for (s,t } in R X R), 

{Zl•(Y(S),F(s,t)y(t)) }2 = iQ13(Z s in MK13("s)y(s)'Zt in M F(',t)y(t)) 12 
• Z•l(Y(s),K•s,t)y(t)) Zl•l(Y(s),F(s,t)y(t)), 

ZMiY(S),F(s,t)y(t)) •< ZM(Y(s),K•s,t)y(t)), 
and 

iZI•(x(s),F(s,t)y(t)> ]2 = iQ13(Z s in MK13 (' 's)x(s)'Zt in M r'(' ,t)y(t))12 
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• Zl•(x(s),Kg(s,t)x(t)) 22 'l•i(Y(s),F(s,t)y(t)) 

•< 221•(x(s),Kt•(s,t)x(t)) 2;I•(Y(s),Kt•(s,t)y(t)), 

whence F is in m/3/3. Now, with C = cb -1 (I•), C is Hermitian with respect to Q/3 as a 
consequence of the fact noted above that I•(s,t) * = I•(t,s) for (s,t) in R X R. The 

assumed condition on ? now implies that C = C 2 on the K/3-polygons and, as in the 
indicated argument for Corollary 6.1, this insures that C = C 2 on all of 

THEOREM 6 sp. Suppose each of A and B is in L(Y) c, m is the set to which G 

belongs only in case (i) G is in L(Y) and (ii) there is a nonnegative number b such 

that, if {•,•1} is in Y X Y, I(•,G•?)[ •< b0A*•l]B*r/0, H 1 is the orthogonal projection 

from Y onto the •' •-closure of A*(Y), II 2 is the orthogonal projection from Y onto 
the •'•-closure of B*(Y), and T is the set of all members D of L(Y) c such that 

H1DH 2 -- D. Then there is a reversible linear transformation q• from T onto m such 

that q•(D) = ADB* for each D in T,' if, moreover, {D,G} is in q•, 

(1) in order that the nonnegative number b should satisfy condition (ii), it is 

necessary and sufficient that, for each z in Y, 0Dz• •< b[IzD, and 

(2) each of A-1G and B'IG * is in L(y)Cand D = A-I(B-1G*)* = (B-I(A-1G)*) *. 
The foregoing proposition has been established as Lemma 3 in [9, page 49]; it 

may be seen to arise from Theorem 6 as follows. Direct translation of Theorem 6 

yields q•(C) = CBB* for C in Tot/3 , where (cf Theorem 2 sp) A is a linear isometry from 
{Hi(Y),(-,') } onto (A(Y),Qcr} and B is a linear isometry from (H2(Y),(-,-)} onto 

{B(Y),Qfi }, and cb maps Tot/3 onto the set m (corresponding to mo• 8 in Theorem 6) in 
the manner indicated. Now the function •, •(C) = A-1CB for C in Tot/3 , is a linear 
isometry from Tot/3 onto the set T: q• is the composite cb[• -1 ] from T onto m. It may 
be noted that 111 = A'IA and H 2 -- B-lB (cf Lemma 2 in [9, page 48] ). 

REMARK. For the case that G = G* in L(Y) c and A belongs to L(Y) + and there 

is a b >• 0 such that ](G•,•)] •< b(A2•,•) for each • in Y, the transformation D in T such 
that D = D* and G = ADA (B = A in Theorem 6 sp) was discovered as a consequence of 

other considerations in 1952 by B. S_z.-Nagy [21, pages 290-291 ] in an investigation 

of Hermitian moment sequences on a (bounded) number interval: a 1955 footnote by 

Sz.-Nagy [22, page 11] calls attention to those other considerations. A general 

application of the idea, with B = A not necessarily in L(Y) +, appears in [9, Lemma 6, 
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page 53]; see [9, page 79 f.] for acknowledgement of relevant priorities. 

THEOREM7. Suppose {H1,Q 1) and {H2,Q2} are complete inner product 

spaces, H 1 is a linear subspace of H 2, and rr is a function from H 2 to H 1 such that, for 

each {f,g} in H 1 X H2, Ql(f,rrg) = Q2(f,g). With the notational conventions (i) N 1 

and N 2 are the respective norms corresponding to the inner products Q1 and Q2, 

(ii) for j = 1 or 2, Tj is the algebra of continuous linear transformations in the space 
{ Hj,Qj }, (iii) if {A,B} is in T 1 X T 2 then A' is the adjoint of A with respect to Q1 
and B" is the ad]oint of B with respect to Q2, (iv) rr 1/2 is the square root of rr which 
is Hermitian and nonnegative with respect to Q2' and (v) rr -1 is the inverse of the 
restriction of rr, and rr -1/2 the inverse of the restriction of rr 1/2, to the N2-closure of 
H 1' the following statements are true: 

(1) H 1 is •rl/2(H2)andQl(f,g)=Q2(rr-1/2f,rr-1/2g)forall {f,g} in H 1 X H 1 and 
if {A,B} is in T 1 X T 2 then A isasubset of Bonly in case A'•' = rrB"; 

(2) if B is in T 2 and B(H1) lies in H 1 then the restriction to H 1 of B is in T 1 and 

has norm, with respect to N 1, the norm of rr-1/2Brrl/2 with respect to N2; 
(3) if A is in T 1 then rr-1/2Arr 1/2 is in T 2, (rr-1/2Arrl/2)" = rr-1/2A' rrl/2, and A 

is the restriction to H 1 of a member oft 2 only in case A'rr(H2) lies in rr(H2), in which 
case rr-lA'rr belongs to T 2 and A is a subset of (rr-l A' rr)"; 

(4) if B is in T 2 then Brr = rrB only in case there is a member A oft 1 such that A 
is a subset of B and A' is a subset of B"; 

(5) if A is in T 1 then Arrrr 1/2 = rrArr 1/2 only in case there is a member B oft 2 
such that A is a subset of B and A' is a subset of B". 

A PROOF FOR 7(1). The formulas for H 1 and Q1 are a consequence of 

Theorem 2 sp applied in the space {H2,Q2) instead of (Y,(-,')}. If {A,B} is in 
T 1 XT 2, 

Ql(f,A'rrg - rrB"g) = Q1 (Af,rrg) - Q2(f,B"g) = Q2(Af- Bf,g) 

for all (f,g} in H 1 X H2, so that A = B on H 1 only in case A'rr = rrB". 
A PROOF FOR 7(2). In the presence of Theorem 3sP(1), this is an application 

of Theorems 3 and 5 of [7, pages 666-667]. It may be argued directly, however, as 

follows. Assuming that B is in T 2 and B(H1) lies in H 1, Theorem 3sP(1) applied in the 
space { H2,Q 2} assures the existence of a nonnegative number/3 such that 
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if f is in H 2 then Q2(f,[B•r i/2] [B•r I/2] "f) • •2Q2(f,•rf); 
by the definition of the norm N 2, this is equivalent to 

if fis in H 2 then N2([B•rl/2] "f) • N20rl/2f); 
by Schwarz's inequality and the definition of [B•r 1/2] ", this is equivalent to 

if (f,g) is in H 2 X H 2 then IQ2(f,B•r 1/2g)[ • • N20rl/2f)N2(g); 
by Theorem 2 sp applied in the space (H2,Q2 }, this is equivalent to 

ifg is in H 2 then N20r-i/2B•r i/2g) • N2(g); 
since B•r i/2 is 0 on the Q2-orthogonal complement of H 1 , this is equivalent to 

ifg is in H 2 then N20r-1/2B•r 1/2g ) • • N20r-1/2•rl/2g); 
finally, this says that if f is in H I then N i (Bf) •/• N 1 (f), and all is proved. 

A PROOF FOR 7(3). Assuming that A is in T I, if (f,g} is in H 2 X H 2 then 

Q 1 Or i/2f, A• r 1/2g) = Q20r- 1/2•r 1/2f,•r-i/2A• r 1/2g) = Q2(f,• r- 1/2A• r 1/2g), 
so that •r-1/2A•rl/2 is in T 2 and (•r-1/2A•rl/2)" = •r-1/2A'•rl/2. According to the 
Statement 7(1), if A is a subset of the member B of T 2 then A'•r = •rB" so that 

A'•r(H2) lies in •r(H2). Suppose, now, that A'•r(H2) lies in •r(H2)' by (7(2), the 

restriction to H 0 = •r(H2) of A' is in the algebra T O determined by the inner product 
Q0(f,g) = Q2(•r'lf,•r-lg) for (f,g} in H 0 X H 0. By applying the first part of this 
argument to the pair (T0,T2), one sees that •r-lA'•r belongs to T 2 and one may 
consider the member B = (•r-iA'•r)" of T2: 

B•rl/2 = [•rl/2(•r-iA'•r)] ,, = [•r-1/2A'•r ] ,, = •rl/2(•r-i/2A'•rl/2)" = •rl/2•r-1/2A•rl/2 ' 

so that B•r 1/2 = A•r 1/2, and this is what remained to be proved. 

A PROOF FOR 7(4). Suppose that B is in T 2. By 7(1), if there is a member A of 

T 1 such that A is a subset of B and A' is a subset of B", then •rB" = B"•r so that 
Bn nB. Suppose, now, that B•r •rB: it follows that •rB" " = = = B •r, and it is a property 

of nonnegative Hermitian square roots that •r 1/2 commutes with B and with B". By 

7(2), the restriction to H 1 of B is in Ti, as is the restriction to H 1 of B". Finally, if 

each of f and g is in the N2-closure of H 1 then 

Q 1 (•r 1/2f, B• r 1/2g) = Q 10r 1/2f,•r i/2Bg ) = Q2(f,Bg ) 
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= Q2(B"f,g) = Ql(rrl/2B"f, rrl/2g) 
= Q1 (B"rr 1/2f,rr 1/2g). 

A PROOF FOR 7(5). Suppose A is in T 1. If there is a member B oft 2 such that 
A is a subset of B and A' is a subset of B" then, by 7(4), Brr = rrB so that Art = rrA on 

H 1, i.e., Arrrr 1/2 = rrArr 1/2. Suppose, now, that Art = rrA on H1; it is easily checked 
that the restriction to H 1 of rr 1/2 is Hermitian and nonnegative with respect to QI' 
Therefore Art 1/2 = rrl/2A and A'rr 1/2= rrl/2A' on Hi: hence rr-1/2Arrl/2 = A and 
•r-1/2A'•t 1/2= A' on H 1. By 7(2), rr-1/2Arrl/2 belongs to T 2 and (•r-1/2A•rl/2)"= 
•r-1/2A'•rl/2, so that the proof is complete. 

COROLLARY TO THEOREM 7. If, with the suppositions of Theorem 7, 

{H1 ,Q1} and {H2,Q 2} are complete inner product spaces of functions from a set R to 

the space Y with evaluation kernels K 1 and K 2, respectively, and {A,B} is in T 1 X T2, 
then 

(1) in order that A should be a subset of B, it is necessary and sufficient that if 

(t,•} is in R X Y then A'(Ki(-,t)•) = ,rB"(K2(',t)•), and 
(2) if A is a subset of B then, in order that A' should be a subset of B", it is 

necessary and sufficient that, for {t,r/} in R X Y, B(Kl(-,t)r/) = rrB(K2(-,t)•). 
INDICATION OF PROOF. It is clear that Kl(-,t)• = rr(K2(-,t)•) for each t in R 

and • in Y since, for each f in H 1, 

Q 1 (f,K 1 ( ß ,t)r/) = (f(t),r/) = Q2(f,K2( ß ,t)r/); 

from the density (for j= 1 or 2) of the Kj-polygons in {Hj,Qj}, assertions (1)and (2) 
are consequences, respectively, of (1) and (4) of Theorem 7. 

REMARK 1. The supposition in Theorem 7 that {H1,Q 1} is continuously 

included (or continuously situated) in {H2,Q2} is, according to Theorem 3(1), 

automatically satisfied with H 1 a subset of H 2 for the spaces of primary concern in 
the present context, spaces of Y-valued functions having evaluation kernels relatively 

to the inner product (-,'). It may be noted, as I have shown elsewhere [ 11 ], that if the 

complete inner product space { H2,Q 2} is continuously included in a complete inner 

product space {H,Q} such that H 2 is a proper dense linear subspace of {H,Q} then 

there exist two complete inner product spaces (H1,Q 1} and {H3,Q 3} such that 
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(i) {H 1,Q1 } is continuously included in {H2,Q2}, (H2,Q 2} is continuously included 
in (H3,Q3}, and (H3,Q 3} is continuously included in {H,Q}, (ii) H 1 is dense in 
(H,Q} and H 3 is not all of H, and (iii) H 1 is not dense in {H2,Q2 } and H 2 is not 
dense in (H3,Q3}. Hence, the formulation of Theorem 7 may not be tautologically 
amiss. 

REMARK 2. The construction recalled in the preceding Remark was carried out 

[11] with the help of those portions of the 1959 results [7, Theorems 1-5] (and the 

1962 results [9, Lemmas 1-3]) which are included in the present Theorems 2 sp, 

3sP(1), and 6 sp. Meanwhile, those earlier results have been noted separately by others 

(e.g., by R. G. Douglas [2] and by Yu. L. Shmulyan [19]) and have been used 

effectively by Fillmore and Williams [4, Theorem 2.1 et seq.] in exposition about the 

lattice of operator ranges (or Julia varieties, or semiclosed-subspaces) in Y. As has been 

observed by Shmulyan [ 19, page 400], such results can be effective in an investigation 

of linear fractional transformations with L(y)C-coefficients [7 ]. 

Characterization of He!linger Integral Spaces. From here onward, as indicated in 

the Introduction, it is assumed that R is a pre-ring of subsets of the set L filling up L, 

F is the family consisting of all finite subcollections M of R such that no element of L 

belongs to two sets in M, and (for each t in R) Pt is a transformation such that if k is a 

finitely additive function from R to Y or to L(Y) then Pt k is a function from R (to Y 

or to L(Y), respectively) determined as follows: if s is in R, Ptk(s) = 0 or Z v in M k(v) 
accordingly as s does not intersect t or M is a member of F which fills up st. 

THEOREM 8. If (K,R,H,Q} is a kernel system such that each member of H is a 

finitely additive function from R to Y and such that, for each t in R, Pt maps H into H 

and the restriction of Pt to H is Hermitian with respect to Q, then the function 

o•(t) = K(t,t) for each t in R, is finitely additive from R to L(Y) + and, for each ( s,t } in 

R X R, K(s,t) = (Pto0(s). 
PROOF. With o• defined as indicated, if f is in H and { s,t} is in R X R and r/is in 

Y then o•(t) = K(t,t), a member of L(Y) + by Theorem 2, and 

Q(f,PsK(',t)r/) = (Psf(t),r/)= (Ptf(s),r/)= Q(f,PtK(-,s)r/) 

so that PsK(-,t)r/= PtK(-,s)r/and, for each member M of F filling up t, 

o•(t) = Z v in MPv K(',t)(v) = Z v in MPt K(-,v)(v) = Z v in M K(v,v); 



94 J.S. MAC NERNEY 

hence cr is finitely additive from R to L(Y) +. Now, if s and t are members of R, one of 
these cases arises: either s does not intersect t in which case 

(i) Ptcr(s) = 0 = PtK(-,s)(s) = PsK(-,t)(s) = K(s,t), 
or s is a subset of t in which case 

(ii) Ptcr(s) = K(s,s) = PtK(',s)(s) = PsK(',t)(s) = K(s,t), 
or s intersects t but is not a subset of t in which case there is a member M of F filling 

up s, with a subcollection W filling up the intersection st, so that 

(iii) Ptcr(s) = 23 v in W K(v,v) = 2;v in wPt K(',v)(v) 

= 22v in WPv K(-,t)(v) = 22 v in W K(v,t) = 22v in M K(v,t) = K(s,t). 

THEOREM 9. Suppose cr is a finitely additive function from R to L(Y) +, and f is 

a finitely additive function from R to Y such that if v is in R then f(v) is in 

or(v) 1/2(y). Then, if M and W are members of F such that each set in M is filled up by 
a subcollection of W, 

23s in M •cr(s)-l/2f(s)•2 •< 23t in W •cr(t)-l/2f(t)•2- 
Theorem 9 is a consequence of Theorem 3sP(2), on the basis of which one sees 

that if U is a subcollection of W filling up the member s of M then 

•cr(s)-l/2f(s)•2 •< 2;v in U •cr(v)-l/2f(v)fl2; 
for scalar valued cr this has been seen [ 12, Theorem 1 ] from Schwarz's inequality. The 

inequality from Theorem 3sP(2) invoked here is: if each of A and B is in L(Y) + and x 

is in A1/2(Y) and y is in B1/2(Y), then x+y is in (A+B)I/2(Y) and 

[l(A+B)-l/2(x+y)[12 •< [1A-1/2x[l 2 + •B-1/2y• 2. 

The original form of this proposition was: if each of A and B is in L(Y) + and x is a 

member of A(Y) and y is a member of B(Y), such that x+y is in (A+B)(Y), then 

(x+y,(A+B)-I (x+y)) •< (x,A-lx) + (y,B'ly) 

[8, Lemma 1.1 on page 254] (Abstract 728t, Bull. Amer. Math. Soc., 61(1955), 537). 

THEOREM 10. If cr is a finitely additive function from R to L(Y) + and f is a 

finitely additive function from R to Y and b >• O, the following are equivalent: 

(1) there is a real nonnegative finitely additive function h defined on R such that 

if {t,,/} is in R X Y then I(f(t),,/)[ 2 •< h(t)(,/,cr(t)r•) and fL/F h •< b, 
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(2) if M is a member of F then, for each function x from M to Y, 

IZt in M ff(t),x(t))t2 •< b Z t in M (x(t),a(t)x(t))' and 
(3) if v is in R then f(v) is in a(v)l/2(Y) and, for each member M ofF, 

Zt in M l]a(t)-l/2f(t)02 •< b. 
PROOF. As in the Proof given for [12, Theorem 2], if condition (3) holds then 

it is a consequence of Theorem 9 that the equations h(t) = ft/FDa-1/2f• 2, for t in R, 
define a real nonnegative finitely additive function h on R and, by Theorems 2 sp and 

9, if (t,r/) is in R X Y then 

I(f(t),r/)l 2 •< Da(t) -1/2f(t)•2(rl,a(t)rl) •< h(t)(r/,a(t)r/). 

The implication from (1) to (2) is a consequence of Schwarz's inequality coupled with 

the finitely additive character of h; if (2) holds then (3) is a consequence of Theorem 

2 sp applied in the product space yM for each member M of the family F. 
THEOREM 11. If a is a finitely additive function from R to L(Y) + then the 

collection H a, of all finitely additive functions f from R to Y such that (for some 
nonnegative number b) one of the three conditions in Theorem 10 holds, is a linear 

space of functions from R to Y, there is a norm N a for H a such that if f is in H a then 

Na(f) 2 = f L/FOa-1/2f• 2, and H a is complete with respect to N a. 
Theorem 11 may be proved as a consequence of Theorems 9 and l0 with the 

help of the observation that if f is in H a then Na(f) is the square root of the least 

nonnegative number b such that one of the three conditions in Theorem l0 holds. The 

result may be viewed as a translation of relevant portions of [ 12, Theorem 3] from 

the context in which a was scalar valued and existence of fL/F a was given. 
THEOREM 12. If a is a finitely additive function from R to L(Y) + then there is 

an inner product Qa for the space H a (described in Theorem 11) such that 

Qa(f,g) = fL/F(a-1/2f, a-1/2g)for each {f,g) in H a X H a, 
and if t is in R then Pt maps H a into H a and, for each (f,g) in H a X Ha, 

qa(Ptf, g ) = ft/F(a-1/2f,a-1/2g) = qa(f,ptg); 
with Ka(s,t ) = (Pta)(s) for (s,t) in R X R, (Ka,R,Ha,Qa) is a kernel system. 

PROOF. This argument is patterned after that given for [ 12, Theorem 6], and as 
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in that argument the existence of the indicated function Qo• follows from 

23u in M Ha(u)-I/2[f(u) +g(u)l [12 - Zu in M [1a(u)-I/2 [f(u)-g(u)l 

= 4 Re Z u in M (a(u)-I/2f(u),a(u)-I/2g(u)) 
as a set of identities, { f,g} in H a X H a and M in F. It is clear from this that if f is in 

H a then Qa(f,f)= Na(f)2 , so that Qa is an inner product for H a with corresponding 
norm Na: the space {Ha,Qa} is complete. If {f,g} is in H a X Ha, the indicated 

integral formulas for Qa(Ptf,g) and Qo•(f,Ptg ) (for t in R) may be verified by 
considering members of F having subcollections filling up t. There remains only the 

verification that the indicated function Ko• is the evaluation kernel in the space 

{ Ha,Qtx}; if f is in H a and (t,r• } is in R X Y then, for each member W off having a 
subcollection M filling up t, 

Zu in W (a(u)-I/2ffu),a(u) -1/2Kot(u,t)r/) = Zv in M (a(v)'l/2f(v),a(v)l 

= Zv in M (f(v),r/) = (f(t),r/), 

so that Qa(f, Ka(.,t),?) = (f(t),r/). 

THEOREM 13. If H is a linear space of finitely additive functions from R to Y 

then, in order that Q should be an inner product for H such that 

(i) the space {H,Q} is complete, 

(ii) if s is in R, evaluation at s is continuous from { H,Q} to { Y,(.,')}, and 

(iii) for each t in R, the restriction to H of Pt is a Q-orthogonal projection, 
it is necessary and sufficient that there exist a finitely additive function a from R to 

L(Y) + such that {H,Q} is the space {Ha,Qa} described in Theorems 11-12. 
Theorem 13 is a consequence of Theorem 1 and Theorems 8 through 1 2. 

TERMINOLOGY. If a is a finitely additive function from R to L(Y) + then the 

Hellinger integral space generated by a is the space {Ha,Qa} from Theorems 1 1-1 2. 
REMARK. Suppose that f is a finitely additive function from R to Y, W is a 

finite subcollection of R, and x is a function from W to Y. Let M be a member of F 

such that each set in W is filled up by a subcollection of M and each set in M is a 

subset of some set in W; if t is in W then M(t) denotes the set to which v belongs only 

in case v is a member of M lying in t, and if u is in M then W(u) is the set to which s 

belongs only in case s is a member of W which includes u. Let z be the function from 
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M to Y such that z(u) = 2; x in W(u) x(s) for each u in M: 

23t in W (f(t),x(t)) = 23t in W23v in M(t) (f(v),x(t)) 

= 23u in M23s in W(u)(f(u),x(s) ) 

= 2;u in M <f(u),z(u)>' 

If, moreover, a is a tiNtely additive function from R to L(Y) + and K is defined on 

R X R by K(s,t) = Pta(s) for (s,t} in R X R, then 

23(s,t) in WXW<X(s),K(s,t)x(t) > = 2; {u,t) in MXW<Z(u),K(u,t)x(t) > 

= 23 (u,v) in MXM<Z(u),K(u,v)z(v) >, 

and this latter sum is 23u in M<Z(U),a(u)z(u) >' This type of computation may be seen to 

establish a connection between the arguments given in support of Theorems 10 

through 12 and the indication given for a Proof of Theorem 2: indeed, Theorem 2 

may be regarded, in this way, as implicitly including Theorems 10, 1 1, and 1 2. It will 

be seen in Theorem 14, however, that the approximation process indicated for the 

inner product Q in connection with Theorem 2 has a special significance in the 

Hellinger integral spaces relatively to the subdivision refinement process F, one which 

allows a sharpening of assorted results recorded in Theorems 3, 5, and 6. 

Special Continuous Linear Transformations. Let 52 now denote a collection of 

finitely additive functions from R to L(Y) +. For each finitely additive function a from 

R to L(Y) +, (Ha,Qc •) is the Hellinger integral space generated by a, K a is the 
evaluation kernel in the space (Ha,Qa} so that Ka(s,t ) = Pta(s) for (s,t) in R X R, 
and N a is the norm corresponding to the inner product Qa so that Na(f)= 

Qa(f, 01/2 = { fL/FDa-1/2f•2) 1/2 for f in H a- 
THEOREM 14. Suppose • is in 52 and, for each member M of F, I-I•(M) is the 

function from H• to yR such that if f is in H• and s is in R then 
l-I/•(M)f(s) = 2;t in M [/•(t)-I/2Pt/•(s)] */•(t) -1/2f(t) ß 

For each member M of the family F, 

(1) I-Io(M) is the Qlyorthogonal pro/ection from H• onto the subspace of H• to 
which g belongs only in case there is a function x from M to Y such that, if t is in M, 
x(t) is in the U 'U-closure of the •(t)-image of Y and 
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g(s) = 23 t in M [i5(t)-I/2Pti5(s)] *x(t)for each s in R, 

(2) the Q•-orthogonal complement of the IIs(M)-image of Hi5 is the subset of Hi5 
to which the member f of Hi5 belongs only in case f(t) = 0 for each t in M, and 

(3) if (f,g) belongs to Hi5 X Hi5 then 

Qis(f- IIis(M)f,g - IIis(M)g) = Qis(f,g) - Z t in M (•(t)-I/2f(t)'is(t)-I/2g(t))' 
PROOF. Suppose i5 is in •2 and M is in F. With reference to Theorem 4, for each 

t in M, let Z t be the I1' l-closure of the is(t)-image of Y, X t be the linear isometry from 
(Zt,(-,-) } into (His,Qi5 } given by 

Xt(r/)(s ) = [is(t) -1/2Ptis(s)] *r/for {r/,s} in Z t X R, 

and •r t be the Qi5-orthogonal projection from Hi5 onto Xt(Z t) given by 
•rtf(s ) = [is(t)-l/2Ptis(s)] *is(t)-l/2f(t)for (f,s} in Hi5 X R. 

If t is in M then it is known from Theorem 4(3) that 

(i) Qfl(f,Xt(r/)) = qg(t) -1/2f(t),r/) for {f,r/} in Hi5 X Z t, and 
(ii) the Qis-orthogonal complement of Xt(Z t) is the subspace of Hi5 to which the 
member f of Hi5 belongs only in case f(t) = 0. 

Hence, if t and u are in M then •ru•r t is the zero projection in the space (His,Qis}. 

Inasmuch as IIis(M) = Z t in M•rt , all the assertions of the present Theorem may be seen 
as consequences of the foregoing facts - with the help of the formulas 

Qfl(f- IIis(m)f,g - IIis(m)g) = Qis(f,g) - Z t in mQis(f,Xt (iS(t)-I/2g(t))) 
for (f,g} in Hi5 X His. 

REMARK 1. The following approximation process is implicit in Theorem 14. If 

i5 is in FZ and f is in Hi5 then the equations, 
h(t)(s) = [is(t) -1/2Ptis(s)] *is(t) -1/2f(t) for (s,t}, in R X R, 

define a function h from R to Hi5 such that f = fL/F h with respect to the norm Nis. 
Moreover, in case i5 is scalar valued (as in [12, Theorem 8] ) and M is in F and f is in 

His, IIis(M)f = Z t in MPt iS'•(t) where, for each t in M, •(t) is 0 or f(t)/is(t) accordingly 
as fl(t) is the scalar zero or not. 

REMARK 2. With reference to the displayed formula in Theorem 14(1), for i5 in 

FZ and M in F, it may be shown that Qis(g,g) = I; t in M •x(t)•2; if, in particular, [ is a 
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function from M to Y such that x(t) =/•(t)l/2•(t) for t in M then it may be seen from 
the following type of computation, 

([/•(t) -1/2Pt/•(s) ] */•(t) 1/2•(t),r/) = (/3(t) 1/2•(t),i3(t)-1/2Pt/•(s)r/) 
= (•(t),/•(t) 1/2/•(t)-I/2Pt/•(s)r/> 
= (•(t),Pt•(s)n) , 

that g = Z t in MPt/•'•(t) and that Qtl(g,g) = Zt in M (•(t),/•(t)•(t))' Now, it is known (cf. 
[7, Theorem 2], [8, Lemma 3.1], or [4, page 259]) that ifA belongs to L(Y) + then, 
in order that the A-image of Y should be the Al/2-image of Y, it is necessary and 
sufficient that the A-image of Y should be •'•-closed: hence, unless Y is finite 

dimensional, it can not be proved that each such function g is of the latter form for 

some function • from M to Y. 

REMARK 3. An R-simple function (determined by the member M of F) from L 

to Y is a function • from L to Y such that • is constant on each set in M and, if p is in 

L but not in any set in M, •(p) = 0: it may be noted that if • is determined by the 

member M 0 of F then • is also determined by each member M of F such that each set 

in M 0 is filled up by a subcollection of M. Suppose/• is in I2 and c is a choice function 

from R, i.e., if t is in R then c t is an element of t: there is a function q/• such that if 
each of •1 and •2 is an R-simple function determined by the member M of F then 

q/•(•l,•2 ) = Zt in M(•l(Ct),/•(t)•2(ct ))' With the usual identification of a space h/• of 
equivalence classes of R-simple functions, one has an inner product space which may 

be denoted by {h/•,q•}: the computations from the preceding Remark serve to 
identify a linear isometry 6 from {h/•,q•} onto a dense linear subspace of 
6(•) = Z t in MPt/•'•(ct ) with the usual slurring of identification of functions with 

equivalence classes, so that {H/•,Q•} is seen as a completion of{h/•,q/•}. Indeed it may 
be seen that each continuous linear function 3, from (hi3,q •} to the scalars has the 
form X(•) = Z t in M(•(ct ),f(t)) for some f in H/•, with • (representing an element of h/•) 
determined by the member M of F. An interpretation of the facts indicated in the 

latter part of Remark 2 is that, for fixed M in F, the set of equivalence classes having 

representatives determined by M need not be closed in the completion of {h/•,q•} if Y 
is infinite dimensional. 
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THEOREM 15. If13 is in I2 then the equations o(#)(t)r/= #(Pt13'r/), for t in Rand 

•7 in Y, define a reversible linear transformation o from the collection of all continuous 

linear functions # from {H/j,Q13} to {Y,(-,')} onto the collection of all finitely 
additive functions G from R to L(Y) c such that if • is in Y then G' *• belongs to HB, 
and if {#,G} is in o then 

(1) for f in H13 and M in F, #(II13(M)f) = Z t in M [13(t)-l/2g(t)*] *13(t)-l/2f(t) so 
that, for each f in H•, #(f) = f L/F [13-1/2G'* ] .13-1/2f with respect to •' •, and 

(2) o is an isometry in the sense that, if b >• 0, these are equivalent.' 

(i) •#(f)• •< b N13(f)for each f in H13, and 

(ii) •fL/F[•i/2G '* ] *[13-1/2G-*] [• •< b2•[•for each • in Y. 
One may view Theorem 15 as an application of Theorem 5 (in the context of the 

present section), as reinforced by Theorem 14 together with the computations: 

(#(II•(M) f),[) = Q13(II•(M)f,G'*[) = 23 t in M •(t)-I/2f(t),13(t)-I/2G(t)*[) 
for appropriate M, f, and [. The integral indicated in 15(2)(ii) is identified as the 

member B of L(Y) + such that #(G'*[) = B[ for each [ in Y, as in 15(1); hence this 

integral exists as a strong limit in L(Y) c. Further proof seems unnecessary. 

REMARK 1. Suppose, as in Remark 1 following Theorem 5, that r is in R and 

/,t(f)=fir) for f in H13, and let G = o(bt): for each tin R,G(t) =PtB(r). If•isinY 
then Qfi(G'*•,G'*•) = (•,13(r)•); if b >• 0, these are equivalent: 

(i) []f(r)II •< b N13(f) for each f in H13, and 
(ii) 013(r)1/2• •<b[]• for each • in Y; 

this provides some sharpening of Theorem 13, even as Theorem 5 does of Theorem 1. 

REMARK2. The L(y)C-valued inner product as suggested in Remark 2 

following Theorem 5, adapted to the context of Theorem 15, takes the form 

[13-1/2G '*l *[13-1/2G2'*] (G1 'G2) = fL/F I ' 
the latter integrals existing as strong limits in L(Y) c. It may be shown, with the help of 

[7, Theorem 5, page 667], that this is the Hellinger operator integral investigated by 

Yu. L. Shmulyan [17] - but not heretofore connected with the space {H13,Q13}. If k is 
a function from a member M of F to L(Y) c then there is a member {#,G} of the 

transformation o in Theorem 15 which arises from the formulas 
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#(f) = Zr in M k(r)f(r) and G = Z r in Mk(r)Pr f, 

and it may be shown that (G,G) = Z r in M k(r)f(r)k(r)*' An analysis, analogous to that 
indicated in Remarks 2 and 3 following Theorem 14, would be available for R-simple 

functions from L to L(Y) c, but details seem inappropriate at this point. Such an 

analysis does provide an alternative description of the integrals (G 1,G2) as has been 
given, for the case of finite dimensional Y, by Shmulyan [18] and by Habib Salehi 

[16]: with finite dimensional Y, there is also available the complex inner product 

q(G 1,G2) = trace of (G 1,G 2) (cf. Remark 2 following Theorem 5). 

THEOREM 1 6. If each of c• and f is in 12, mo• fi is the set to which F belongs only 
in case P is a function from R X R to L(Y) such that (i) if t is in R then each of P(' ,t) 

and P(t,-) is finitely additive and (ii) there is a nonnegative nurnber b such that, if 

each of x and y is a function from a member M of F to Y, 

1231•I (x(s),p(s,t)y(t))12 •< b223s in M•ø•(s)l/2x(s)•2Zt in M•f(t)l/2y( t)•2 

(with Z•i denoting Z {s,t} in MXM ), and Taf t is the space of all continuous linear 
transformations from {Hf,Qf} to {Ho•,Qo•}, then the equations 

cI,(C)(s,t)n = C(Ptf.n)(s),for C in Tc•f, rs,t} in R X R, and r• in Y, 

define a reversible linear transformation cI) from To• fi onto mc• f such that, if the 
ordered pair {C,P} belongs to cI) and A is the (adjoint) transformation from Hc• to 

Hf determined by Qo•(f,Cg) = Qf(Af,g) for { f,g} in Hc• X Hf, then 
(1) in order that the nottnegative number b should satisfy condition (ii), it is 

necessary and sufficient that, for each g in Hf, No•(Cg ) •< b Nf(g), 
(2) ['(s,t)*• = A(PsC•.•)(t)for each { s,t} in R X Rand • in Y, 

(3) /f f is in H a then the equations h(t)(s)= [a(t)-l/2p(t,s)] *a(t)-l/2fft), for 

{ s,t } in R X R, define a function h from R to Hf such that Af = fL/F h with respect to 
Nf so that, for each s in R, 

Af(s) = fL/F [øF1/2p("s)] *oF 1/2f with respect to •' •, 
(4) if g is in Hf then the equations h(t)(s) = [f(t)-l/2p(s,t)*] *f(t)-l/2g(t), for 

{s,t} in R X R define a function h from Rto Hot such that Cg = fL/F h with respect 
to Nc• so that, for each s in R, 
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Cg(s) -- fL/F[tT1/2F(s,') * ] ./•-l/2g with respect to 0'[1, and 
(5) in case a is [3 and each of (C1,F 1) and (C2,F 2) belongs to ß and 

C = C1C 2, if (s,t) is in R X R and rl is in Y then 

F(s,t)r/-- f L/F[iT1/2F i (s,') * ] * [/•'1/2F2(',t)] r/with respect to 
INDICATION OF PROOF. To see this Theorem as in interpretation of Theorem 

6 in the context of the present section, one may first note that if M is a finite subset 

of R then there is a member W of F such that each set in M is filled up by a 

subcollection of W: hence, the set mot/5 described here is the ma/• from Theorem 6. 
Therefore, the computations (with s in R) 

(AIIa(M)f(s),r/) = Q•(IIa(M)f,F(',s)r/) = Zt in M (a(t)-l/2f(t),a(t)-l/2F(t,s)r/), 

([,CIIB(M)g(s)) = Q•(F(s,')* •,IIB(M)g) = 2t in M qS(t)-l/2F(s,t)* •,B(t)'l/2g(t)) ' 
for appropriate M, f, g, [, and r•, serve to make Theorem 14 applicable and so all 

assertions through 16(5) are seen to be consequences of corresponding ones from 6. 

COROLLARY 16.1. If, in the context of Theorem 16, F is a function from 

R X R to L(Y) c then, in order that F should be such a member ofme•[3 that •-I(F) is a 
linear isometry from (HB,QB) onto (Ha,Qa), it is necessary and sufficient that, for 
each (s,t} in R X Rand (•,•1) in Y X Y, F(-,s)[ be in H a, F(t,-)*r/be in HB, 

fL/F(a-1/2F( -,s)[,a-1/2F(.,t)r•) = ([,Pt•(s)r•), 
and 

fL/F(B- 1/2F(s,.). •,[•-1/2 F(t,-)*r•) = ([,Pta(s)r•). 
Corollary 16.1 is an interpretation of Corollary 6.1 in the context of the present 

section, and may be argued from Theorem 16 even as Corollary 6.1 was shown to 

follow from Theorem 6. 

REMARK. It was shown by F. Riesz in 1910 (cf. Lemma on page 75 of [14]) 

that the Lebesgue spaces of (equivalence classes of) square-summable measurable 

scalar functions may always be realized as Hellinger integral spaces. Thus, the present 

Corollary 16.1 may be seen to include S. Bochner's 1934 Theorem [14, page 291 f.] 

on representing the unitary transformations in such spaces: Bochner's cited Theorem 
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corresponds to the case wherein (i) Y is the complex plane, (ii) R is the pre-ring of all 

bounded right-closed intervals on the real line L, and (iii) each of e and 13 is the 

restriction to R of Lebesgue measure, i.e., is ordinary length. 

COROLLARY 1 6.2. If, in the context of Theorem 1 6 with e = 13, F is a function 

from R X R to L(Y) then, in order that F should be such a member of m131• that 
•-l(p) is a QiTorthogonal projection, it is necessary and sufficient that, for each (s,t) 
in R X R and {•,r/} in Y X Y, P(-,s)• be in H13and 

f L/F(13 -1/2r(' ,t)n> = 
Corollary 16.2 is an interpretation of Corollary 6.2 in the context of the present 

section, and may be argued from Theorem 16 with the help of the following: if F 

satisfies the indicated conditions then, for each function x from a finite subset M of R 

to Y, (with •;• denoting E {s,t } in M X M) 

zfi(x(s),I'(s,t)x(t)> = Q13(E s in mr(',s)x(s),Zt in m I'(',t)x(t)) >• 0, 
whence F maps R X R into L(Y) c, F(s,t)* = F(t,s) for {s,t} in R X R, and if s is in R 

then F(s,-) is finitely additive. 

REMARK. As an illustration of Corollary 16.2, with reference to Theorem 14, it 

may be noted that if 13 is in I2 and M is in F then, for each {s,t) in R X R, 

ß (H13(m))(s,t) = •u in m [13(u)-1/2Pu13(s)] * [18(u)-l/2Pu13(t)] ß 
THEOREM 17. If each of e and 13 is in I2, me13(P ) is the se, t to which G belongs 

only in case (i) G is a finitely additive function from R to L(Y) and (ii) there is a 

nonnegative number b such that 

[(•,G(t)r/)l 2 •< b2(•,e(t)•) (rl,13(t)rl) for each t in R and {•,r/} in Y X Y, 

and Te13(P) is the space of all continuous linear transformations C from { I-le,Qo} to 
{He,Q• } such that C(Ptg ) = Pt(Cg) for each {t,g} in R X H13, then the equations 

ß (C)(t)r/= C(Pt13-r/)(t ), for C in Te/•(P), t in R, and rl in Y, 

define a reversible linear transformation • from Te/•(P) onto me/•(P) such that, if the 
ordered pair {C,G} belongs to ß and A is the (adjoint) transformation from H a to H13 
determined by Q•(f,Cg) = Q•Af, g) for { f,g} in H a X H13, then (with ß as in Theorem 
16) PtG(s)= •(C)(s,t) for {s,t} in R X Rand the following hold: 
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(1) in order that the nonnegative number b should satisfy condition (iD, it is 

necessary and sufficient that, for each g in H/3, Nc•(Cg ) •< b N/3(g), 
(2) A is in T/3•(P) and G(t)*• = A(Ptcr'•)(t) for each t in R and • in Y, 
(3) if f is in H a then the equations h(t)(s) = [cr(t) -1/2PtG(s)] *or(t) '1/2f(t), for 

{s,t} in R X R, define a function h from R to Hi3 such that Af = fL/F h with respect to 
Ni3 so that, for each s in R, 

Af(s) = fs/F[C•-I/2GI *c• -1/2f with respect to • '•, 
(4) if g is in H[• then the equations h(t)(s) = [/3(t)-l/2PtG(s)*l */3(t)-l/2g(t), for 

{s,t} in R X R, define a function h from R to Hcr such that Cg = fL/F h with respect to 
Nc• so that, for each s in R, 

Cg(s) = fs/F[/3 -1/2G-*l */3 -1/2g with respect to • '0, and 
(5) in case cr is l3and each of {C1,G 1} and {C2,G 2} belongs to q• and C = C1C 2, 

if t is in R and ,1 is in Y then 

G(t)r/= f t/F[13-1/2G1-* ] *[•-l/2G2]r/with respect to •'•. 
INDICATION OF PROOF. Suppose, first, that C is in the class Tcr/3 from 

Theorem 16 with adjoint transformation A as there indicated, that I' = •(C), and that 

G is the function from R to L(Y) c given by G(t) = I'(t,t) for t in R. If C belongs to 

Tcr/3(P) then, seriatim, 
(i) for each {f,g} in H a X H/3 and t in R, A(Ptf) = Pt(Af) since 

Q•(Ptf, Cg) = Q•(f, CPtg ) = Q/3(Af,Ptg ) = Q/3(PtAf,g), 

(ii) for each {f,r/} in H a X Y, and s and t in R, PsI'(-,t) = PtI'(-,s) since 

Q•(f,PtI'(-,s)r/) = (APtf(s),r/) = (APsf(t),r/) = Qcr(f,PsI'(',t)r/), 

(iii) for each member M of F filling up the member t of R, 

G(t) = Z v in MPv I'(',t)(v) = Zv in MPt I'(',v)(v) = Zv in M G(v), 

so that G is finitely additive, and 

(iv) PtG(s) = I'(s,t) for {s,t} in R X R, as in the Proof of Theorem 8. 

If, on the other hand, G is finitely additive and PtG(s) = I'(s,t) for each {s,t} in 

R X R then, for each { f,r/} in Her X Y and { s,t } in R X R, 
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(i) if s does not intersect t then PsPt f = 0 in H a so that 

(APtf(s),r/) = Qo•(Ptf, PsG'r/) = Qo•(f, PsPtG'r/) = 0 = (PtAf(s),r/), but 

(ii) if M is a member of F filling up the common part of s and t then 

(APtf(s),r/) = 23v in MQo•(f,PvG'r/) = Zv in M (Af(v),r/) = (Pt Af(s),r/)' 

so that A(Ptf) = Pt(Af), whence C is in Toqs(P) as in the preceding argument (i). 
Suppose, now, that G is a finitely additive function from R to L(Y) and that F is 

defined on R X R by F(s,t) = PtG(s). It is clear that if b >• 0 and the condition (ii) for 

membership of F in mo•t3 (Theorem 16) holds then condition (ii) for membership of G 
in moq3(P) holds - consider degenerate members of F. Suppose that G is in moqs(P) and 
that b is a nonnegative number so that the condition (ii) of the present Theorem 

holds. Let each of x and y be a function from a member M of F to Y' with Z M 

denoting 23 {s,t} in MXM as before, 

IZI•l (x(s),F(s,t)y(t))12 = lZu in M (x(u),G(u)y(u))[2 

•< (Zu in U bl]øt(u)l/2x(u)l] I]/3(u)l/2y(u)•} 2 

•< b2Zs in M•ø•(s)l/2x(s)fl2Zt in M •t3(t)l/2y(t)f12' 
The foregoing considerations may be arranged, along with those from the preceding 

paragraph, to produce an argument for Theorem 17 based on Theorem 16. 

REMARK. Theorem 17 is an extended version (as reinforced by Theorem 14) of 

a theorem which I propounded in 1962 to P. H. Jessner, and for which he gave a proof 

in his Dissertation [6, Theorem 4.1]. One of Jessner's remarkable discoveries in this 

connection [6, Theorem 4.2] takes the following form in the present context. Ifo• and 

/3 are finitely additive functions from R to L(Y) + then, in order that the space 

(HovQ •} should be approximately included in (H/•,Q/•} (cf Remark 1 following 
Theorem 3 of the present report), it is necessary and sufficient that there should be a 

finitely additive Hermitian valued function G from R to L(Y) c such that if s is in R 

and (•,r/) is in Y X Y then PsG-• belongs to Ht3 and 

(•,o•(s)r/> = rs/F(/5 -1/2G-•,t3 -1/2G 'r/>; 
if, moreover, each of the spaces (Ho•,Qo•} and (Hts,Q/•} is approximately included in 
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the other, then there exists a finitely additive function G from R to L(Y) + such that 

the preceding hold as stated and also hold with ot and/3 interchanged. Hence, Corollary 

17.1 provides a refinement of the latter result by identifying such a G from R to 

L(Y) + with a special kind of linear isometry from •Hot,Qot) onto 
COROLLARY 17.1. If G is a finitely additive function from R to L(Y) c then (in 

the context of Theorem 17), in order that G should be such a member of mo•(P) that 
xP-I(G) is a linear isometry from •H/3,Q/3) onto •Hot,Qot), it is necessary and sufficient 
that, for each s in Rand (•,•) in Y X Y, PsG-[ belong to Hot, PsG'*r• belong to 

f (ot-1/2G'•,ot-l/2G'n) = (•,/3(s)n), 
s/F 

and 

rs/F(/3-1/2 G. , •,/3-1/2 G. %?) = 
Corollary 17.1 may be argued from Corollary 16.1 and Theorem 17 with the help 

of the following: if G satisfies the indicated conditions and M is a member of F filling 

up the common part of the sets s and t in R then, for([,r•) in Y X Y, 

(•,Pt/3(s)n) = •v in M (•,/3(v)n) = •v in MQa(PvG'•,PvG'•) 

= •v in MQa(PsG'•,Pv G'•?) = Qot(PsG'•,PsPt G'r•) 

= O.a(PsG-•,PtG.n) 

and, similarly, (•,Ptot(s)r•) = Q/3(Ps G-* •,Pt G-*r•). 
COROLLARY 17.2. If G is a finitely additive function from R to L(Y) then (in 

the context of Theorem 17 with ot =/3), in order that G should be such a member of 

m/3/3(P) that xP'i(G) is a Q•Torthogonal projection, it is necessary and sufficient that, 
for each s in R and •,•) in Y X Y, Ps G' [ belong to H/3 and 

fs/F•-I/2 G. [,/3-1/2 G -r/) = ([,G(s)r/). 
Corollary 17.2 may be argued from Corollary 16.2 and Theorem 17 with the help 

of computations, similar to those indicated for Corollary 17.1, to show that if G is 

as indicated then ([,PtG(s)r•) = Q/3(PsG-[,PtG-r•) for appropriate s,t,[,r• . 
REMARK. As an illustration of Corollary 17.2, it may be noted that if r is an 

element of R and C is the restriction to H/3 of Pr then xP(C)(t) = Pr/3(t). 
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THEOREM 18. If a and i3 are member of •2 then 

(1) H a is a subset of Hi3only in case there is a nonnegative number b such that if 
( t,r/} is in R X Y then (r/,a(t)r/) •< b(r/,i3(t)r/), in which case the least such b is the least 

nonnegative number c such that 

fL/FI]/T 1/2f112 •< c f L/FOa'l/2fO 2 for each f in H a, 
and, with •r(a,i3) the transformation defined by Qa(f,•r(a,i3)g) = Qi3(f,g)for {f,g) in 
H a X Hi3, ;r(a,i3) belongs to ma/3(P) (as in Theorem 17) and if g is in Hi3 then 

[i3-1/2a] ,i3-1/2g with respect to •'0, for each s in R, •r(a,i3)g(s) = fs/F 
(2) Hctq_i3 is the vector sum Ha4-Hi3 of H a and Hi3 and, if h is in Ha+/3, then 

= lla-1/2fl12 + fL/F0i3-1/2g•2 } fL/F•(a+i3)-l/2hD 2 minimum{ fL/F 
for all f in H a and g in Hi3 such that f+g = h, and 

(3) the equations, for {t,r/) in R X Y, 

(a:i3)(t)r• = ¬{ (a+i3)(t),? - ft/F [ (aq-i3) -1/2(a-i3) ] * [ (aq-i3) -1/2(a-i3)] ,1} 
= ft/F[ (a+i3)- 1/2 a ]. [ (ot+i3)- 1/2i3] r? with respect to 0' •, 

define a finitely additive function a:i3 from R to L(Y) + such that Ha:i3 is the common 
part HaHi3 of H a and Hi3, and if each of f and g is in Ha:i3 then 

(g-1/2f,i3-1/2g) f L/F ((a:i3)-l /2f'(a:i3)-l /2g) = f L/F (a-1/2f'a'l /2g) + f L/F ' 
Theorem 18 may be seen as a direct consequence of Theorem 3, as reinforced in 

the context of the present section by Theorems 14 and 17. No proof is offered. 

REMARK. It may be argued, just as in the Remarks following Theorem 3, that 

the parallel summation of finitely additive functions from R to L(Y) + (indicated in 

Theorem 18(3) by a:i3 for a and i3 in S2) is both commutative and associative. 

COMMENT. In continuation of the Remark immediately preceding Corollary 

17.1, P. H. Jessner's discoveries [6, Theorems 3.1 and 3.2], adapted to this context, 

yield a symmetric function J from S2 X S2 such that, for each {aft } in S2 X S2, Jai3 is a 
finitely additive function from R to L(Y) + with these properties: (i) if s is in R and • 

is in Y then PsJai3'• belongs to HaHi3 and (ii) { Ha,Q a } is approximately included in 
( Hi3,Qi3 } only in case, for each t in R and (•,r•} in Y X Y, 
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<•,ot(t)r/) = œt/F •-1/2Jo4 • ß •,t1-1/2Jottl-r/). 
With reference to Remark 1 following Theorem 3, and with a slight extension of the 

•r-notation from Theorem 18, the function J may be described as follows: if each of ot 

and /• is in I2 then •r(ot:/•,ot+/•)= •r(ot,ot+/•)•r(/•,a+/•) and, with •r(ot:/•,ot+/•) 1/2 the square 

root of •r(ot:/•,ot+/•) which is Hermitian and nonnegative with respect to Qot+/•, 
PtJ0q•-r• = •r(a:/•,a+/•)l/2(Pt(a+/3)-r/) for each (t,r•} in R X Y, and the function M, 
mentioned in Remark 1(3) after Theorem 3, satisfies M(s,t) = PtJot/5(s) on R X R. It 
may be noted, on the basis of Theorem 7(1), that the space Hot:/• is the image of Hot+/• 
under the transformation •r(ot:/•,ot+/•) 1/2 as described here. The failure (with Y infinite 
dimensional) of approximate inclusion to be transitive persists even in this context 

[10].: if the pre-ring R consists of the right closed intervals (0,1], (1,2], and (0,2], 

but Y is not finite dimensional, then there exist three finitely additive functions ot, 

and 7 from R to L(Y) + with the following properties: 

(1) the function/• is scalar valued and ot(L) =/•(L) = •,(L) = 1, 

(2) there exist finitely additive functions G 1 and G 2 from R to L(Y) + such that, 
for each set t in R, 

ot(t) = ft/F[fi-1/2G1 ] *[fi-1/2G 1 ] and fi(t) = ft/F[7'l/2G2 ] *[7-1/2G2 ] , and 
(3) there does not exist a finitely additive Hermitian valued function G from R 

to L(Y) c such that if t is in R then ot(t) = ft/F[7 -1/2G] * [•,-1/2G] ' 
THEOREM 19. Suppose ot and • are members of I2 such that Hot is a subset of 

Hi•, A is in Totot and B is in Ti•i• (in the notation of Theorem 16), and F(ot) and F(i•) are 
functions from R X R to L(Y) c defined by 

r(ot)(s,t) = A(Ptot-r0(s) and r(tl)(s,t)v = B(Pt/•'r0(s) 

for (s,t} in R X R and r• in Y. With ?r(ot,l•) as described in Theorem 18(1), 

(1) in order that A should be a subset of B, it is necessary'and sufficient that if 

(s,•} is in R X Y then F(ot)(s,')*• = •r(ot,/•)(F(/•)(s,-)*•), and 

(2) if A is a subset of B then, in order that the adjoint of A with respect to 

should be a subset of the adjoint of B with respect to Ql•' it is necessary and sufficient 
that if (t,r•} is in R X Y then F(ot)(',t)r• = ?r(ot,g)(r(g)(.,t)v). 

THEOREM 20. Suppose ot and 1• are members of I2 such that Hot is a subset of 
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Hi3, A is in Taa(P) and B is in T/3/3(P) (in the notation of Theorem ! 7), and G(a) and 
G(/3) are functions from R to L(Y) c defined by 

G(a)(t)rt = A(Pta'rt)(t) and G(/3)(t)rt = B(Pt/3'rt)(t) 

for t in R and •l in Y. With re(a,13) as described in Theorem 

(1) in order that A should be a subset of B, it is necessary and sufficient that if 

{ s,•} is in R X Y then PsG(a)-*• = •r(a,/3)(PsG(/3)-*•), and 

(2) if A is a subset of B then, in order that the adjoint of A with respect to Qa 

should be a subset of the adjoint of B with respect to Ql3' it is necessary and sufficient 
that if {t,rl • is in R X Y then PtG(a)'rt = •r(a,/3)(PtG(/3)'rt). 

Proofs for Theorems 19 and 20 are readily available on the basis of Theorems 16, 

and 17, respectively, with the help of the Corollary to Theorem 7. 

Operations on the Linear Span of a Family of Spaces. It is now supposed 

concerning the collection •2 of finitely additive functions from R to L(Y) + that if a 

and /3 are such members of •2 that neither of H a and Hi• is a subset of the other then 
both the arithmetical sum a+13 and the parallel sum a:• as described in Theorem 

18(2,3) belong to •2; S(•2) denotes the linear span of the spaces H a for a in •2, and rr 

denotes a function from the subset of •2 X •2 to which {a,/3} belongs only in case H 

is a subset of H/3, in which case rr(a,/3) denotes the linear transformation from H/3 to 
H a as described in Theorem 18(1). It may be seen here, just as in [12], that the 

ordered triple {H,Q,rr} determines an inverse limit system in the sense that if each of 

a, /3, and 3' is in •2 then (i) if H a is a subset of H/3 then rr(a,/3) is a continuous linear 
transformation from {H/3,Qi•} to {Ha,Qa}, (ii) if H a is a subset of H• and H• is a 
subset of H3' then rr(a,3') is the composite transformation rr(a,/3)rr(/3,3'), and (iii) if H 
is H/3 then rr(/3,a) is the inverse of the transformation rr(a,•). The operational inverse 
limit space determined by the triple {H,Q,rr} is the linear space to which V belongs 

only in case V is a function from •2 such that, for each a in •2, V(a) is a finitely 

additive function from R to L(Y) c and, if • is in Y, V(a)-*• belongs to H a and if/3 is 

such a member of •2 that H a is a subset of H/3 then V(a)-*• = rr(a,/3)(V(/3)-*•) - this 
operational inverse limit space is denoted by OPER-INV-LIM-(H,Q,rr}. 

OBSERVATION 1. Each collection •2 0 of finitely additive functions from R to 
L(Y) + determines a collection •2 of the type supposed here: by Theorem 18, one may 
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(perhaps generously) take •2 to be the common part of all collections •21 such that 

(i) •21 is a collection of finitely additive functions from R to L(Y) + of which •2 0 is a 
subcollection and (ii) for each o• and t3 in •21 , both o•+t3 and o•:t3 belong to •21 . 

OBSERVATION 2. If, in the preceding Observation, each member o• of •2 0 has 

the property that if • is in Y then o•-• belongs to Ho•, Theorem 18 may further be used 

to show that each member of •2 may also be assumed to have this property. 

OBSERVATION 3. It would be possible, with minor changes in notation, to 

have a theory analogous to that presently contemplated but with the following type of 

convexity condition imposed on •2: if o• and t3 are such members of •2 that neither of 

Ho• and Hi3 is a subset of the other then both the arithmetic mean V2(o•+/3) and the 
harmonic mean 2(oct3) belong to •2 (the latter terminology is consistent with the 

notion of the harmonic mean of two positive numbers, commonly the reciprocal of 

the arithmetic mean of their reciprocals). This will not be done, although such 

formulas as H2(a:/5 ) = HAH/5 and Q2(a:/5) = Y2(Qot + Q/5) may be noted: these would 
have a special significance in the case that each of a and /5 is projection valued, 

inasmuch as 2(a:/5) is then also (orthogonal) projection valued. This latter fact is a 

simple consequence of the fact (noticed by Fillmore or Williams [4, page 279], as an 

extension of an Anderson-Duffin result [ 1 ] for finite dimensional Y) that if A and B 

are projections in L(Y) + then their harmonic mean E = 2(A:B) is that projection in 

L(Y) + which maps Y onto the common part A(Y)B(Y) of A(Y) and B(Y); a way of 

seeing this is to notice (with reference to Theorem 3 sp) that E = E 2, in consequence of 
the fact that if x belongs to E1/2(Y) = A(Y)B(Y) then 

•E-1/2xll 2 = Y2{ •A-1/2x•2+l]B-1/2xll2) = g2{ DAxl]2+•Bxl] 2} = Y2{l]xl]2+llxl] 2) = l]xll 2 

so that, in particular, if • is in Y and x = E• then 

(•,E•) = •E1/2• 2 = •E-1/2x• 2 = •x• 2 = [IE•D 2 = (•,E2•). 

THEOREM 21. If D O is the space of all linear functions # from S(I2) to Y such 

that, for each o• in I2, the restriction to H a of i• is continuous from {Ho•,Q• to 

{Y,(',-) ) then the equations o(/•)(o•)(t)r/= #(Pto•-r/), for ia in D O and r• in I2 and t in R 

and •l in Y, define a reversible linear transformation o from D O onto all of 

OPER-INV-LIM-(H,Q,rr} such that if the ordered pair {/•,V} belongs to o and f is in 
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S(•2) then #(f) is an integral in the following sense.' for each a in •2 such that f belongs 

1/2V(a)., l to Ha, #(f) = fL/F[a- /2f with respect to the norm • '•. 
INDICATION OF PROOF. That o is a reversible linear transformation from D O 

to a subspace of OPER-INV-LIM- {H,Q,•r} follows directly from Theorem 15, as does 

the indicated integral representation. It remains to be shown that the o-image of D O is 

all of that operational inverse limit space. Suppose, nowj that V is a point in 

OPER-INV-LIM-{H,Q,•r}. If f is in S(•) and a and /5 are such members of • that f 

belongs to H a and to H15 then one of the following conditions is satisfied: 
(i) one of H a and H15 is a subset of the other, in which case if • is in Y then 

Qa(f,V(a)' *•) = Qfi(f,V(15)' *•), or 

(ii) neither of H a and H15 is a subset of the other, in which case a:15 is in •, f 
belongs to Ha:15 (which is the common part Ho•H15), and if • is in Y then 

Qo•(f,V(o0'*•) = Q•:fi(f,V(ocfi)-*•) = Qfi(f,V(fi)'*•). 
Therefore, by Theorem 15, the indicated integral formulas define a function # from 

S(•) to Y such that if a is in • then the restriction to H a of # is a continuous linear 

function from {Ha,Qo•} to {Y,(-,-)}. If f and g are functions belonging to S(•) and a 

and/5 are members of •2 such that f is in Ho• and g is in H15 but not in H a then one of 
the following conditions is satisfied: 

(i) H a is a subset of H15, in which case if • is in Y then 

Qa(f,V(a)'*•)+Q15(g,V(15)'*lj) = Q15(f,V(15)'*•)+Q•f,V•15)-*•), or 

(ii) H a is not a subset of H/•, in which case o•+15 is in •2, f+g belongs to Ho•+l 5 
(which is the vector sum of H a and H15), and if • is in Y then 

Q•(f,V(o0 ß * •)+Q•g,V(15) ß * lj) = Qa+• f,V(a+15) ß * lj)+Qa+15(g,V(a+15) ß * 

It follows, by symmetry, that # is linear on S(•2) and so belongs to the space D 0. 

NOTATION. E 1 is the algebra of all linear transformations C from S(•2) into 

S(•2) such that, for some nonnegative number b, if o• is in •2 then C maps H a into H a 

and Na(Cf) •<b No•(f) for each f in H a, the least such b being the norm ICI of C; E 2 is 

the set of all C in E 1 such that if t is in R then C(Ptf) = Pt(Cf) for all f in S(•2); E 3 is 

the set of all C in E 1 such that if a and t5 are members of •2 such that H a is a subset of 

H15 then C(•r(a,15)g)= •r(a,15)(Cg) for each g in H15; E 4 is the common part of E 2 and 
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E 3 ß 

REMARK. There is a natural norm-preserving involution in the algebra E3: it is a 

consequence of Theorem 7 that if C is in E 1 then, in order that C should be in E3, it is 

necessary and sufficient that there be a member A of E 1 such that if a is in •2 then the 

restriction to H a of A is the adjoint with respect to Qa of the restriction to H a of C - 

this member A of E 3 is the •2-adjoint C a of C. 
THEOREM 22. There is a linear isomorphism (I) from E 1 onto the collection of 

all functions ['from •2 such that (i) ira is in •2 then F(a) is a function from R X R to 

L(Y) c and, for each t in R, each of F(a)(-,t) and F(a)(t,-) is finitely additive, 

(ii) there is a nonnegative number b such that, for each rv in •2 and M in F, if each of x 

and y is a function from M to Y then (ZI• is Z {s,t} in M X M ) 
,, 2 1 , 12;M(X(S),F(a)(s,t)y(t))t •< b2Zs in M Ila(s) /2x(s)[122;t in M •a(t)l/2y(t)l]2 

and (iii) if a and 13 are such members of •2 that H a is a subset of Hi3 then, for each 
{s,•} in R X Y, r(a)(s,')*• = rr(a,/3)(r(•)(s,.)*•).' if {C,r} is in (I) then 

(1) for each {a,r/} in •2 X Y and {s,t } in R X R, F(a)(s,t)r/= C(Pta'r/)(s), 
(2) the norm [C[ of C is the least nonnegative number b such that (ii) hoMs, 

(3) a necessary and sufficient condition for C to belong to E 3 is that if aand 

are such members of •2 that H a is a subset of Hi3 then, for each {t,r/} in R X Y, 
F(a)(-,t)r/= rr(a,•)(F(•)(-,t)r/), and if C does belong to E 3 then, for each a in •2 and 
{s,t } in R X R, (I)(Ca)(a)(s,t) = F(a)(t,s)*, 

(4) if f is in S(•2) then Cf is an integral in the following sense: if a is in •2 and f is 

in H a then the equations h(t)(s)= [a(t)'l/2F(a)(s,t)*]*a(t)-l/2f(t), for {s,t} in 

R X R, define a function h from R to H a such that Cf = fL/F h with respect to N a so 
that, for each s in R, 

Cf(s) = f L/F [a-1/2F(a)(s ,.). ] *a-1/2f with respect to H' H, and 
(5) in case each of (C1,F 1 } and {C2,F 2} belongs to (I)and C = C1C 2, ira is in 

•2 and {s,t} is in R X R and rl is in Y then 

F(a)(s,t)n = fL/F[a-1/2Fl(a)(s,') * ] *[a-1/2F2(',t)] r/with resepct to 
Theorem 22 may be proved, with the help of Theorems 16 and 19, with the type 

of argument indicated in support of Theorem 21. 
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THEOREM 23. There is a linear isomorphism ß from E 2 onto the collection of 
all functions G from I2 such that (i) if a is in 12 then G(a) is a finitely additive 

function from R to L(Y) c, (ii) there is a nonnegative number b such that, for each a 

in 12 and t in R, if {•,r/) is in Y X Y then 

I(•,G(a)(t)r/) 12 •< b2(•,a(t)•)(r/,a(t)r/), 

and (iii) if a and 13 are such members of 12 that H a is a subset of H13 then, for each 
{ s,•} in R X Y, PsG(a)-*• = rt(a,13)(PsG(13)-* •).' if {C,G} is in ß then 

(1) for each {a,r/} in 12 X Y and t in R, G(a)(t)r/= C(Pta-r/)(t) , 
(2) the norm ICl of C is the least nonnegative number b such that (ii) holds, 

(3) a necessary and sufficient condition for C to belong to E 4 is that if a and 13 

are such members of 12 that H a is a subset of H13 then, for each ( t,r/} in R X Y, 
PtG(a) 'r/= rt(a,13)(PtG(13 )-r/), and if C does belong to E 4 then, for each a in I2 and t in 
R, •I'(Ca)(a)(t) = G(a)(t)*, 

(4) if f is in S(12) then Cf is an integral in the following sense.' if a is in 12 and f is 

/2PtG(a)(s)*] in H a then the equations h(t)(s)= [a(t) -1 *a(t)-l/2f(t), for {s,t} in 

R X R, define a function h from R to H a such that Cf = fL/F h with respect to N a so 
that, for each s in R, 

Cf(s) = f [ a-1/2G(a)'* l *a-1/2f with respect to • '•, and 
s/F 

(5) in case each of (C1,G 1 } and (C2,G 2} belongs to q• and C = C1C 2, ifa is in 
12 and t is in R and ,? is in Y then 

G(a)(t)r/= ft/F [a' 1/2 G 1 (a)- * ] * [a- 1/2G2(a)] • with respect to [1' [I. 
Theorem 23 may be proved, with the help of Theorems 17 and 20, with the type 

of argument indicated in support of Theorem 21. 

REMARK. The condition (iii) on the member G of the •I,-image of E 2 is readily 
seen to be equivalent to the condition that, for each {v,•} in R X Y, 

[13-1/2a1,13-1/2G(13 ).,• with respect to U' • G(a)(v)*•,= fv/F 
(inthe light of such formulas as PsG(a)(t) = Z v in M G(a)(v) for M in F filling up {st}); 
the latter display may be rewritten, for each (v,r/} in R X Y, as 

G(a)(v)n = fv/F [tr 1/2G(13 )., ] ,13-1/2a.7 with respect to fl- [1, 
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inasmuch as the latter integral is, by Theorem 23(4), •'l(G)(PvO•'rl)(v). Now, the 
condition (3) for •-I(G) to belong to E 4 is: for each {v,r•) in R X Y, 

G(o0(v)r• = fv/F [/3-1/2o•] */3' 1/2G(fi) -r• with respect to 0' 0. 
Hence, it may be noted that if each member of $2 is scalar valued then E 2 is E 4, an 
observation consistent with Theorem 15 of [12]. Similar computations may be used 

to show that, if each member of $2 is scalar valued, OPER-INV-LIM-{H,Q,•r) is indeed 

a subset of the space previously denoted by INV-LIM-{H,Q,;r) and consisting of all 

functions U from $2 such that, if o• is in $2, U(c0 is a finitely additive function from R 

to L(Y) and, for each • in Y, U(o0'• belongs to Ho• and if fi is such a member of $2 that 

H a is a subset of Hfi then U(a)'• = rr(a,fi)(U(fi)'•) [12]. 
THEOREM 24. Let • be a function from D O (of Theorem 21) such that if# is in 

D O then •(#) is the linear transformation from S($2) to a set o f functions on R to Y 
given by •'(#)f(t) = #(Ptfi for f in S($2) and t in R, and D 1 be the subset of D O to 

which the member # of D 0 belongs only in case •(#) belongs to El: 

(1) if# is in D O and f is in S($2) then #(f) = fL/F•(#)f with respect to O'U, 
(2) if # is in D O then, for each s in R and f in S($2), •'(#)(Ps f) = Ps(•'(#)f), so that 

the •'-image of D 1 is a subset of E 2, 

(3) if # is in D 1 then •(•'(#)) = o(#) (with ß as in Theorem 23) and 
(4) in order that the •-image of D 1 should be all of E 2, it is necessary and 

sufficient that if a is in $2 and • is in Y then a.• is in H a, i.e., fL/Fa'• exists. 
Theorem 24 is a consequence of Theorems 21 and 23. 

NOTATION. The direct sum of the spaces {Ha,Qc• (for a in $2), with the usual 

inner product, is here denoted by {Z$2(H,Q} ,Q$2}, and A 0 denotes the algebra of all 
continuous linear transformations in this space. A 1 denotes the set of all B in A 0 with 
a representation/x such that 

Q•(Bf,g) = Z a in $2Qa(A(B)afa'ga ) for all f and g in Z$2 (H,Q} 

where, for each a in $2, ,•(B) a is a continuous linear transformation in (Ha,Q a } and if 

• is such a member of $2 that H a is a subset of H• then/X(B)0• is the restriction to H a 
of /X(B)fi; A 2 is the set of all B in A 1 such that if a is in $2 and h is in H a then 
/X(B)a(Pth ) = Pt(/X(B)ah) for each t in R; A 3 is the set of all B in A 1 such that ifa and 
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fi are members of •2 and H a is a subset of Hfi then, for each h in Hfi, A(B)a0r(a,fi)h) = 
•r(a,fi)(A(B)fih); A 4 is the common part of A 2 and A 3. 

THEOREM 25. Each of A 1 , A 2, A 3, and A 4 is a weakly closed subalgebra of 

A 0, the member B of A 1 belongs to A 3 only in case A 1 contains the adjoint with 

respect to Q•2 of B, there is an isometric algebra-isomorphism Z from E 1 onto A 1 
given by 

Qfi(Z(C)f,g) = Z a in •2Qoe(Cfa,ga ) før C in El, f and g in Z•g{H,Q}, 

the transformation Z maps Ej onto Aj for j = 2,3,4, and the restriction to E 3 of Z is 
involution-preserving in the sense that if C is in E 3 then Z(C a) /s the adjoint with 
respect to Q• of Z(C). 

A proof for Theorem 25 may be constructed, along the lines of that given for 

[12, Theorem 25], by considering special weak neighborhoods of members of A 0, 

then of A 1 , and by applying appropriate consequences of Theorems 22 and 23. 

REMARK 1. Theorem 25 may be used to describe the idea of a member C of E 3 

or of E 4 as being, e.g., Hermitian, normal, or unitary, in terms of the corresponding 

property of Z(C) in A 3 or in A4: suitable reinforcements of Theorems 22 and 23 by 
Corollaries 16.1 and 16.2, and by Corollaries 17.1 and 17.2, respectively, may be used 

to give integral formulas involving "spectral resolutions" of such C. 

REMARK 2. There is a sense in which the inner product Q•2 may be viewed as 

an integral. Consider the direct sum (Y•2,(-,-)•2} of •2 copies of (Y,(','))' YF• is the 
set of all functions x from •2 to Y such that there is a nonnegative number b such that 

Za in w•Xa •2 •< b for each finite subset W of •2, and if each of x and y is in y•2 then 
(x,Y)•2 = Za in •2(xa,Ya ) (cf Remark 3 following Theorem 5). Now, as an extension of 
the notation indicated in Theorem 14, if M is a member of F then there is an 

orthogonal projection H(M) in the algebra A 0 determined by 

QF•(H(M)f,g) = Z a in •2Qa(Ha(M)fa,ga ) 

= 2a in g•Zt in M(a(t)'l/2fa(t),a(t)-I/2 t g•()), 

for f and g in Z•2 (H,Q), and this draws attention to functions x and y from R to 
determined by the equations, 

x(t) a = a(t)-l/2fa(t) and y(t) a = a(t)-l/2ga(t) for {t,a) in R X •2, 
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such that if M is in F then Q•2(II(M)f,g) = Z t in M(x(t),y(t))•2 ß The following may be 

proved: if each of f and g is in 23•2 (H,Q) and e > 0, there is a finite subset W 0 of •2 

and a member M 0 of F with the property that, for each finite subset W of •2 which 

includes W 0 and each member M of F such that each set in M 0 is filled up by a 
subcollection of M, 

{Q•(f,g) ' Za in WEt in M (a(t)-I/2fa(t),a(t)-i/2ga(t))l < e. 
REMARK 3. The approximation process indicated in the preceding Remark 

might be further formalized as follows. With R' the pre-ring consisting of all subsets of 

f• X L of the form (a} X t for a in f• and t in R ({a} denotes the degenerate subset 

of f• of which a is the only member), let F' denote the family of all finite 

subcollections M' of R' such that no element of f• X L belongs to two sets in M'. Now, 

the formulas co((a} X t)=a(t) (for (a,t} in f• X R) determine a finitely additive 

function co from R' to L(Y)+; also, the transformation b consisting of all {f,f' } such 

that f is in EF• (H,Q}, and f' is the function from R' to Y determined by f'({a} X t) = 

fa(t) for {a,t} in f• X R, maps EF•{H,Q} onto a set of finitely additive functions 
from R' to Y. If each of {f,f'} and (g,g'} belongs to b and (a,t} is in f• X R and 

u= (a} Xtthen 

<a(t)-1/2 fa(t ) ,a(t)-1/2ga(t) ) = (co(u)-I/2 f,(u),co(u )- 1/2g,(u)) ' 
Inasmuch as, for each finite subset W of f• and each member M of F, F' contains the 

collection M' consisting of all {a} X t for a in W and t in M, it may be shown that b is 

a linear isometry from {ZF•{H,Q},QF •} onto that Hellinger integral space generated 
by co (relatively, of course, to the pre-ring R'): 

Za in •2fL/F (a-1/2fa,a'l/2ga) = f(f•XL)/F ,(co-1/2b(f),cø'l/2 b(g)) 
for all f and g in EF•{H,Q}, on the basis of Remark 2, with the help of Theorem 10. 
This construction is not peculiar to the special assumptions on f• in this section. 

Miscellaneous Examples. Let I' [c denote the usual norm for L(Y) c, so that if A is 

in L(Y) c then Iml c is the least nonnegative number b such that llAr/ll •< b [Ir•[l for each 
r/ in Y. With reference to Theorems 23 and 24, the following Theorem may be proved. 

THEOREM 26. Suppose, of the collection •2, that if a is in •2 and • is in Y then 

a. • belongs to H a. Then there is a norm II' II for S(FZ) with these properties.' 
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(1) if f is in S(CI) then IIfll is the least nonnegative number b such that, if l• is in 

D 1, U/a(f)• •< b I•'(•)l, and 

(2) if f is in S(I2) and s is in R then, for each a in I2 such that f is in Ha, 

[If(s)[] •< Ilfll •< Na(f)lœL/Fallc/2. 
INDICATION OF PROOF. It may be recalled, from Theorem 24(4), that D 1 is a 

complete space with respect to the norm I•'(')i; moreover, a linear function b from 

S(I2) to the set of all linear transformations from D 1 to Y is determined by the 

equations b(f)/a =/a(f), for f in S(I2) and/a in D 1. To show that 26(1) does define a 
norm II'll for S(I2), it is sufficient to show that b is reversible and if f is in S(I2) then 

b(f) is continuous with respect to the ordered pair { I•'(')[,[l'[l} of norms on D 1 and Y, 
respectively. If f is a nonzero member of S(I2) then there is a set s in R such that 

ifs) :/= 0; there is a member G of OPER-INV-LIM-{H,Qdr} such that if a is in I2 then 

G(a) = Ps a and, for each t in R and (•,r• } in Y X Y, 

I<•,G(a)(t)r/) 12 •< <$,Psa(t)$)<r/,Psa(t)r•) •< 
hence, G is in the kl,-image of E 2 and {kl ,-1 (G)I•< 1 and if/a = a-l(G) then it is true that 
6(f)/a = /a(f) = ifs) =/= 0: thus, the function /5 is reversible. Suppose, now, that f is in 

S(CI): if/a is in D 1 and G = a(/a) then, for each a in CZ such that f belongs to H a and 
each r/in Y, 

Da-1/2G(a) Na(G(a ).**/)2 = fL/F ' **/I12 < I•'(/a)12fL/FUal/2.r/Q2 = i•.(/a)12<r/,fL/Fa.r/) 
so that Na(G(a)-*r/) •< IfL/Fallc/2Drl[1 I•(/a)l, from which it follows that 

I<u(f),r/>l = IQa(f,G(a)'*r/)l •< Na(f)Na(G(a) '*r/) •< Na(f)IfL/Fal lc/2 I•(/a) I Dr/Q, 
whence D/a(f)• •< Na(f)lfL/Fallc/21•(/a)l. This establishes the aforementioned 
continuity of fi(f), yielding thus the norm 11ø11 for S(CI), and also serves to give the 

second indicated inequality in 26(2); as to the first inequality indicated in 26(2), that 

follows from the existence (as indicated earlier in this paragraph), for each s in R, of a 

# in D 1 with I•(u)l •< 1 and/a(f) = f(s) for f in S(CI). 

TERMINOLOGY. Suppose the collection CZ in Theorem 26 consists of all 

finitely additive functions a from R to L(Y) + such that if • is in Y then a-• is in Ha: a 
finitely additive function G from R to L(Y) is said [9, page 76] to be of bounded 
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variation with respect to (',-) provided there is a member { a,i5) of 12 X 12 such that if 

{ •,r/} is in Y X Y and t is in R then I(•,G(t)r/)l 2 •< (•,a(t)•)(r/,i5(t)r/), and in this case 
{a,i5} is called a dominant pair for G (cf Theorem 17). Thus, in case 12 is the 

aforementioned collection, it is consistent to refer to S(i2) as the space of all functions 

(from R to Y) "of bounded variation with respect to (-,-)," and to call II'll (from 

Theorem 26) the total variation norm corresponding to (-,-): it may be recalled from 

Theorem 10 that a finitely additive function f from R to Y belongs to S(12) only in 

case there is a member {a,h} of 12 X 12 such that h is real (scalar) valued and if (t,r/} 

is in R X Y then [(f(t),r/)l 2 •< h(t)(r/,a(t)r/). 
Now, with the Supposition of Theorem 26, if a is in 12 then one might define a 

norm II'l[a for H a as follows: if f is in Ha, Ilf[I a is the least nonnegative number b such 

that if G is a finitely additive function from R to L(Y) and 

[(•,G(t)r/)[ 2 •< (•,a(t)•)(r/,a(t)r/) for each t in R and { •,r/) in Y X Y 

then OfL/F[a-1/2G'*]*a-1/2f[1 •<b. As has been shown previously [12], if each 
member of I2 is (real) scalar valued and a is in I2 and f is in H a then Ilfl[a = [Ifil and is 

the total variation of f with respect to the norm I1' 0: in particular, in this case, if a and 

i5 are members of I2 and f belongs to the common part HaHi5 then ]Ifil a = ]lflli5. That 
this latter can not be proved in general may be seen from the following Example, in 

which appeal is made to Theorem 6 sp, with Y two dimensional. 

EXAMPLE 1. Let R be the pre-ring consisting of two mutually exclusive sets s 

and t, Y be (complex) two dimensional, B be a member of L(Y) + having eigenvalues 2 
and 1/2, and 12 consist of the functions a and i5 defined on R to L(Y) as follows: 

a(s) = i5(s) = 0, a(t) = 1, and i5(t) = B. 

It may be seen that H a = Hi5 and consists of all functions f from R to Y such that 
f(s) = 0; let x be a member of Y such that Bx = 1/2x and •x• = 1, and fbe the member 

of S(i2) such that f(s) = 0 and f(t) = x. If D is in L(Y) and [DI c •< 1 and G(s) = 0 and 

G(t) = D then fL/F[a'I/2G '*] *a-1/2f = Dx: it may be seen from this that Ilfll a = 1. If 
G is a function from R to L(Y) such that G(s) = 0 then by Theorem 6 sp, in order that 

[<•,G(t)r/>l 2 •< <•,t3(t)•><r/,is(t)r/> for each (•,r/) in Y X Y, 

it is necessary and sufficient that G(t) = B1/2DB 1/2 for some D in L(Y) such that 
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IDI c • 1, in which case 

œL/F[•-I/2G.. ] .13-1/2f = [B-1/2G(t).] .B-1/2x = [D.B1/2] .B-1/2x = B1/2DB-1/2x• 
since there is a unitary member D of L(Y) such that BDx = 2 Dx, it may be seen from 

this that Itfl113: 2 • IIflloc 
In case Y is finite dimensional it may be shown that, if 13 is a finitely additive 

function from R to L(Y) + such that 13-• belongs to H13 for every • in Y, then 13 is of 
bounded variation with respect to the norm I'lc: hence, with the help of Theorem 

18(1), there is a finitely additive scalar valued function 3• from R to L(Y) + such that 

fL/F3• exists and H13 is a subset of H3•. In the foregoing situation, with particular 
reference to the representation in Theorem 15 and the Remarks 1 and 2 immediately 

thereafter, it might be of interest to show that there exists a finitely additive scalar 

valued function o• from R to L(Y) + such that H a = H13. This can not be proved. 
Indeed, for the foregoing situation with Y of finite dimension greater than 1, it can 

not be proved that there is a nontrivial finitely additive scalar valued function o• from 

R to L(Y) + such that H a is a subset of H13. Consider the following Example. 
EXAMPLE 2. Suppose Y is of finite dimension n+l > 1, R is the pre-ring of all 

degenerate subsets of the set L of integers 0 through n, and (gp}• is a simple ordering 
of an orthonormal set in (Y,(-,-)}. Let t3 be defined from R to L(Y) + by 

13( (p})r/= (r/,gp)gp for each p in L and r/in Y, 

and suppose ot is a scalar valued function from R to L(Y) + such that H a is a subset of 
H13. By Theorem 18, there is a nonnegative number b such that if p is in L and r/is in 
Y then o•({p})l]r/l] 2 •< b(r/,13( {p} )r/). Now the function o• has only the value 0 since, for 
each p in L, there is a q in L different from p so that 

0 •< ot({p}) = ot({p})•gq• 2 •< b(gq,13({p})gq) = b(gq,gp)(gp,gq) = 0. 
In the case that Y is infinite dimensional, it can not be proved that if 13 is a 

finitely additive function from R to L(Y) + such that fL/F13'•i = • for each • in Y then 
either (i) there is a nontrivial finitely additive scalar valued function o• from R to 

L(Y) + such that H a is a subset of H13 or (ii) there is a finitely additive scalar valued 
function '), from R to L(Y) + such that H13 is a subset of H,¾. Consider the following 
Example. 
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EXAMPLE 3. Supposing that Y is infinite dimensional, there is a member B of 

L(Y) + with spectrum the number interval [0,1]: let R be the pre-ring consisting of all 

such subsets t of L = [0,1] that either t is L or, for some numbers p and q with 

0 < p < q •< 1, t is the interval [0,p] or t is the right-closed interval (p,q], and let/• be 

the restriction to R of the spectral resolution of B. If c• is a finitely additive scalar 

valued function from R to L(Y) + such that H a lies in H/• then, by Theorem 18, there 
is a nonnegative number b such that if t is in R and r/ is in Y then c•(t)[]r/l]2 •< 
b(r/,/3(t)r/): as in Example 2, for each s in R different from L, there are a'member t of 

R which does not intersect s and a member r/ of Y such that Ur/[l = 1 and/•(t)r/= r/so 

that/•(s)r/= 0 and 

0 •< c•(s) = c•(s)0r/[l 2 •< b(r/,/•(s)r/) = b(r/,0) = 0, 

whence a has only the value 0. If there were a finitely additive scalar valued function 7 

from R to L(Y) + such that H/• is a subset of H 7 then, by Theorem 18, there would be 
a nonnegative number b such that if t is in R and r/is in Y then (r/,/•(t)r/) •< b 7(t)•r/[12: 

this would imply that Itl(t)l c •< b 7(t) for each t in R but, since I/•(t)[ c = I for each t in 

R, this would involve a contradiction. It may be shown that the equations X(•)(t)= 

/•(t)•, for ( •,t} in Y X R, define a linear isometry X from the space (Y,(-,') } onto the 

space (H/3,Q/• }; cf Theorem 4. 
In one of the cases previously considered [12], that I2 is the collection of all 

finitely additive scalar valued functions a from R to L(Y) + such that fL/FCr exists, 
S(I2) is the space S O of all finitely additive functions from R to Y which are of 

bounded variation with respect to •-[l, and II oil is the total variation norm on S(I2). 

Moreover, in that case, {D 1,[•'(')[} is the space E (normed in the usual manner) of all 
linear functions from S(I2) to Y which are continuous with respect to the ordered pair 

{[[øll,•'[1} of norms on S(I2) and Y, respectively: by considering the following 

Example, one may see that this can not be proved in general. 

EXAMPLE 4. Suppose that Y is infinite dimensional and separable with respect 

to [I'Q, and let {gp}•O be a simple ordering of a maximal orthonormal set in the space 
(Y,(-,') }; let R be the pre-ring of all degenerate subsets of the set L of all nonnegative 

integers; as in Example 2, let/3 be defined from R to L(Y) + by 

/3({p})r/= (r/,gp)gp for each p in L and r/in Y. 
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Let the collection I2 consist of/3 together with the zero function from R to L(Y) +, so 

that S(I2) is simply H/3 and II ß II = II ø11t• as described in the paragraph preceding Example 
1. It may be shown here, as suggested in Example 3, that the equations X(•)(t) =/3(t)•, 

for {•,t ) in Y X R, define a linear isometry X from {Y,(-,-)) onto the space 
Suppose /a is in Di: if p is in L then o(#)(/3)({p)) maps the/3({p))-image of Y into 

itself and so may be realized as a complex scalar Cp, whence I•(#)l = sup n in Lien i and 
if f is in S(I2) then 

#(f) = fL/F[/5-1/20(#)(/3)., ] ,lff-1/2f = lim 23n•>0Cn(X-1 (f),gn)gn 
and l]#(f){] 2 = lim Zn•>0lCnl2l(x-l(f),gn)12. It follows from this that the norm I1'11 is 
[lX-I(-)[I, which is N/3. Therefore the space E is DO, which consists of all composites 
BX -1 for B in L(Y) c, and so includes D 1 as a proper subset. 

Pursuant to Remark 3 following Theorem 14, concerning the interpretation of a 

Hellinger integral space as a completion of a linear space of equivalence classes of 

R-simple functions from L to Y, there arises a kind of differential equivalence notion. 

With /3 a finitely additive function from R to L(Y) +, and the set L itself assumed to 

belong to the pre-ring R, suppose k is a function from R to Y (such as, e.g., a 

composite •[c] for some R-simple • from L to Y and some choice function c from R 

to L) and the finitely additive function f from R to Y is given by integral formulas 

f(t) = ft/F/3-k for t in R. Attention is directed to conditions on k so that f should 
belong to H/3 and fL/F]•T1/2f - /31/2k[] 2 = 0. The following Theorem provides an 
Example of such conditions on the function k (a preliminary version of this was 

announced in Abstract 623-25, Notices Amer. Math. Soc., 12(1965), 357). 

THEOREM 27. Suppose that the pre-ring R contains the set L, t3 is a finitely 

additive function from R to L(Y) +, and k is a function from R to Y such that if t is in 

R then f(t) = ft/F/3-k exists weakly in {Y,(-,')}. If for each set t in R, ft/F•t31/2kl] 2 = 
(k f) then f belongs to HA and _I] 1/2f /31/2k•2 0 and, for each t in R and g ft/F ' • P fL/F' lff' - = 

in the space H/3, ft/F(k,g) = f t/F(•T1/2f,t3 -1/2g). 
INDICATION OF PROOF. Assuming R,/3, k, and f as indicated, suppose that if 

t is in R then h 1 (t) = ft/F(k,f) and h2(t) = ft/FI]/31/2kf12. If the member M of F fills up 
the member t of R then (by the inequalities established in Theorem 9) 

0/3(t)-1/2Zv in M/3(v)k(v)•2 •< Zv in M B/3(v) 1/2k(v)l]2 
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whence, for each r/in Y, 

t(Zv in M t3(v)k(v),*?> 12 •< 23v in m [1t3(v) 1/2k(v)[12(, ? 

so that I(f(t),,?)[ 2 •< h2(t)(,?,/3(t),?). Therefore, by Theorem 10, f belongs to H/3 and 
Nt3(f)2 •< h2(L ). Again, if M is a member of F filling up the member t of R, 

IZv in M (k(v),f(v))12 •< 23v in M[lt3(v)l/2k(v)U2Zv in M 0t3(v)-I/2f(v)02 
whence Ihl(t)l 2 •< h2(t)œ.,•.•-l/2f•2 •< h2(t)2: thus, the assumption that h 1 is h 2 

implies that h2(t ) = ft/F•-•/2fl] 2 for each t in R. Suppose, now, that h 1 is h2: if the 
member M of F fills up the member t of R then 

Zv in m •(v)-I/2f(v) ' •(v) 1/2k(v)l]2 

= Zv in M •g(v)'l/2f(v)02 - 2 Re Z v in M (k(v),f(v)) + Zv in M l]g(v)l/2k(v)ll2 

so that œt/F•lT1/2f - t31/2k• 2 = N•(Ptf)2 - 2 hl(t) + h2(t) = 0. The argument may be 
completed by noting that, for appropriate g and M and t, 

IZv in M•(V)- 1/2f(v),/3(v)-1/2g(v)) _ Zv in M (k(v),g(v)) 12 

•< Zv in M •g(v)-I/2f(v) - g(v) 1/2k(v)O2Zv in M og(v)-I/2g (v)[I2' 
In the light of Theorem 14, there is another interpretation of the condition, 

relating f and k, to which attention has now been drawn. Consider the following: 

THEOREM 28. If • is a finitely additive function from R to L(Y) + and f is in the 

space Hg and k is a function from R to Y and h is a function from R to Hg such that 

h(t)(s) = Ptt3(s)k(t) for each {s,t) in R X R, then the assertion that œL/FI]t3 'l/2f- 
t31/2k• 2 = 0 is the assertion that f = fL/F h with respect to N•. 

On the basis of Theorem 14 it may be seen that, with g the function from R to 

Ht3 given by g(t)(s) = [t3(t)-l/2Pt/3(s )] *t3(t)-l/2(f(t) - t3(t)k(t)} for each {s,t} in R X R, 
if M is in F then Z t in Mg(t) = IIt3(M)f - 23 t in M h(t) and 

Zt in U I]g(t)-I/2f(t)- g(t)1/2k(t)[I2 = NB(Ili•(M)f - Z t in U h(t))2; 
therefore, Theorem 28 may be proved as a direct consequence of Theorem 14. 

As has been noted elsewhere [8], the evaluation kernels arising with the space Y 

one dimensional (i.e., the complex plane) are the "positive matrices" of E. H. Moore's 

General Analysis [ 13]. In the context of Theorems 1-6, omitting the special pre-ring 
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hypothesis on R, suppose that {h,q} is a complete inner product space of complex 

functions on the set R and k is a complex function on R X R such that if t is in R then 

k(',t) is in h and q(f,k(',t)) = f(t) for each f in h: it may be shown that the function K 

from R X R to L(Y) c, K(s,t)r/= k(s,t)r/for r/in Y and {s,t} in R X R, satisfies the first 

system of inequalities indicated in Theorem 2. Hence, the space {H,Q} (in which K is 

the evaluation kernel) may be viewed as a "vectorization" (relatively, of course, to the 

space {Y,(',')}) of the original space { h,q}. As one simple instance of this, if {h,q} is 

the usual Hardy space of complex analytic functions on the (open) unit disc of the 

complex plane with k(s,t) = (1-st*) '1 for {s,t} in R X R, it is easily seen that {H,Q} is 

the space of analytic functions f from R to Y with convergent En•>0(•f(n)(0)ll/n!)2 , 
and Q the inner product given by Q(f,g) = lim En•>0(f(n)(0),g(n)(0))/(n!)2 for {f,g} in 
H X H. Here is an Example to illustrate how certain familiar spaces may be considered 

as arising from the aforementioned vectorization procedure. 

EXAMPLE 5. Let R be the space Y itself, and K be the function from Y X Y to 

L(Y) c given by K(s,t)r/= (s,t)r/ for {s,t) in Y X Y and r/ in Y. Now, if x is a function 

from a finite subset M of Y to Y then, for each maximal orthonormal set G in the 

space {Y,(-,'>}, 

E {s,t} in MXM <x(s),K(s,t)x(t)) = E {u,v} in GxGIEt in M (t,u)<v,x(t))12; 
let {H,Q} be the complete inner product space of functions from Y to Y such that 

{K,Y,H,Q} is a kernel system. A function f from Y to Y belongs to H only in case 

there is a nonnegative number b such that, for each finite subset M of Y and each 

function x from M to Y, 

let in M (f(t),x(t))}2 •< b E (s,t) in MXM (x(s),x(t))(t,s), 
in which case Q(f,f) is the least such number b. Let G be a maximal orthonormal set in 

the space { Y,(-,.) }: it may be proved that H consists of all members f of L(Y) c such 

that E u in G Ilfu•2 exists, and that Q(f,g) = Z u in G (fu,gu) for each (f,g} in H X H, so 
that if f is in H and (t,r/) is in Y X Y then 

Q(f,K(-,t)•) = E u in G (fu,(u,t)r/) = Eu in G (t,u)(fu,r/) = (t,f*r/) = (ft,r/). 

This space {H,Q} is the space of "Hilbert-Schmidt operators" [3], earlier known as 

linear transformations of finite norm [20, page 66], in the space {Y,(-,-)}. 
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Here is a final Example which may serve to illustrate the determination of a 

kernel system, conceptually simple relatively to the space {Y,(-,-)}, which seems not 

to arise by the vectorization procedure to which attention has now been drawn. 

EXAMPLE 6. Suppose R is a subset of L(Y) c containing at least one nonzero 

transformation, and K is the function from R X R to L(Y) c given by K(s,t) = st* for 

{ s,t} in R X R. If x is a function from a finite subset M of R to Y then 

Z{s,t} in MXM (x(s),K(s,t)x(t)) = [lEt in M t*x(t)•2 >• 0; 
let (H,Q} be the complete inner product space of functions from R to Y such that 

(K,R,H,Q} is a kernel system. A function f from R to Y belongs to H only in case 

there is a nonnegative number b such that, for each finite subset M of R and each 

function x from M to Y, 

IZt in M (f(t)'x(t))[2 •< b•Zt in M t*x(t)u2, 
in which case Q(f,O is the least such number b. Let Z be the •' U-closure of the linear 

span of the t*(Y) for t in R: it may be proved that a function f/¾om R to Y belongs 

to H only in case there is a member • of Z such that ifs) = s• for each s in R, and that 

if {•,r/} is in Z X Z and {f,g} is the member of H X H such that ifs) = s• and g(s) = sr/ 

for each s in R then Q(f,g) = (•,r/), whence if {t,z} is a member of R X Y then 

Q(f,K(',t)z) = (•,t*z) = (fiD,z). 

TERMINAL COMMENT. As an alternative to the present setting, but a chapter 

in what could properly be called General Analysis in Hilbert Spaces, one might have a 

set R and a collection I2 of evaluation kernels in spaces of functions on R to Y - so 

that if {K1,R,H1,Q 1} and {K2,R,H2,Q2} are kernel systems, with K 1 and K 2 in I2, 

and neither of H 1 and H 2 is a subset of the other then both K 1 :K 2 and Ki+K 2 belong 
to I2 - with analogous results for the linear span S(I2) of the family of spaces H. 
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