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EQUATIONAL LOGIC 

Walter Taylor 

This is a survey of existing work of many authors in equational logic or varieties of 

algebras. Our primary interest is in equations for general algebraic systems, and we will 

not report in detail on equations in special systems (e.g., fields, where equations 

began). As a branch or "fragment" of general first order logic, this subject has two 

aspects, one focusing attention on the formal expressions (in this case, the equations), 

and the other focusing on the models of these equations. We give slightly more 

attention to the first of these, focusing, until õ 13, on sets of equations. This survey 

owes much to an expository article of Tarski [413] in 1968, and to some unpublished 

notes of D. Pigozzi (ca. 1970). Our exposition will be self-contained for the general 

mathematician, the only special prerequisite being a rudimentary understanding of the 

term "decidable." We include no proofs. This survey originated in a series of talks at 

the 1975 Summer Research Institute of the Australian Mathematical Society. Some 

valuable suggestions about this article were made by G. Bergman, W. J. Blok, S. 

Comer, B. Cs•kfiny, B. Davey, A. Day, G. Gr//tzer, W. Hodges, B. J6nsson, R. 

McKenzie, G. McNulty, J. Mycielski, E. A. Palyutin, D. Pigozzi, A. Pixley, and A.D. 

Tat'manov. 

Our objective is to make more mathematicians aware of this subject and to 

provide a readable introduction to its examples, its theorems, and what they mean in a 

fairly broad context. At the same time we hope to provide a reasonably complete 

survey of the literature which will be helpful to specialists. For these reasons (and 

others) we have omitted all proofs, and so perhaps we should warn the reader of one 

aspect of the subject on which we have not commented in detail: which of these 

results were most difficult to prove. 

But here we may mention one of the attractions of equational logic: there are 

hard and interesting theorems which are very easy to state (a property of all attractive 
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forms of mathematics from the Theorem of Pythagoras onward). While the maturity 

and value of mathematical logic are unquestioned nowadays, we hope the reader will 

also gain an insight into the present-day vigor (if not yet maturity) of general algebra. 

This subject has been clouded by a skepticism ranging from Marczewski's [283] 

sympathetic warning: 

[In subjects like general topology and general algebra] 
it is easy to get stranded in trivial topics, and caught in 
the net of overdetailed conditions, of futile 
generalizations. 

to the outright malediction: "nobody should specialize in it" ([184], [64]). This 

injunction is certainly out of date (if indeed it ever was valid), and we hope this survey 

will be adequate evidence of the successes of specialists in universal algebra. And 

perhaps this survey will help dispel another (closely related) myth, which is 

epitomized by Baer's remark [16, page 286], "The acid test for [a wide variety of 

methods in universal algebra] will always be found in the theory of groups." Many 

interesting results and ideas here either collapse completely or become hopelessly 

complicated when applied to groups; but there is no lack of interesting classes of 

algebras defined by equations to which the theories may be applied, as we shall see. 

And this again is one of the attractions of the subject. 

The writing of this survey was supported, in part, at various times, by the 

University of Colorado, the Australian-American Educational Foundation and the 

National Science Foundation. An early ancestor of this survey was a report of the 

Australian S. R. I. lectures which appeared in the proceedings of the Szeged Universal 

Algebra conference of 1975. 

Although we believe the matehal unfolds rather naturally in the order we present 

it, only õ õ 1,2, 3, 5 are essential to read first. 
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1. Early history and definitions. For a very readable history of algebra, consult 

Birkhoff [ 51 ], [ 52], [ 53]. The role of algebraic equations was pronounced from the 

start (e.g. duplication of a cube, solvability of third and fourth degree equations, 

unsolvability of fifth degree equations, etc.). We are concerned with the identical 

satisfaction of an equation - e.g. the associative law 

x + (y + z) = (x +y) + z 

holds for all real numbers x, y, z. The importance of equations holding identically 

emerged with the axiomatic approach to group theory and ring theory, and later with 

Boolean algebra (late 19 th century) and lattice theory (early 20 th century). The first 
general result on identities was Birkhoff's 1935 theorem [48] which is stated in detail 

in õ3 below. 

A type is a family (nt)t• T of natural numbers (0 • n t < co) (where co = first 

infinite ordinal). (Typically, in our discussion the type (nt)t• T is arbitrary but fixed.) 

An algebra [of type (nt)t• T] is a structure of the form A = (A, Ft)t• T, where for 

each t • T, F t is a function 

Ft: A nt -• A 
(sometimes called an nt-ary operation). (Remember that A ̧ is a singleton, and so if 
n t = 0, then F t has one-point range, i.e. F t can be thought of as a designated element - 
a "constant" - of A.) 

A homomorphism •o: A-• B between algebras A = (A,Ft)tG T and B = (B,Gt)tG T 
(of the same type) is a function •o: A -• B such that always 

•øFt(a 1 ,a2,'") = Gt (•øa 1 ,•øa2,'")' 

If •o is onto then B is a homomorphic image of A; if•o is the inclusion map of A _C B, 

then A is a subalgebra of B. If A i = (Ai,Fit)tG T (i • I) are algebras all of the same type, 
then we define the product 

II = i • I Ai (IIAi'Ft)' 
where 

Ft(ot 1 ,or2,...) = (Fit(Otli,Ot2i,...): i • I). 

A congruence relation on A is any equivalence relation 0 on A given by (a,b) • 0 iff 

•o(a) = •o(b) for some fixed homomorphism •o' A -• B. 
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2. The existence of free algebras. Let V be any class of algebras of fixed type. 

By definition a V-free algebra on the set X (denoted Fv(X)) is an algebra B = 

(B,Ft)t•- T such that 
(1) B c V; 

(2) X c_ B; 

(3) if A c V and •0: X-+A is any function, then there exists a unique 

homomorphism •: B -+ A with • ] X = •0' 
One easily checks that if B and C are each V-free on X, then there exists a unique 

isomorphism •: B-+ C with • the identity on X. (Thus we may say "the" V-free 

algebra on X.) 

THEOREM. [48]. If V is any non-trivial class of algebras closed under the 

formation of subalgebras and products, then Fv(X) exists for every X. 
A proof can be found in any of our references on general algebra. Birkhoff's 

original proof has been abstracted in category theory to yield the "adjoint functor 

theorem." See e.g., [ 143, page 84]. For some other adjointness results on classes V see 

e.g., [432] and [346, pages 148-149]. Such generalized free objects (e.g. tensor 

algebras and universal enveloping algebras) were important in Lawvere's development 

of an invariant approach to this subject (see õ 7 below). 

Familiar examples of free algebras are free groups and free AbelJan groups. Thus 

in some (but not all) cases, elements of free algebras can be written as "words." (We 

will return to this point in õ 12 below.) This more concrete description of free algebras 

has also caught the attention of category theorists; see e.g. Gray [ 170]. 

It is unclear whether there is a successful generalization of the Theorem to more 

general classes V. Gratzer [ 163, Chapter 8] proposed such a generalization for classes 

V defined by a set 22 of first order sentences. But unfortunately his "free algebra" was 

not independent of the choice of axiomatization • [Colorado Logic Seminar, Spring, 

1969, unpublished]. 

Perhaps the most remarkable recent result on free algebras is Shelah's [397]: if 3, 

is a singular cardinal, every subalgebra of A with < 3, generators is free, and A has 

cardinality 3,, then A is a free algebra. 

Notational convention henceforth: K is the class of all algebras of the fixed type 
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(nt)t• T. By the theorem, FK(X) always exists. It is sometimes called "absolutely 
free." 

A term is an element of the absolutely free algebra FK(X), an equation is a pair 
of terms (o,r), usually written o = r or similarly. In our context (namely, the identical 

satisfaction of equations), equations are often referred to as identities or laws (or 

sometimes even by the astronomical term "syzygy" - see e.g. [440] ). 

To know terms more explicitly, we should have a more explicit representation of 

the absolutely free algebra FK(X). (One such representation is adequate, since all 
absolutely free algebras on X are isomorphic via a unique isomorphism over X.) To do 

this, we will first redefine "term" by the following recursire scheme for generating 

formal expressions (regarding the members of X and the symbols Ft(t G T) as 

belonging to an "alphabet"): 

(1) x is a term whenever x G X; 

(2) Fta 1 --' a n is a term whenever a 1,...,a n are terms. 
t t,, n 

Let T be the set of all terms, and define operations F t: T t • T via 

Ft(a 1 .... ,Otnt) = Fta 1 ... an. 
EXERCISE. (T, Ft)t•-- T is K-free on X. 
EXAMPLE. If we are dealing with one binary operation F, then the following 

are in T (and hence are terms): 

Fxy, Fyx, FxFyz, FFxyz. 

And so the following are equations: 

Fxy = Fyx 

FxFyz = FFxyz, 

which are readily recognized as the usual commutative and associative laws for F. 

3. Equationally defined classes. We say that the equation o = r holds identically 

in the algebra A, in symbols 

A •o=r, 

iff •0(o) = •r) for every homomorphism •0: FK(X ) • A. (N.b. recall that •0: FKX • A 

is given exactly by •00: X-• A. Thus our definition is easily seen to be a precise 
formulation of the idea that o and r "come out the same" nomatter what elements of 
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A are taken as values of the "variables" x C X appearing in o and r, i.e. the usual idea 

for familiar equations like the associative law.) An equationally defined class of 

algebras, alias a variety, is a class V for which there exists a set Z of equations with 

V=mod23=(A: for alleC23, A • e). 

(Here "mod 23" abbreviates "the class of all models of 23.") 

THEOREM. (Birkhoff 1935 [48] ). V is a variety if and only if V is closed under 

formation of products, homomorphic images and subalgebras. 

This enormously important result, in a style almost unheard of at its time, 

effectively began "model theory." (See e.g. Tarski [41 1].) It can be considered the 

ancestor of almost all research described in this survey. And yet in his history of 

modern algebra [52], Birkhoff alludes to it in half a line only! 

This theorem has been followed over the years by many others of a similar 

format - sometimes called "preservation theorems" since Birkhoff's theorem (together 

with compactness) has the corollary that if a sentence •0 is preserved under formation 

of homomorphic images, subalgebras and products, then •0 is equivalent to a 

conjunction of equations. For instance Keisler and Shelah proved that a class L of 

structures is definable by a set of first order sentences iff L is closed under the 

formation of isomorphic structures, ultraproducts and ultraroots. (Keisler proved this 

assuming the G.C.H., and Shelah [396] without. See also [7].) For many other 

preservation theorems, see e.g. [276]. More in keeping with the algebraic results of 

this survey are the following three theorems. 

THEOREM. ([228] ;see also [366]). V is definable by regular equations if and 

only if V is closed under the formation of products, subalgebras, homomorphic images 

and sup-algebras. 

(An equation is regular if and only if exactly the same variables appear on both 

sides. The sup-algebra of type (nt)tC T (unique within isomorphism) is the algebra 

({ 0,1) ,Ft)tGT, where for each t, 

Ft(a 1 ,...,ant) = 
0 if al an t 

1 otherwise.) 

THEOREM. ([ 151 ], [55]; see also [395] ). V is definable by linear equations if 
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and only if V is closed under the formation of products, subalgebras, homomorphic 

images and co mp lex algebras. 

(An equation is linear iff each side has at most one occurrence of every variable. 

If A = (A,Ft)tC T is any algebra, the complex algebra of A is B = (B,Gt)tC T, where B is 
the set of non-emp ty subsets of A, and 

Gt(u 1,...,unt) = { Ft(a 1 .... ,ant): a i • u i (1 • i • nt)• .) 
The next important result really goes back to J.C.C. McKinsey [303] in 1943 (he 

proved a theorem which, in combination with the above theorem of Keisler and 

Shelah, immediately yields our statement). The present formulation was probably first 

given by A. I. Malcev [280, page 214], [279, page 29] ;many other proofs have been 

independently given [166], [307], [394], [145], [28] - although the precise 

formulation differs from author to author. See also [85, Theorem 6.2.8, page 337], 

and for related results[33],[239],[186] and [187]. 

THEOREM. V is definable by equational implications iff V is closed under the 

formation of products, subalgebras and direct limits. 

An equational implication is a formula of the form 

(e l&e 2&-..&en)-•e, 

where e,e 1,...,e n are equations, for example the formula 

(xy = xz -• y = z) 

defining left-cancellative semigroups among all semigroups. For direct limits see 

[163], [143] (or any other book on category theory). For some interesting classes 

defined by equational implication, see [417] and [40]. For some infinitary analogs of 

Birkhoff's theorem see [402], and of McKinsey's theorem, see [186]. In the next 

result, infinitary formulas are in a sense forced upon one, even though it is a result 

about ordinary finitary algebras. A generalized equational implication is a formula 

i•i ei -• e, 
where e, e i (i • I) are equations (possibly infinitely many). The next theorem was 
perhaps first stated in [33], although maybe some other people knew of it. 

THEOREM. V is definable by a class of generalized equational implications iff V 
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is closed under the formation of products and subalgebras. 

Fisher has in fact shown [ 138] that we can always take this class of formulas to 

be a setill Vop•nkag principle holds. (This is one of the proposed "higher" axioms of 

set theory.) Some less conclusive results about classes closed under the formation of 

products and subalgebras occur in [196], [ 177], and [ 178]. Some mistakes of [ 155] 

are corrected in [327]. 

For some other infinitary (in this case, topological) analogs of Birkhoff"s 

theorem, see [ 112], [108], and [428]. (A unified treatment appears in [ 109] .) For 

instance, the condition 

(*) n ! x • 0 

defines a class of topological Abelian groups (here • means "converges to"), which 

contains all finite discrete groups but not the circle group. In [428] there is a theory 

of classes defined by conditions similar to (*); these classes are called "varieties" of 

topological algebras. 

See [57] for another analog of Birkhoff's theorem which goes beyond pure 

algebra. 

4. Generation of varieties and subdirect representation. Let V 0 be any 
collection of algebras of the same type. Since the intersection of any family of 

varieties is again a variety, there exists a smallest variety I,' D_ V 0. It clearly follows 
from õ3 that 

I,' = Mod Eq V 0, 

where Eq V 0 means the set of equations holding identically in V 0. It is also very easy 

to prove (using Birkhoff's theorem of õ 3) that 

V = HSP 

since, as one easily checks, the R.H.S. is H-, S- and P-closed. Problem 31 of Gnitzer's 

book [ 163] asks whether this fact implies the axiom of choice. (For M any class of 

algebras, HM, SM, PM denote the classes of algebras isomorphic to homomorphic 

images, subalgebras and products of algebras in M.) In practice, S and P seem natural 

enough, affording a "co6rdinate" representation of [some] algebras in V using 

algebras of V 0. But H seems less natural, and one hopes in favourable circumstances to 
avoid it, arriving at 
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(*) V=SP V O, 

an equation which one can occasionally prove for a given V O, or, less difficult, given 

V, one can look for a manageable V 0 for which (*) is true. For example it is historical 

that if V is the variety of vector spaces over a fixed field, then (*) holds for V 0 
containing only a single one-dimensional space. And Stone's (1936) representation 

theorem for Boolean algebras said (in part) that if V is the variety of Boolean algebras, 

then (*) holds for V 0 consisting of only a two-element algebra. 

The key to understanding (*) in general is Birkhoff's (1944) subdirect 

representation theorem [49], which in fact is a generalization of Stone's theorem 

above. An algebra A is said to be subdirectly irreducible iff it cannot be non-trivially 

embedded in a product of other algebras, i.e. any family of homomorphisms 

separating points of A must contain some one-one homomorphism. 

THEOREM. (G. Birkhoff). Every algebra A • a subalgebra of a product of 

subdirectly irreducible algebras, each a homomorphic image of A. 

COROLLARY 1. (*) holds iff SV 0 contains all subdirectly irreducible algebras 
of V. 

Birkhoff's Theorem above makes essential use of the fact that all operations are 

finitary (i.e. n t (•0 for all t 6 T). For some counterexamples in the domain of 
infinitary algebra, see [36] and [113]. (Such counterexamples are implicit in Gr/itzer 

and Lampe [Notices A.M.S., 19(1972), A-683] .) 

Gr/itzer proved that this theorem implies the axiom of choice, answering a 

question of Rubin and Rubin. See [ 163, Exercise 102, page 160]. 

(Notice that every simple group is subdirectly irreducible, and so Corollary I tells 

us that (*) cannot hold for the variety of groups unless V 0 is already a proper class. In 
14.8 below we will return to the distinction between varieties which have "good" 

subdirect representation theories, and those which do not.) 

COROLLARY2. If two varieties contain exactly the same subdirectly 

irreducible algebras, then they are the same. 

EXERCISE. [49]. If R is a subdirectly irreducible commutative ring without 

non-zero nilpotents, then R is a field. 

Consult [76] and [31] for a general treatment of subdirect irreducibility in 
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model theory, and [84] for a treatment in the Bourbaki framework of mathematics. 

Consult [357], [323] and [25] for a general theory of manipulation of H, S and P. 

5. Equational theories. Birkhoff's theorem of õ3 sets up a one-one 

correspondence between varieties V and certain sets Z of equations 

via 

V•>Eq V 

Mod •; *q E. 

The sets •; appearing here (as Eq V) are called equational theories. One easily sees that 

•; is an equational theory iff e C •; whenever •; N e; i.e., e is true in every model of •;, 

i.e. e is a consequence of •;. Birkhoff's next result was to axiomatize the consequence 

relation, as follows: 

(1) o = o is always an axiom. 

(2) From o = r, deduce r = o. 

(3) From p = o and o = r, deduce p = r. 

(4) From o i = r i (1 •< i •< nt), deduce 

Ft(o 1,...,o n) = Ft(r 1 .... ,rn). 

(5) From o(x l,...,xn) = r(x I .... ,Xn), deduce 

O(Pl .... ,t}n) = r(Pl,...,pn)- 

(In (5), o, r, Pl,...,Pn are any terms and o(Pl,...,pn) is defined as the image of o 

under a homomorphism of FK(X) given by mapping xi• Pi (1 •< i •<n) - as one may 
check, this is a precise expression of a naive idea of substitution.) We write •; [-e if 

there exists a (finite) proof of e starting from •; and using only the rules (1) - (5). 

THEOREM. (Birkhoff, [48] ). Z • e iffZl-e. 

It is sometimes useful to know refined versions of this "completeness" theorem, 

which state a similar result for different (usually more restrictive) variations on the 

notion of I-. See for instance [74, page 40] for one; similar methods go back to 

Tarski. For the main result of Tarski [414] (stated at the beginning of õ 11 below), it 

is important to know that (4) can be replaced by some rules of proof which have only 

one antecedent (as is not too difficult to see). We will describe briefly one other 
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derivation system for "equational logic" which has been useful for proving many of 

the undecidability results of {}12. For semigroups it was originated by Kuro• (see 

[251]); see also [3052, [306]. We first assume •2 is closed under forming 

substitutions. By a "derivation" we mean a sequence (o 1,...,on) such that for i = 

1,2,...,n-l, there exists (o• =/3) C •2 such that o• (or/3) is a subterm of o i and oi+ 1 results 

from o i by replacing the subterm a by /3 (resp. a). Then if we define •21- o = r to 
mean that there exists a derivation (o ! ,...,On) with o I = o and o n = r, then the above 
theorem of Birkhoff remains true. 

Proof calculi have also been useful in establishing some interpolation and 

definability results [1422, [200], [187]. Some (more computational) rules are given 

in Knuth and Bendix [248] and used in Glennie [158]. See also [43, {} 102. 

Theorems parallel to this completeness theorem of Birkhoff are not numerous. 

There is of course G6del's complete set of rules of proof for first order logic. (For 

second order logic, no such set of rules can exist, but see Karp [2382, Keisler [242] 

for some rules which go beyond first order logic.) A. Selman [393] has given a set of 

rules for equation implications (independently discovered by D. Kelly [unpublished] ), 

and Sfomir•ski gave an infinitary analog of Birkhoff's theorem in [402]. G. McNulty 

has asked [3072 whether a simple set of rules exists for the class of all positive 

sentences. See any logic book (e.g. [267] or [85] ) for more information on I-. A large 

portion of this survey is concerned with the relation I-; in the next section we will 

specifically illustrate Birkhoff's completeness theorem. 

6. Examples of • . Let P denote the axioms of commutative associative ring 

theory. We will show that 

(*) P,x 48=x• x 2=x. 

(Definition in {}5.) For this it is enough to prove that every ring obeying x 48 = x also 
obeys x 2 = x, and by Corollary 2 in {}4, it is enough to check subdirectly irreducible 
rings obeying x 48 = x. Such a ring clearly has no non-zero nilpotent elements, and so 
by the exercise in {}4, must be a field, having q •< 48 elements. One easily checks that 

for some m, m(q - 1) + 1 = 48, i.e. m(q - 1) = 47 and so either (q - 1) = 47, i.e. q = 48, 

impossible since q must be a prime power; or q-1 = 1, i.e. q= 2, yielding the 

two-element field, which does obey the law x 2 = x, proving (*). And so by Birkhoff's 
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completeness theorem (õ 5), 

P,x 48 = x i- x 2 = x. 

(It is an interesting exercise to try to perform this deduction directly, using any of the 

methods of õ5.) (Cf. e.g. [ 176] .) 

The number of places where equational deductions occur in the mathematical 

literature is too great to be catalogued. An interesting example concerns some 

ring-theoretic identities of Hilbert (see e.g. [ 114]). For an interesting mistake, see 

[422]. Conway's book on "machines" contains whole chapters of equational 

deductions [92]. And "Baxter algebra" (a kind of abstraction of probability theory) 

proceeds partly via equational deductions [384]. For some interesting and nontrivial 

deductions in lattice theory see [291], and in general algebra [342]. Some papers, 

such as [ 192], consist entirely of a single equational deduction. 

The strength of equational deduction can be well appreciated from the words of 

Chin and Tarski [86] on relation algebras (see 9.23 below) "it has even been shown 

that every problem concerning the derivability of a mathematical statement from a 

given set of axioms can be reduced to the problem of whether an equation is 

identically satisfied in every relation algebra. One could thus say that, in principle, the 

whole of mathematical research can be carried out by studying identities in the 

arithmetic of relation algebras." This idea has been carried further in Tarski's 

forthcoming book [415]. (But the interest here is clearly theoretical, not practical - 

it is easier to examine mathematical problems directly than to translate them to 

identities.) 

And so 1- seems decidedly non-trivial (a fact to be more firmly established in 

õ 12 below). Almost all equational deductions in the literature proceed via an informal 

mix of I- and • (i.e. using the framework of •, but also applying rules of l- whenever 

obvious or convenient). For example, it is a familiar exercise that 

F,x 2=e• xy =yx 

(where F stands for (equationally expressed) axioms of group theory). Pursuing any 

"naive" proof of this should show one how to write a "formal" proof using l-. A more 

difficult exercise ([406], [259]) is I', (xnly nl ) = (xy)nl,xn2y n2 = 
n,• n, m. 12 2 (xy) %...,x [y "=(xy)nk• xy =yxiffg.c.d.{(n -nl),...,(nk-nk) } =2. 



WALTER TAYLOR 11 

One might also consider Albert's deduction [5] of full power-associativity of 

"algebras" (multiplicative vector spaces) over fields of characteristic 4:2,3,5 from the 

laws xy = yx and (x2x)x = x2x 2. 

7. Equivalent varieties. We mention two of the many possible ways of 

axiomatizing group theory equationally (not to mention non-equational forms such as 

"for all x there exists y (xy = e)"). 

Fl: x(yz) = (xy)z 

u.(xx-1) = (y-l.y).u = u 

?2:(xY)z=x(Yz) ex=xe=x 

x/x=e x/y=x(e/y) 

u(e/u) = (e/u)u = e, 

(where / denotes "division"). Clearly Pl and P2 do not define the same variety, for 

they are of different types - (2,1) and (2,2,0). But examination of the models of P l 

and the models of P2 will convince one that there is no essential difference between a 

non-empty Pl-group and a non-empty 1`2-group. To make this sameness precise we 
introduce equations which will serve as definitions: 

Al:x/y=x-y -1 
e = x.x-1 

A2: x -1 = e/x. 
Now one may check that 

(*) F1, z51 I- I' 2 and P2,z52 I- P 1. 

One more point is important. If we take one of the A 1 definitions of an operation F, 

i.e. F = c•, and substitute into c• all the A 2 definitions, we get F = c•[A2]; then one 
should have 

(**) I'21- F = c•[A2] and likewise with the roles of Fi,P2; A 1,A 2 reversed. 
(E.g. A 1 says x/y = x-y -1 . Upon substituting the A 2 definitions, we get x/y = x'(e/y), 
and this is indeed provable from F2. ) Now generally, equational theories Pl,P2 are 

said to be equivalent iff there exist sets of definitions A1,A 2 such that (*) and (**) 
hold. 

(There is one intrinsic difference: F 1 has an empty model, but I' 2 does not. 

Nonetheless, 1'1 and 1'2 are generally regarded as equivalent. To this extent, empty 
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algebras do not matter, and some writers save themselves this and related 

considerations by always taking algebras to be non-empty. See Friedman [ 142] for a 

more general theory of definition within varieties. Operations may be implicitly 

definable (i.e., specified by the other operations) in V, but not explicitly definable 

except by arbitrarily complex formulas of first order logic.) 

Equivalence has its model-theoretic aspect, too. Varieties V 1 and V 2 are 

equivalent (i.e. Eq V 1 and Eq V 2 are equivalent in the above sense) iff there exists an 

isomorphism of categories •: V 1 -• V 2 which commutes with the forgetful functor to 

sets (i.e. •V 1 has the same universe as V 1 and a similar fact holds for 

homomorphisms). (These categories are formed from the non-empty models of a 

variety and all the homomorphisms between them. Cf. the remarks in the 2nd 

paragraph on page 52 of [425]. For various references and remarks on this theorem of 

A. I. Malcev, see [420, page 355].) Perhaps the first historical example of an 

equivalence of varieties is the well known natural correspondence between Boolean 

algebras and Boolean rings (with unit). Also consider the correspondence between the 

varieties of Abelian groups and Z-modules - here the equivalence is so easy that some 

people write as if it were an equality. Some other interesting examples of equivalence 

may be found in [96]. 

Very close to the idea of equivalence (in it model theoretic form) is the idea of 

weak isomorphism as developed in Wroct•aw. This together with an emphasis on 

independent sets over free algebras gave equational logic a somewhat different 

direction and flavor in that school. See Marczewski [282] for an introduction to these 

ideas. Briefly, algebras A and B are weakly isomorphic iff there is a bijection •0: A -• B 

such that the algebraic operations of A are exactly the same as the operations 

•0-1F(•0Xl .... ,•0Xn) where F(Xl,...,Xn) is an algebraic operation of B. (Here, by the 
family of algebraic operations, we mean the closure under composition of the family 

of all operations F t together With all projection functions.) Then two varieties are 
equivalent iff they have weakly isomorphic generic algebras (see õ 8 for "generic"). 

Properties of varieties seem more natural and interesting if they are 

equivalence-invariant, if only because then they do not force us to make any 

"unnatural" choice between, say 1•1 and 1•2 above. For example, the similarity type 
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(2,1) is obviously not intrinsic to the idea of a group. Many of the properties 

considered below are (obviously) equivalence-invariant, but a few, such as being 

"one-based" (õ10) are not, as we shall see, comparing 10.3 and 10.10 below. 

Moreover, certain results cannot even be stated without mentioning equivalence (14.2 

and 14.5 below). 

It is possible to define equational classes so as to make all expressable properties 

automatically equivalence-invariant, i.e. to give no preference to any of the possible 

equivalent forms of a given variety. This amounts to considering the set (rather than a 

sequence (Ft)tCT) of all possible operations defined by V-terms. This idea goes back 
to P. Hall (see [91, pages 126-132] ), and has been worked out independently in detail 

by W. D. Neumann [332] and F. W. Lawvere [254] (see page 362 of [420] for more 

detailed historical remarks, and pages 390-392 for a proof- independently found by 

W. Felscher - of the equivalence of these two approaches). Some of these ideas were 

presented independently by Claude Chevalley in a speech at Stanford in November, 

1962. Certainly Lawvere's approach came much sooner than Neumann's and has 

obtained a much wider following. We will not describe his invention, "algebraic 

theories," except to say that they contain precisely the right amount of information 

to describe varieties without allowing any individual operations to play a special role. 

For further references see [420, loc. cit.]; see also [272]. 

Despite some enthusiastic claims (see e.g. the dustjacket or Chapter 3 of [346] or 

[443, page 121]) that these category-theoretic ideas would take over the study of 

universal algebra, this hasn't really happened by 1979. Their significant role, so far, 

has been to suggest analogies outside pure algebra (e.g. compact Hausdorff spaces). 

But they have had almost no impact yet in the study of ordinary varieties (i.e. the 

kinds of subjects discussed in this survey), with one interesting exception: the study of 

Malcev conditions (õ 15 below) was facilitated by viewing it as a study of morphisms 

between algebraic theories (see [420] and [427] ). Other possible directions are given in 

[347], [40], [58], and [244]. Some useful remarks are found in Lawvere [255]. The 

reason that direct application of "algebraic theories" to equational logic is difficult (or 

unnecessary) lies mostly in its model theory; to see this, let us notice (as many others 

have before) that the passage 
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groups with a specific presentation • abstract groups 

is closely analogous to the passage 

varieties, as defined by a set of laws • algebraic theories. 

Although this analogy is perfect for operation symbols and laws, unfortunately the 

models (i.e., the algebras in a given variety) fit more conveniently with the L.H.S., and 

somewhat spoil the analogy (although they correspond, very roughly, to the structure 

which is to be preserved in forming a group of automorphisms). Moreover 

equivalence-invariance of model theoretic properties is almost always transparent; and 

such properties can usually be discussed in a very simple invariant way (by considering 

the set of all operations - see e.g. [282] ); cf. õ õ 14-16 below. 

8. Bases and generic algebras. As seen in õ5, if 230 is any set of sentences, the 

smallest equational theory •_ Z0 is 

Eq Mod •0 = {e: •0 [- e}, 

and in this case we say that •0 is a set ofaxiorns, or an equational base for •. Several 
of the next sections are concerned with the problem of finding (various sorts of) bases 

Z0' 

Here we consider what amounts to some concrete examples of Birkhoff's 

theorem of õ 3, namely we look for a base •0 for a single algebra A, i.e., we want 

Mod •0 = HSP A. 

Actually, given 230, A may be regarded as unknown. Here we refer to A as genteric for 

the variety Mod •0 or for the theory • = Eq Mod •0' Using P one can easily see that 
every variety V has a generic algebra, i.e. 

for all V there exists A(V = HSP A). 

One such A is the V-free algebra on •q0 generators; see also [408]. We mention here a 

few examples of such A and •0' 
8.1. The ring Z of integers is generic for the theory of commutative rings. 

8.2. The 2-element Boolean ring [with unit] is generic for the theory of Boolean 

rings [with unit], given by the laws for rings [with unit] together with the law x 2 = x. 
(Similarly for Boolean algebras, by remarks in 87; this fact may be interpre'ted as a 

completeness theorem for propositional logic.) 



WALTER TAYLOR 15 

8.3. The algebra (A; t•,tJ,-,-), where A is the family of all subsets of the 

Euclidean plane and - denotes topological closure, is a generic closure algebra 

(McKinsey and Tarski [304]; see also [408]). 

8.4. Any non-commutative totally ordered ring is generic for the theory of rings, 

by a theorem of Wagner [435]. (Such rings were first constructed by Hilbert.) There is 

a long history of investigation of which rings can obey non-trivial polynomial 

identities (PI-rings); see [6], also [41 ], [42]. 

8.5. Each of the two 8-element non-commutative groups is generic for the 

variety of groups defined by the laws 

x 4= 1 

[x2,y] = 1 
(where [ , ] denotes group commutator) [270]. 

8.6. The group of rigid motions of the plane is generic for the variety of groups 

defined by the law 

[[x,y],[u,v]] = 1 

(L. G. Kova'cs and M. F. Newman - from [331]). 

8.7. The rotation group of a 2-sphere is generic for the variety of all groups 

(Hausdorff). (Notice that this statement has a meaning obviously invariant under 

equivalence, and so I do not have to state whether I mean e.g., F 1 or F 2 of õ7. Similar 
remarks are applicable throughout õ8.) 

8.8. The group of all monotone permutations of (R,•--<) is a generic 

lattice-ordered group (Holland [188] ). (Here R denotes the set of real numbers, and •< 

its usual ordering.) 

8.9. For fixed p • R, the algebra 

(R,px + (1 - p)y) 

is generic for the laws 

XX=X 

(xy)(zw) = (xz)(yw) 

iff p is transcendental. (Fajtlowicz and Mycielski [136] .) 

8.10. The algebra (co,x y) is generic for the law 

(xY)Z = (xZ)Y 
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(Martin [286, page 56]). (Here co= { 0,1,2,...} and xY denotes ordinary 

exponentiation with 00 = 1.) The proof is surprisingly long. Cf. 9.20 below. 
8.11. The algebra (co,xy,x y) is generic for the laws 

xy = yx 

(xy)z = x(yz) 

(xy)Z = xZy z 

(xY)Z = xYZ 

(Martin [286, page 78] ). 

8.12. The algebra (FZ,+) is generic for the laws 

(x+y) + z = x + (y+z) 

x+y+x+y=y+x+x+y 

x+y+z+x+y=y+x+z+x+y 

x+y+x+z+y=y+x+x+z+y 

x+y+z+x+w+y=y+x+z+x+w+y 

(J. Karnofsky [unpublished] - see [286, page 31]). Here + denotes addition on the 

class FZ of all ordinals - the algebra (FZ,+) could be replaced by a countable one. 

8.13. The algebras (co;An)n•>3 and (co;0n)n>•4 are each generic for the variety of 

all algebras of type (2,2,2,..) (i.e., for Z0 = 0). (Martin [286, page 131, page 134] .) 

Here A n (n •> 3)are the Ackermann operations beyond exponentiation, and the O n are 
some related operations invented by Doner and Tarski [110], who conjectured a 

somewhat stronger statement. 

PROBLEM 1. Do these three equations form an axiom base for Boolean 

algebras? 

xvy=yvx 

xv(yvz)=(xvy)vz 

((x v y)'v (x v y')')'= x. 

(See [354] for a history of this problem.) All finite models of these equations are 

Boolean algebras. 

PROBLEM 2. Do the following eleven equations form an axiom base for 

(co,1 ,x+y,xy,xY)? 

1. x+y=y+x 
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2. xy = yx 

3. x + (y+z)-- (x+y) + z 

4. x(yz) = (xy)x 

5. x(y+z) = xy +xz 

6. x y+z = xYx z 

7. (xy) z= xZy z 

8. (xy)Z = x(yZ) 
9. x'l =x 

10. xl=x 

11. lX=l. 

(Tarski - see [286] .) Tarski has called this the "high school identity problem (with 

unit)." (Incidentally, Martin [286] has remarked that it follows easily from the 

methods of Richardson [377] that 

Eq(oo, 1 ,x+y,xy,xY) = Eq(R +, 1 ,x+y,xy,xY), 

where R + is the set of non-negative real numbers.) 

We could go on and on with interesting examples (see e.g. [4], [104], [135], 

[ 153], [ 188], [265], and [408] ), but we will stop here. In place of finding a base 

of a given A, one can often be content with the knowledge that a finite •0 exists or 
does not exist, as the case may be: this is the idea of the next section. (Although 

sometimes explicit - but complicated - bases are found in the researches reported in õ 9 

and õ10. The methods of õ 14.5 and õ15 also sometimes lead to finding •20 and A as 

in this section.) The reverse problem, of finding a generic A for a given •20' is less well 
defined. As remarked above, A always exists, but finding a "known" (i.e. familiar) or 

simple generic algebra can be very elusive, e.g. for modular lattices. (The problem of 

"simply" describing a free algebra is really a word problem - see õ 12 below - and the 

word prc•blem for free modular lattices is not solvable.) 

9. FinRely based theories. We say that an equational theory •2 is •nitely based 

iff there exists a finite set •20 of axioms for •2. (The definitions in õ7 should make it 

clear that this is an equivalence-invariant property of all •2 which have finitely many 

operations.) Evidently many familiar theories are finitely based - groups, Boolean 

algebras, rings, lattices, etc.; see also the various examples in õ8. Here we list some 
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algebras A with Eq (A} known to befinitely based: 

9.1. Any two-element algebra (Lyndon [265] ). (But Cf. 9.16 below.) 

9.2. Any finite group (Oates and Powell [336] ). 

9.3. Any commutative semigroup (Perkins [349] ). (In other words, every variety 

of commutative semigroups is finitely based. This is also proved in [ 124] .) Also, any 

3-element semigroup [349]. (Cf. 13.5 below.) 

9.4. Any idempotent semigroup (Fennemore [137], Biryukov [54], Gerhard 

[ 152] ). (A semigroup is idempotent iff it obeys the law x 2 = x.) 
9.5. Any finite, simple, 2-generated quasigroup (McKenzie [297] ). 

9.6. Any finite ring (Kruse [250], Lvov [263]). 

9.7. The ring M2(k ) of 2 X 2 matrices over a field k of characteristic 0. 

(Razmyslov [374] .) (Cf. 8.4 above.) (For n •> 3, this is open.) 

9.8. Any nilpotent ring; any commutative ring (Bang and Mandelberg [37] ). 

9.9. Any finite (non-associative) ring without zero-divisors (Lvov [264]). 

9.10. Any finite lattice (possibly with operators)(McKenzie [291]). (Answering 

Problem 45 in Gr/itzer's book [ 163] .) More generally: 

9.11. Any finite algebra which generates a congruence-distributive variety (see 

{} 15 below) (Baker [ 17] - see also [277], [426] and [226] ). The special case (of 9.10 

- 9.11) of primal algebras was known much earlier (Rosenbloom [379], Yaqub [444]; 

also Yablonskit' in the mid-fifties - see [ 319] ). 

9.12. Any finite simple algebra with no proper subalgebras except one-element 

subalgebras which generates a congruence-permutable variety (McKenzie [299] ). 

9.13. If V has only finitely many subdirectly irreducible algebras, all of them are 

finite, and V has definable principal congruence relations, then V is finitely based. As 

a corollary, if V is a locally finite variety and there exist A1,...,A k 6 V so that every 
n 1 n2 nk 

finite A6 V is isomorphic to some A 1 A 2 'ø' Ak, then V is finitely based. 

(McKenzie [300].) Thus the para-primal varieties of Clark and Krauss are finitely 

based. 

9.14. Any finite ©-product of finitely based theories is finitely based (see [420], 

pages 357-358]; [424, pages 266-267] for © - which corresponds to taking the 

product of the algebraic theories described in {}7). Pursuing the analogy at the end of 



WALTER TAYLOR 19 

õ7, this easy result corresponds to the fact that the product of two finitely presented 

groups is finitely presented. 

9.15. Recently Murskii has proved [319] that "almost all" finite algebras have a 

finite base for their identities (i.e., for fixed type, the fraction of such algebras among 

all algebras of power k approaches 1 as k -• oo _ or even, for fixed k, as the number of 

operations approaches oo). (The unary case is easy - all are finitely based; in the 

non-unary case he in fact proves much more: almost all are quasi-primal - cf. õ15 

below, and also 9.11 and 10.7.) 

For some further remarks about finite algebras with finite bases, consult [235]. 

We now turn to equational theories which are not finitely based. Of course it is almost 

trivial to construct such theories using infinitely many operations Ft(t 6 T), even some 
which are equivalent to the (finitely based!) theory with no operations. As G. 

Bergman pointed out,non-finitely based theories with finite T arise almost automatically 

if we consider a semigroup S which is finitely generated (say by F C_S), but not 

finitely related. Our theory can be taken to have unary operations • for f • F and laws 
flf2 "' fk x= fk+l "' fs x whenever fl '" fk = fk+l "' fs in S. Some more 
interesting research has centered on finding less obvious, but more important, 

examples of theories and algebras which have T finite and are still not finitely based: 

9.16. The algebra with universe (0,1,2) and binary operation: 

(Murski]' [ 318 ] 

9.17. The 

o I ;• 

0 0 0 0 

I 0 0 I 

• 0 • • 

, following Lyndon [266] ). 

six-element semigroup 

(with ordinary matrix multiplication). (Perkins [349].) Earlier Austin [ 11 ] gave some 

other varieties of semigroups which are not finitely based. C. C. Edmunds has recently 

shown that six is as small as possible for a semigroup with zero and unit. 
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9.18. Some varieties of groups (Ol'shanskii [337], Vaughan-Lee [434] )(cf. 13.3 

below for a more complete discussion). The existence of such varieties of groups was 

open for a long time. 

9.19. The infinite lattice 

(McKenzie [ 291 ] ). 

9.20. The algebras (•2,+,-) (Martin [286, page 210] [287]) and (•2,x y) [286, 

page 211]. See 8.10 and 8.12 for the definitions and some comparisons. Note also 

that (co,+,') is obviously finitely based (cf. 8.1 ). Also cf. õ 12 below. 

9.21. The algebra (co,x+y,xy,xY) (Martin [286, page 118] ). (Cf. 8.11.) This is a 

negative solution to one version of Tarski's "high school identities problem"-he 

described a set of 8 familiar identities (namely the first 8 of Problem 2 of õ8), and 

asked if these formed an equational base. For another version of this problem, see 

Problem 2 below and Problem 2 of õ 8. 

9.22. Any lattice-ordered ring which is an ordered field (and all of these have the 

same equational theory) (Isbell [ 199] ). (An infinite basis is indirectly described [loc. 

cit. ].) 

9.23. The variety of representable relation algebras (Monk [312] ) and for n • 3 

that of representable cylindric algebras of dimension n (Monk [314]). (Roughly 

speaking, cylindric algebras are to full logic what Boolean algebras are to logic without 

quantifiers"forall,""ther½ exists'.' Relation algebras are intermediate in strength.) 

Representable algebras (of either type) have a very natural semantic definition; the 

definition of the entire class of cylindric or relation algebras amounts to selecting a 

(necessarily rather arbitrary, no matter how utilitarian) finite subset of the equational 

theory of representable algebras. Monk's results indicate that there is really no natural 

finite set of axioms. 
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9.24. The variety of disassociative groupoids (Clark [88]). (The axioms of this 

theory consist of all two-variable consequences of the associative law for a single 

binary operation. Cf. 14.4 below.) 

9.25. The two theories axiomatized by T O and T 1 (of Tarski [413] ): 

T O = {Fn+lyxl--'XnY = Fn+lyx2 --'xnxly: n C co) 

T 1 = T O t_J { Fnyxl--.x n = Fn+lyxl..-xnFyy: n C 
(Here F is a binary operation and F n is defined recursively via Fn+lxl--'Xn+2 = 
F(Fnx 1" 'Xn+l)Xn+2') 

PROBLEM 1. Is the algebras (R, xy,l-x) finitely based? (Here R denotes the real 

numbers.) (J. Mycielski [136]; R. McKenzie discovered a non-trivial identity of this 

algebra - again see [ 136] .) 

PROBLEM 2. Is (co, 1,x+y,xy,x y) finitely based? (Tarski) Cf. 9.21 and Problem 2 

of õ8. For a discussion of this problem see Henkin [ 181 ]. 

PROBLEM 3. Is A finitely based if A is finite and all subdirectly irreducible 

algebras in HSP A are in HS A? (B. Jdnsson). 

We close with three "problems" which are no longer problems - they were solved 

just as final preparations were made on this survey. Pigozzi showed that the answer to 

Problem 4 is "no"; his example is actually generated by a finite algebra. 

S. V. Polin has answered negatively Problems 5 and 6. His work (see 

supplemental bibliography) has been replicated and improved by M. R. Vaughan-Lee. 

Their example is a non-associative ring of characteristic 2 having 64 elements. Other 

examples have since been found by I. V. Lvov, Yu. N. Mal'tsev and V. A. Parfenov. 

"PROBLEM" 4. Is every equationally complete (see õ 13 below) locally finite 

variety finitely based? (McKenzie [299] ). 

"PROBLEM" 5. Is every finite algebra which generates a congruence-permutable 

variety finitely based? (McKenzie [299] ). 

"PROBLEM" 6. Is every finite algebra which generates a congruence-modular 

variety finitely based? (Macdonald [269] ). (Cf. 9.11 above.) 

10. One-based theories. Taking Z0 and Z as in õ8, we say that Z (or 

V = mod Z) is one-based iff there exists a set of axioms 2; 0 with I•01-- 1. Here are 
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some algebras or theories which are one-based: 

10.1. The variety of all lattices (McKenzie [291]). McKenzie's original proof 

yields a single equation of length about 300,000 with 34 variables. Padmanabhan 

[341 ] has reduced it to a length of about 300, with 7 variables. Here we mean lattices 

formulated as usual with meet and join. Cf. 10.8 and 10.9 below. More generally: 

10.2. Any variety which has a polynomial m obeying 

m(x,x,y) = m(x,y,x) = m(y,x,x) = x 

(a "majority polynomial") and is defined by "absorbtion identities," i.e., equations of 

the form x = p(x,y,...). (McKenzie [291 ]; see also [341 ].) 

10.3. Any finitely based variety V of EEl-groups (see the beginning of õ7) 
(Higman and Neumann [ 185] ). Tarski got this for V = all Abelian groups (see [413] ). 

(Cf. 10.10 below.) For a recent proof, see [236]. 

10.4. Certain varieties of rings (with operators) (Tarski [413]). For some more 

general formulations of 10.3 and 10.4, see Tarski [413 ]. 

10.5. Boolean algebras. (Grgtzer, McKenzie and Tarski) (see [165, page 63]). 

(Cf. [401 ].) (Also cf. 10.6 and 10.7.) 

10.6. Any two-element binary algebra except (within isomorphism) as in 10.11 

below. (Potts [368] .) 

10.7. Every finitely based variety with permutable and distributive congruences 

(McKenzie [296]; Padmanabhan and Quackenbush [342]). By 9.11 this applies to 

any finite algebra which generates a variety with permutable and distributive 

congruences, e.g. a quasi-primal algebra (see [362], [369]). Primal algebras were 

already known to Gr•itzer and McKenzie [168]. ([296] contains some very interesting 

special one-based varieties.) 

Here are some theories (and algebras) which are 2-based but not I-based: 

10.8. The variety of all lattices given in terms of the single quaternary operation 

Dxyzw = (xv y) ^ (z vw) (McKenzie [291]). (Cf. 10.1.) 

10.9. Any finitely based variety of lattices other than the variety of all lattices 

and the trivial variety defined by x =y (McKenzie [291]). (Here again we mean the 

usual lattice operations.) 

10.10. Any non-trivial finitely based variety of I'2-groups (defined at the 
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beginning of õ7) (Green and Tarski [ 172], [413] ). (Cf. 10.3 above.) 

10.11. A: ((0,1} ,v ) and A = ((0,1} ?) with 

(Potts [368] ). 

ß -• 0 I 

0 I I 

I 0 I 

10.12. If 23 is a finitely based theory of type (ml,m2) with ml,m 2 • 2 in which 

F 1 and F 2 are each idempotent, i.e. 

23 [- Fi(x,x,...,x) -- x (i = 1,2), 

then 23 is 2-based (and may also be 1-based) (Padmanabhan [340] ). 

10.13. If 23 is a finitely based theory with a majority polynomial (as in 10.2 

above), then 23 is 2-based (and sometimes 1-based) (Padmanabhan and Quackenbush 

[342]). (McKenzie [291] had this result for varieties in which lattices are definable.) 

Isolated results: Lattices are definable in 2 equations using only 3 variables 

(Padmanabhan [339] ). Two variables will not suffice for lattices (see [ 165, page 62] ), 

nor for Boolean algebras (Diamond and McKinsey [ 107] ). Cf. also [372] and 14.4. If 

230 is 

x(yz) = (xy)z 

XX=X 

then every theory •_ 23 0 has a basis consisting of 23 0 U { o• }, i.e. 23 0 together with one 
more axiom (Biryukov [541, Fennemore [137], and Gerhard [152]). (Cf. 13.6 

below. ) 

PROBLEM. (Specht). Does there exist a non-finitely based variety of rings? 

1 1. Irredundant bases. 23 0 is an irredundant base for 23 iff 23 0 is a base for 23 but 

no proper subset of 23 0 is a base. Tarski [413] has defined 

V(23) = { [230l: 23 0 is an irredundant base of 23}. 

(Here [I denotes cardinality.) Tarski's interpolation theorem [413], [414] states that 

V(23) is always an interval (see [3091 for a connection between this and some other 

interpolation theorems, especially in graph theory; see also [1 57] ). One easily checks 

that (at least for a type (nt)tC T with T finite), either •(23) = 0, x7(23) = { 
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is an interval of natural numbers. All these cases can occur. Referring to 9.25 above 

(from [413] ), 

V(To) = { RO } 

V(T 1) = 0. 

For some other infinite irredundant bases, see [ 1 1 ], [78 ], [ 120], [ 198 ], and [349 ]. 

Distinct subsets of an irredundant base define distinct subtheories of 23, and so infinite 

irredundant bases are useful in proving that some lattices of varieties have cardinality 

2N0;see 13.3, 13.4 and 13.11 below. 
McKenzie proved that V(23) can be any interval, and Ng showed that 23 can be 

found with one binary operation (see [413] ). For example, if 

23 = œF5Xl.--x6 = F5x2---X6Xl} , 

then V(23) = { 1,2}, essentially because the cyclic group C 6 has both a single generator 
and an irredundant set of two generators. V(23) is an unbounded interval if 23 I- r = x, 

where r contains x at least twice (Tarski [413]), strengthened by McNulty [305] to 

the case where r has at least one operation of rank •> 2. On the other hand, if 23 is 

defined by balanced equations, and 23 is finRely based, then V(23) is a bounded 

interval [ 305 ]. (An equation o = r is balanced iff each variable, each nullary operation 

symbol and each unary operation symbol occurs equally often in o and r.) T. C. Green 

got irredundant bases of power n (any n C co) for groups ([172], see also [413]). 

V(23) was also defined by G. Grfitzer [163, Problem 34], who asked for a 

characterization of it. Finally, note that V is not an equivalence invariant (õ 7), as can 

be seen from 10.1 and 10.8 or from 10.3 and 10.10. 

1 2. Decidability question. We assume given a finite alphabet A and a fixed way 

of interpreting all our variables, function symbols, terms, equations, etc. 

unambiguously as words in A. We assume that the reader knows what is meant for a 

collection W 0 of words to be decidable (relative to a collection W D_ W 0 of words). For 
this (non-numerical) notion of decidability, probably the Turing-machine approach 

("computability") is easiest. For readable brief descriptions, see [43 1 ], [2 1 7], [267], 

or [416, pages 12-14]. Usually W will be obvious (such as the collection of all finite 

sequences of equations) and we will not mention it. As is well known [op. cit. ] a 

relatively easy analysis of Cantor's diagonal argument yields undecidable sets; the 
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greatest example of an undecidable set is given by GOdel's incompleteness theorem 

[op. cit.], about which we will say no more. Here we will discuss decidability 

properties of equations. When we say that a property P of finite sets E of equations is 

(un)decidable, we mean that 

w0= 

is (un)decidable. 

We may first ask when a theory E itself is a decidable set of equations, or, as it is 

frequently put, "the word problem for free E-algebras is solvable." (See the discussion 

of word problems below.) There are two common methods for showing that E is a 

decidable equational theory, the first being to find a recursive procedure to convert 

every term o to a unique ("normal form") term o' with (o = o') E 2 and such that if o 

and r are distinct normal forms then (o = r)• 2. (The decision procedure then 

reduces to comparison of normal forms - and conversely, a decision procedure for E 

obviously implies the existence of normal forms.) E.g. every group term reduces 

uniquely to either 1 or 

.nl .n2 n k 
X•l x• --' Xik, 

where xil •: xi2 •:'" •: Xik. Several of the best known equational theories are 
decidable, as may be seen similarly. See e.g. Margaris [284] for implicative 

semilattices, following work of McKay and Diego. Eq(•2,+) is decidable (in fact its full 

first order theory is decidable, by Ehrenfeucht and Bfichi [70])- a simple method 

given by Selman and Zimbarg-Sobrinho [unpublished] is closely related to 

Karnofsky's identities 8.12 above. Martin [ 286] gave a decision procedure for (•2,4-,.) 

with normal forms (cf. 9.20 above). Richardson [377] gave normal forms for 

(co, l,x+y,xy,xY) (cf. Problem 2 in õ8). Finally, we remark that the Birkhoff-Witt 

theorem yields a procedure for finding normal forms for (free) Lie algebras and rings, 

as observed by P. Hall [175]. See Bergman [43] for some detailed methods for 

finding normal forms, mainly in ring theory; also see [ 158] and [248]. 

Notice that representing free algebras uniquely via terms (as we did for FK(X ) in 
õ2) really requires a normal form. Often a normal form is required for finding the 

cardinality of Fv(X), a topic we will come to in 14.5 below. For some other results 

related to normal forms, see Hule [194]. 
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The second method for decidability: if 23 has a finite (or, more generally, a 

recursive) base, and V = rood 23 is generated by its finite algebras (equivalently, if the 

V-free algebras are residually finite), then 23 is a decidable equational theory. (Evans 

[122].) For instance, the variety of lattices has this property, although the word 

problem for free lattices was explicitly solved by Whitman [441] (also see [100]). 

And G. Bruns and J. Schulte-M6nting have recently given explicit solutions to the 

word problem for free ortholattices although it was known earlier that this variety is 

generated by its finite members (see [67] ). 

Ralph Freese has very recently shown that modular lattices do not have a 

decidable equational theory. It is known that the variety of modular ortholattices is 

not generated by its finite members [67]. These questions remain open for 

orthotoo dular lattices [ 67 ]. 

Tarski [410] proved that the equational theory of relation algebras is 

undecidable (this is more or less immediate from the ideas of Tarski mentioned in õ6; 

cf. also 9.23 above) - in fact, it is essentially undecidable (see [416, page 4] for a 

definition); thus e.g. representable relation algebras (9.23)also have an undecidable 

equational theory. 

For some other undecidable equational theories, consult Evans [122], Perkins 

[350] Malcev [281] and especially Murskit [317] for a finitely based variety of 

semigroups. 

PROBLEM 1. Does there exist a finitely based equational theory of groups 

which is undecidable? 

One can also ask whether the entire first order theory of a variety V is decidable. 

The answer is yes for Boolean algebras (Tarski [409] ), and more generally, for any 

variety generated by a quasiprimal algebra (Burris and Werner [ 81 ] ), but no for groups 

(Tarski - see [416]), distributive lattices (Grzegorczyk) and a certain finitely based 

locally finite variety of semigroups with zero (Friedman [ 141 ] ). 

WORD PROBLEMS. Enlarge our type (nt)tG T to include constants (Ci)iG I. Let 

230 be a fixed finite set of equations. The word problem for 230 consists of the 
decision problem for the set of equations 

{e: 2;01.- e and e has no variables }. 
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(Typically •0 is of the form E 1 U •2, where • 1 is a set of laws not involving (Ci)iC I 

and •2 is a set of equations with no variables, viewed as "relations" on the 

"generators" Ci(i C I). One then speaks of "the word problem for [this presentation 

of] the algebra FEi(Ci)/(22)", where (•2) means the smallest congruence containing 
all pairs of terms in E2.) Post [367] and Markov [285] proved that there exists a 

semigroup with undecidable word problem (i.e. that one may take E 1 to be the 

associative law). Much more difficult was the 1955 result of Boone and Novikov [61], 

[334] (see also [65] and [302]) that there exists a group with unsolvable word 

problem. Notice that all the results on (un)decidability of equational theories 

mentioned above are really a special kind of word problem result (with III= •0' •2 = 

G. Hutchinson [J. Algebra , 26(1973), 385-399] and independently L. Lipshitz 

[Trans. Amer. Math. Soc., 193(1974), 171-180] have shown the existence of a finitely 

presented modular lattice with unsolvable word problem. Hutchinson later gave an 

example with five generators and one relation [Alg. Univ., 7(1977), 47-84]. As we 

mentioned above, R. Freese subsequently reduced th,• number of relations to zero. 

Evans [116],[117] proved that the word problem is solvable for E 1 (i.e., 
uniformly for all E 2) iff it is decidable whether a finite partial algebra obeying the 

laws of E 1 (insofar as they can be evaluated) can be embedded in a full algebra 

obeying • 1 (see also [ 163, õ30]). Thus lattices have solvable word problem. Clearly 

the condition holds if finitely generated algebras in • ! are always finite, or if finitely 
presented algebras are always residually finite (i.e. embeddable in a product of finite 

algebras), and for this last case there is a "local" version: the word problem is solvable 

for A = F•i (Ci)/(• 2) with {C i •, •2 finite, if A is residually finite (Evans [ 121 ] ). For 
applications see e.g. [ 148], [260]. 

Following work of Boone and Higman in group theory [63], Evans [127] 

recently proved that an algebra A has solvable word problem iff A can be embedded in 

a finitely generated simple algebra B which is recursively presented. (Generally we 

cannot demand that B • HSP A or B • V for V any preassigned variety containing A.) 

(Cf. 14.8 and 17.1 below.) Also see [129]. 

PROBLEMS ON FINITE ALGEBRAS. Kalicki proved [232] that it is decidable, 
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for arbitrary finite algebras A, B of finite type whether 

HSP A = HSP B. 

And Scott proved [390] that it is decidable whether finite A is equationally complete. 

Almost all interesting decision problems about finite A are open, for instance: 

PROBLEM 2. (Tarski). Is it decidable whether a finite algebra A of finite type 

has a finite base for its equations? (Cf. 89.) (And see Perkins [348] .) 

PROBLEM 3. (Pixley, et al.). For a finite A of finite type, is it decidable 

whether 

HSP A = SPHS A, 

or whether 

HSP A = SP A? 

(For the relevance of this question, consult õ 84,15.) 

PROBLEMS ON FINITE SETS OF EQUATIONS. Many undecidability results 

are known on finite sets •; of equations; for a full report we must refer to the chart in 

the introduction of McNulty [306]. Here we list a few undecidable properties of •. 

12.1. •;« x=y(Perkins[348]). 

12.2. •; has a finite non-trivial model (McKenzie [296] ). 

12.3. There exists finite A with •; a base for Eq{A) (Perkins [348] ). 

12.4. •; is equationally complete (cf. 813 below)(Perkins [348] ). 

12.5. •; is one-based (cf. 810) (Smith [403], McNulty [306]). 

12.6. The equational theory deduced from •; (i.e., Eq Mod •2 = {e: •;«e}) is 

decidable. (Perkins [348 ] .) 

12.7. Mod •2 has the amalgamation property (defined as in group theory -see 

14.6 below) (Pigozzi [356] ). 

12.8. •; has the "Schreier property," i.e., subalgebras of free algebras are free 

(see 14.12 below). (Pigozzi [356].) 

12.9. (For certain fixed theories F, e.g., F = group theory) •; is a base for F. 

(McNulty [306] MurskiI [316]). (But it is decidable whether •; is a base for xy =yx 

(Ng, Tarski - see [413] ). 

12.10. Mod Z has distributive congruences (cf. 815 below) (McNulty [306 ] ). 

12.11. Mod •; is residually finite (McNulty [306] ). 
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12.12. Mod •; is residually small (cf. 14.8 below) (McNulty [306] ). 

PROBLEM 4. (Mycielski - see [197]). Is it decidable whether a finite set of 

terms is jointly •c-universal 0c a fixed cardinal)? 

(Terms ri(x 1 ,...,Xni) (1 • i • n) in operations F 1 ,...,F s are jointly •c-universal iff 
for any operations Gi: •c ni -• •c, the operations F 1 ,...,F s can be defined on •c so that the 
term r i defines G i (1 • i • n). This notion of universality has been very useful in the 

study of undecidability of properties of sets of equations - see McNulty [305] .) 

Finally, we mention that Burris and Sankappanavar [80] have investigated 

undecidability properties of congruence lattices and lattices of subvarieties (õ 13 just 

below). A sample result: in a similarity type with at least one operation of rank • 2, 

the lattice A of all equational theories has a hereditarily undecidable first order 

theory. 

13. The lattice of equational theories. For a fixed type (nt)tCT, order the 
family A of all equational theories by inclusion. One easily sees (from Birkhoff's 

Theorem of õ5 or directly from the definition at the beginning of õ5), that A is 

closed under arbitrary intersections - and so from purely lattice theoretic 

considerations, A has arbitrary joins as well, and so is a complete lattice. More 

specifically, 

iGVlEi = {e' iGoi•;i [- e} = Eq(i•iMod Ei). 
From the proof-theoretic characterization of v it follows that A is an algebraic closure 

system and hence an algebraic lattice (see [91] [163] or [165]). Specifically, the 

compact elements of A are the finitely based theories of õ9 above, and every element 

is the join (actually the union) of all its finitely based subtheories. Obviously the join 

of two finitely based theories is finitely based (this holds for compact elements in any 

lattice); but the meet (i.e., intersection) of two finitely based theories can fail to be 

finitely based. We present an example of Karnofsky (unpublished - see [354]) (here 

and below we will sometimes express a theory by one of its finite bases without 

further mention)' Z 1 ß x(yz) = (xy)z •;2' x(yz) = (xy)z 
(xyz) 2 = x2y2z2 x3y 3 = y3x3 

x3y3z2w 3 = y3x3z2w 3. 
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The theory Z 1 ̂  232 is not finitely based, for (we omit the proof), every basis must 
contain equations essentially the same as 

V::kW 
B. J6nsson [223] found two finitely based equational theories of lattices whose meet 

is not finitely based (also found by K. Baker - unpublished, but see [354]). Whether 

there exist such theories of groups is unknown. There do exist such theories among 

"modal logics" but not among "intermediate logics" (W. J. Blok thesis). 

By the one-one correspondence between varieties and equational classes set up at 

the beginning of õ5, we could equally well have described A as the lattice of all 

varieties under reverse inclusion, and sometimes it is helpful to view A this way. (And 

sometimes A is taken to be ordered by (non-reversed) inclusion of varieties - we will 

not do this here.) 

It is of interest to know what the lattices A look like. It has become clear that 

they are very complicated, as we will see. Burris [74] and Je•.ek [207] have proved 

that if the type (nt)tC T has some n t >• 2 or if n t >• 1 for two values of t, then A 
contains an infinite partition lattice, and hence obeys no special lattice laws at all. 

Thus, it has proved fruitful to proceed by studying some (often simpler) special 

sublattices of A, namely for fixed Z, the lattice A(Z) of all equational theories D-- Z. 

(Equivalently, as above, the lattice of all subvarieties of Mod Z.) There is only one 23 

with [A(Z)[ = 1, namely Z = {x = y}. Theories Z with [A(Z)[ = 2, i.e. 

A(E): 

are called equationally complete. Since every A is an algebraic closure system and 

{ x =y } is finitely based, every theory has an equationally complete extension, and 
ß 

thus the top of A consists wholly of replicas of the above picture. An algebra A is 

equationally complete iff Eq A is equationally complete. It has been determined that 

there exist many equationally complete theories (and algebras), in two senses. First, 

Kalicki proved [233] that in a type with one binary operation there exist 2 •0 distinct 
equationally complete theories (and the corresponding number has been evaluated for 
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all types by Burris [74] and Je2fek [207], answering Problem 33 of Gr•tzer [163]). 

Second, Bolbot [59] and Je•ek [207] proved that (given at least two unary 

operations or one operation of rank •> 2) A is dually pseudo-atomic, i.e. the zero of A 

(i.e. 230 = 0) is the meet of all dual atoms (i.e. equationally complete theories). But see 
some of the examples below for varying numbers of equationally complete theories in 

various A(Z). 

Kalicki and Scott [234] found all equationally complete semigroups; there are 

only •0 of them. McNulty used their description in reproving Perkins' result that it is 
decidable whether 

23, x(yz) = (xy)x [- x = y. 

All equationally complete rings were found by Tarski [412]; again, there are •0 of 
them. See also [343]. We cannot begin to cover all the information presently known 

on equational completeness. For further information, consult Gr•itzer [163, Chapter 

4], or Pigozzi [354, Chapter 2]. Here we sample just a few very recent results. 

THEOREM. (Pigozzi [360]). There exists an equationally complete variety 

which does not have the amalgamation property. (Answering a question of S. 

Fajtlowicz.) (See 14.6 below for the amalgamation property.) 

THEOREM. (Clark and Krauss [89]). If V is a locally finite 

congruence-permutable equationally complete variety, then V has a plain paraprimal 

direct Stone generator. (See [89] for the meaning of these terms - roughly speaking, 

this means that V is generated in the manner either of Boolean algebras or of primary 

AbelJan groups of exponent p.) 

Some examples of known or partly known A(23) for IA(2)1% 2: 

13.1. For 23 = 0 in a type with just one unary operation F, Jacobs and 

Schwabauer [203] gave a complete description of A. For unary operations and 

constants, see Je•ek [206]. 

13.2. If 23 = Eq A for a finite algebra A in a finite similarity type, then Scott 

showed [390] that A(23) has only finitely many co-atoms (i.e. equationally complete 
* , 

varieties). If A generates a congruence-distributive variety, then Jonsson s lemma (see 

õ15 below) easily implies that A(23) is finite. If A is quasiprimal (see [369])then 

A(23) is a finite distributive lattice with a unique atom (= HSP{B'B _•A}), and, 
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conversely, every finite distributive lattice with unique atom can be represented in this 

way (H. P. Gumm, unpublished). T. Evans informed the author that there exists a 

finite commutative semigroup with A(Z) infinite. 

13.3. For F = group theory, A(F) is modular, but very complicated, and 

moreover can be given structure beyond the lattice-theoretic (see [330] and 17.9 

below). At and near the top A(F) contains 

ß 

ß 

x=y 

(x rn= I, xy=yx) 

xy = yx 

with m •> 1, ordered by divisibility - the Abelian part. It turned out to be difficult to 

prove that IA(F)I = 2 •0. This was established by Vaughan-Lee [434] who found •0 
irredundant equations (as in õ11), and independently, by Ol'shanski¾ [337] who 

found •0 "independent" subdirectly irreducible groups. (Cf. 9.18 above.) The variety 

of 3-nilpotent groups has been completely described - see J6nsson [220] or 

Remeslennikov [ 376]. 

13.4. For Z = semigroup theory, many results are known; consult the survey by 

Evans [124] for more detailed information. Biryukov (1965) and later Evans [120] 

first proved that [A(•;)I = 2 •0 (also see [198] for a nice infinite irredundant set of 
semigroup laws). Dean and Evans [106] proved that x(yz)= (xy)z is finitely 

meet-irreducible in A, i.e., that A(Z) has a f'mitely meet-irreducible least element. 

Burris and Nelson [79] (and later Je•ek [211 ] ) proved that A(Z) contains a copy of 

Iloo, the lattice of partitions on an infinite set, and hence obeys no special lattice laws. 

The fact that A(Z) is non-modular can be seen from this sublattice - due to Jezek - 

isomorphic to the smallest non-modular lattice, NS: 
xy = zw 

•• xy = yx 
xy = xz ß I 

• /• xyz = xzy = zxy 
xyz = xzy 
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(All theories intended as extensions of 23 = {x(yz) = (xy)z} .) 

13.5. Forcommutativesemigroups, see [349], [179], [325],[388],and [78]. 

Perkins proved that every commutative semigroup theory is finitely based (cf. 9.3 

above), and hence this lattice is countable. And so it cannot contain IIoo, but it does 

contain every IIm (Burris-Nelson [78]) and hence obeys no special lattice laws; 
Schwabauer had earlier proved [388] that the lattice of commutative semigroup 

theories is nonmodular. For semigroups with zero, consult [324], [83], and with unit 

[179]. For related work see [344], [350], [351]. 

13.6. For 23 = ((xy)z = x(yz), x 2= x} ("idempotent semigroups"), A(23) has 
been completely described by Biryukov [54], Fennemore [137] and Gerhard [152]. 

In this picture, the diamond pattern repeats indefinitely in the obvious way: 

xy=x 

xyz = xz y 

xy = xyx 

xyz = xyxz 

xyz = xyzxz 

xyz = xyzxzyx 

xy=y 

xzy = zxy 

xy = yxy 

xyz = xzyz 

xyz = xzxyz 

xyz = xyxzxyz 

(all [hex•ries are intended as extensions of 23). Note that this lattice is countable, 

distributive and of width three. The situation is very different for 23' = (x(yz) = (xy)z, 

x 2 = x3} ß Burris and Nelson [79] proved that Iloo C_ 
13.7. For 23 the equational theory of distributive lattices with 

pseudocomplementation, A(23) is an infinite chain: 
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x=y 

Boolean alcjebro 

Stone o Icjebra 

(Lee [256]; see also [165]). A similar result holds for one-dimensional polyadic 

algebras (Monk [ 315 ] ). 

13.8. If 23 = (xy--yx, (xy)(zw)= (xz)(yw)), then A(23) is uncountable, even 

above 23 t• (x 2 = y2). But A(23 t• (x 2 = x)) is countable (and explicitly described). 
See [213]. 

13.9. For Heyting algebras, consult Day [102]; and for the closely related 

Brouwerian algebras, see K6hler [249]. Also closely related are interior algebras;their 

varieties correspond to modal logic extensions of Lewis' S4 (W. J. Blok, thesis). 

13.10. For lattice-ordered groups see Marti'nez [288]; their lattice has a 

surprising superficial similarity to that of Heyting algebras (above). Holland showed 

[ 188] that every proper extension of the theory of lattice-ordered groups contains (an 

identity equivalent to the implication) 

(1 •a)&(1 •b):*ab•b2a 2, 

and thus this lattice has a unique atom. See Scrimger [389] for a study of the theories 

just below the theory of Abelian lattice-ordered groups. 

13.11. A(L) has been extensively studied for L = lattice theory (see e.g. [93 ] ). It 

is a distributive lattice which contains, in part 
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x=¾ 

M5 N 5 

M6 Ms S M5AN5 ,' • 

M? o oo 
ß ß ß 

ß $ ß 
ß i ß 

• ß 

MAN 5 

where M 5=Eq( + ),M 6 =Eq( • ) 
M7 = Eq(•)' N5 = Eq( • ) and U8 = Eq( • 

D is the theory of distributive lattices and M that of modular lattices. There are 2 •q0 
equational theories of lattices. This was established by McKenzie [291] who found 

irredundant equations and Baker [19] who found •q0 independent subdirectly 
irreducible lattices, namely, for each prime p the lattice of subspaces of a 

3-dimensional space over GF(p). (And Baker's lattice theories are all modular.) Even 

more is true: there is an interval in this lattice which is isomorphic to the Boolean 

algebra of all subsets of a countably infinite set [291], [19]. It was conjectured by 

McKenzie [295] and proved by J6nsson and Rival [229] that N 5 has exactly sixteen 
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dual covers: one is M 5 ^ N 5 and each of the other fifteen (-.... in our picture) is 
generated by a single subdirectly irreducible lattice. 

We close this section with some remarkable general results of McKenzie on the 

full lattice A = A(nt: t C T), where, temporarily, we make the type explicit. 

THEOREM. (McKenzie [292] ). From the isomorphism type of A(nt: t C T)one 
can recover the function 

(1 (t •T: n t = m} I: m • co). 

(In other words, one can recover the type (nt: t G T) up to renaming of all the 

operations.) 

THEOREM. (McKenzie [292]). (Appropriate (nt: t G T).). There exists a first 
order formula •0(x) with one free variable in the language of lattice theory such that 

the unique element of A satisfying •0(x) is the equational theory of groups. (Resp. 

semigroups, lattices, distributive lattices, commutative semigroups, Boolean algebras.) 

This last theorem had a precursor in Je•ek [209]' the variety of commutative 
semigroups obeying x2y = xy is definable (in a similar fashion). 

PROBLEM. (McKenzie [292]). Does A possess any non-obvious 

automorphisms 9. 

PROBLEM. (McKenzie and Maltsev). Which lattices L are isomorphic to some 

A(Z)? McKenzie has conjectured that the following easy necessary condition is also 

sufficient: L is algebraic and its largest element is compact. 

(Je•,ek has proved [211 ] that L is isomorphic to an interval in A((2)) iff L is 

algebraic and has only countably many compact elements.) 

PROBLEM. (McKenzie [292]). When does an element tx C A(Z) have a "dual 

cover," i.e., 13 < tx such that there exists no 3' with 13 < 3' • ix? (E.g. the dual covers of 

(x = y) are the equationally complete theories.) The answer is yes for semigroups 

[430] and lattices [211 ]; see [225] for a dual cover of modular lattices. The result of 

Je•,ek just cited implies that there exists b • tx such that there is no dual cover t3 with 

b • 13 • ix. In fact • and tx can be taken to be equational theories of modal algebras (W. 

J. Blok, Notices Amer. Math. Soc. abstract 77T-A232). 

PROBLEM. (Pigozzi [354] - q.v. for details.). Is A(Z) always a "partial Boolean 

ring"9, 
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MODEL-THEORETIC QUESTIONS 

Sections 5-13 have emphasized properties of equations per se (although of course, 

every property of [a set of] equations is a property of varieties, and vice versa). We 

now turn to some investigations which have emphasized the models of the equations. 

Here the lines are less sharp. Completely general descriptions of models in equationally 

defined classes do not exist - but on the other hand the very complete existing 

investigations of models of special equational theories (e.g. groups, lattices, Boolean 

algebras) must be omitted from this survey on the ground of space alone! For studies 

in the (special) model theory of various less well known varieties, one need only look 

in almost any issue of Algebra Universalis. Most of the results we will report on will be 

of medium generality, i.e. valid for an interesting class of varieties, but not for all 

varieties. It is also hard to say where the model theory of equational classes stops and 

general model theory begins. 

14. Some further invariants of the equivalence class of a variety. See õ 7 above 

for equivalence; with the exception of õ õ 5, 8, 10, 11, 12, we have been writing of the 

equivalence class of a variety V. In this section we survey very quickly some other 

equivalence invariants which have been studied. 

14.1. The spectrum of V: spec V= (n•co' (there exists A•V)lAl=n). 

Clearly 1 6 spec V, and since V is closed under the formation of products, spec V is 

multiplicatively closed. Gr/itzer [161] proved that, conversely, any multiplicatively 

closed set containing 1 is the spectrum of some variety (see also [ 119 ] ). Froemke and 

Quackenbush [ 144] showed that this variety need have only one binary operation. 

The characterization of sets spec V for V j•'nitely based seems to be much more 

difficult. McKenzie proved [296] that if K C_ co is the spectrum of any first order 

sentence, then there exists a single identity o = r such that the multiplicative closure 

of K tJ ( 1 ) is the spectrum of (o = r). (See also [328] .) Characterizations of first 

order spectra are known in terms of time-bounded machine recognizability - see [ 130] 

for detailed statements and further references. Note that the definition of spec can be 

extended to mean the image of any forgetful functor (or any pseudo-elementary class) 

- see [ 130] [ 131 ] for more details. For example, we can consider 

T(V) = (A: A is a topological space and there exists 
(A,F t) 6 V with all F t continuous). 
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(Some preliminary investigations on T(V) appear in [429] ;cf. õ 16 below.) Of course, 

many descriptions of individual varieties in the literature yield spec (V). A certain 

amount of attention has. focused on the condition spec (V) = {1}. (See e.g. [231 ], [9] 

and remarks and references given in [420, page 382]; cf. 12.2 above.) For instance, 

Austin's equation [ 9 ] 

((y2.y). x)((y2.(y2.y)). z) = x 

has infinite models but no nontrivial finite models. 

Mendelsohn [310] has shown that if V is an idempotent binary variety given by 

2-variable equations, then spec V is ultimately periodic. 

14.2. The fine spectrum of V is the function 

fv(n) = the number of non-isomorphic algebras of power n in V. 

Characterization of such functions seems hopeless. A typical theorem is that of 

Fajtlowicz [133] (see also [424, pages 299-300] for a proof): if fv(n) = 1 for all 

cardinals n >• 1, then V must be (within equivalence) one of two varieties: "sets" (no 

operations at all) or "pointed sets" (one unary operation f which obeys the law 

fx = fy). For some related results see Taylor [424], Quackenbush [371], McKenzie 

[300] and Clark and Krauss [90]. 

PROBLEM. [424]. Does the collection of all fine spectra form a closed subset 

of co co (power of a discrete space)? 

14.3. Categoricity in power. Varieties obeying the condition fv(n)= 1 for all 
infinite n >• the cardinality of the similarity type of V have been characterized (within 

equivalence) by Givant [156] and Palyutin [345]. For a detailed statement, also see 

e.g. [424, page 299]. For example if V is defined by the laws (of Evans [ 118] ) 

d(x,x) = x 

d(d(x,y),d(u,v)) = d(x,v) 
(*) 

c(c(x)) = x 

c(d(x,y)) = d(cy,cx), 

then every algebra in V is isomorphic to an algebras with "square" universe A X A on 

which 

c((c•,fi)) = (fi,•) 

d((a,/3),(7,6)) = (a,6). 
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(Cf. 16.5 below.) 

Givant's complete list of varieties categorical in power is formca, rougl•.l,y 

speaking, as a mix of (*) with ideas of linear algebra. The idea behind (*) is very 

general, leading to varieties whose members are "k th powers" of the algebras in other 
varieties (Neumann [332], Fajtlowicz [132], McKenzie [296] -see [424, page 268] 

for further references and a detailed statement and iristory of these ideas). Also see [ 27 ]. 

14.4. Varietal chains. For any variety V we may define 

v! c_ v 2 c_ ... c_ vc_ ... c_ v 2 c_ v 1, 
with 

u Vn=n vn= v, 

as follows. V n = HSP(FF(n)) (see õ õ2,4 for this notation), and V n is the variety 
defined by all n-variable identities holding in V, i.e. A G V n iff every n-generated 

subalgebra of A is in V. (See 9.24 above for an example of V 2, and see [91, page 173] 
for a general exposition and some more examples. See Quackenbush [372] (or [370] ) 

for B 2 with B the variety of Boolean algebras (or Boolean groups).) As an 
equivalence-invariant, one may take the set of proper inclusions in either of these two 

chains. Jo'nsson, McNulty and Quackenbush prove [227] that, with a few possible 

exceptions, almost any sequences of proper inclusions can occur. There exists a variety 

V of groups with V-V= any V i (i.e., with infinitely many gaps in the descending 
sequence) [337] [434]. 

14.5. The size of free algebras is a subject with a long history: precisely, define 

the invariant: 

co = co(V) = (con(V): n = 0,1,2...) 

= (IFg(n)l:n = 0,1,2 .... ) 
(i.e., the cardinalities of V-free algebras). (This notation was introduced in Marczewski 

[282], and the first extensive description of co(V) occurred in Grfitzer [162] ;see also 

[169], [364], [134], [392].) In Problem 42 of his book [163], Grfitzer asked for a 

complete characterization of the functions co(V) - our references represent only a 

partial solution. 

This invariant has been explicitly evaluated for only a few of the better known 
2 n 

varieties: vector spaces over a q-element field (ca n = qn), Boolean algebra (can = 2 ), 
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semilattices (co n = 2n-l), the variety of groups given by the law x 3= 1 (see e.g. 
[330] ), the variety of Heyting algebras defined by "Stone's identity" (see [ 189] ), and 

some varieties of interior algebras (W. J. Blok, thesis). The quasi-primal varieties of 

Pixley et al. often have very easily calculated co (see e.g. [362] or [369] for 

quasi-primal varieties); see the chart on page 291 of [424] for some explicit 

calculations. (But in the eight line, 1 should be 0.) 

But for most common varieties, the invariant co(V) is either trivial (because 

infinite) or hopelessly complicated. Sometimes special cases can be calculated. 

Dedekind found in 1900 that the free modular lattice on 3 generators has 28 elements 

("free algebra" had not yet been defined) (see [50, page 631 ). For some other special 

calculations (distributive lattices, etc.), see [50, page 63], [437], [46] and [47]. 

The class of all finite co(V) is closed under (co6rdinatewise) multiplication (see e.g. 

[424, 0.5(4), page 266]), and it forms a closed set in the space coco (S'wierczkowski - 
see [ 282, page 181 ] ). 

The famous Burnside Problem asked whether F v(n) is always finite for V the 

variety of groups defined by the law x TM = 1. The negative solution by Novikov and 

Adjan [335] stated that IFv(2)I-- •q0 when e.g. m = 4381. The proof in [66] is said 
to be false (see [3] ). (Now 4381 has been reduced to 665 [3] .) For related results in 

semigroups, see [ 171 ]. 

In general algebra, a typical theorem is that of Ptonka [364]: if con(V) = n. 2 n-1 , 
then V must be equivalent to one of four varieties, namely those given by 231 - 234: 

Zi: xx=x 

(xy)z = x(zy) 

x(yz) = x(zy) 

Z2: xx = x 
(xy)z = (xz)y 

x(yz) = xy 

(xy)y = xy 

233: xx = x 
(xy)z = (xz)y 

x(yz) = xy 

(xy)y = x 
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2;4: (xyz)uv = x(yzu)v = xy(zuv) 

xyy = x 

xyz = xzy. 

(Where Z 4 has a single ternary operation, denoted by juxtaposition.) Although there 

exist isolated results such as this of P•'onka and that of Fajtlowicz above, we are. 

obviously a long way from a solution of this 

PROBLEM. Find a class of numerical invariants of V which determine V within 

equivalence. (Perhaps only in special circumstances.) 

We close with an interesting calculation of this invariant for an infinitary V. If V 

is the variety of complete Boolean algebras (which has n-ary operations for every 

cardinal n), then Fl,,(tq0) is a proper class (Hales [ 174], Gaifman [ 146] ). (See also 

[404] .) Similarly, Fi,,(3) is a proper class for V the variety of complete lattices [174]. 
Compare the "free Borel algebra" [50, page 257]. 

14.6. The amalgamation property (AP) for V generalizes the existence (due to 

Schreier) of amalgamated free products in group theory. (One form of) the AP states 

that given A,B,C G V and embeddings f: A -> B, g: A -> C, there exists D • V and 

embeddings f': B-> D, g': C-> D such that f'f= g'g. A general investigation of AP 

began with Jo'nsson [218], [219] and now there is an extensive literature - e.g., see 

Pigozzi [355], Bacsich [ 13] [ 14], Baldwin [23], Dwinger [ 111 ], Hule and Milllet 

[195], Forrest [139], MacDonald [268], Simmons [399], Schupp [386], Yasuhara 

[445], Bacsich and Rowlands-Hughes [ 15]. Varieties known to have AP are relatively 

rare, but include groups, lattices, distributive lattices and semilattices (see 14.9 below). 

(No other variety of modular lattices has AP - Gr•itzer, Lakser and J6nsson [ 167], and 

AP fails for semigroups - Howie [191], Kimura [245] .)We cannot begin to mention 

all results on the AP, but one representative theorem comes from Bryars [69] (also see 

[15]): V has the AP iff for any universal formulas O•l(Xl,X2,...), o•2(Xl,X2,... ) such 
that V • o• 1 v o• 2, there exist existential formulas /31,t32 such that V • 13i-> oq 
(i = 1,2) and V • 131 v 132' 

For a related property, see [ 215 ]. See also 12.7 above. 

14.7. A variety. V has the congruence extension property (CEP) iff every 

congruence 0 on a subalgebra B of A G V can be extended to all of A, i.e. there exists 
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a congruence • on A such that 0 = • (3 B 2. Abelian groups and distributive lattices 
have CEP, but groups and lattices do not. See e.g. Banaschewski [30], Pigozzi [355], 

Davey [ 97 ], Day [ 101 ], [ 104], Fried, Griitzer and Quackenbush [ 140], Bacsich and 

Rowlands-Hughes [15], Magari [275], Mazzanti [289] (where one will find some 

other references to the Italian school - in Italian usage, "regolare" means "having the 

CEP"). In [ 15 ] there is a syntactic characterization of CEP in the style of that for AP 

in 14.6 above, although these two properties are really rather different. This 

characterization is closely related to Day [ 101]. Notice that in Boolean algebras the 

CEP can be checked rather easily because every algebra B is a subalgebra of some 

power A I, where A is the two-element algebra and every congruence 0 on B is of the 
form 

(ai)0(b i) iff { i' a i = b i} G F 

for some filter F of subsets of I. (And, of course, the same filter F may be used to 

extend 0 to larger algebras.) A variety in which congruences can be described by filters 

in this manner is calledfiltral - e.g. [140], [289], [275] and especially [39]. But, e.g., 

semilattices form a non-filtral variety which has CEP. It is open whether filtrality 

implies congruence-distributivity ( õ 15 below). For CEP see also Stralka [405 ]. 

PROBLEM. (Griitzer [ 165, page 192] ). If V satisfies 

(for all X C_ V) HS X = SH X, 

then does V have the CEP? This is true for lattice varieties (Wille). 

14.8. A variety V is residually small iff V contains only a set of subdirectly 

irreducible (s.i.) algebras (õ4), i.e. the s.i. algebras do not form a proper class, i.e. 

there is a bound on their cardinality. It turns out that this bound, if it exists, may be 

taken as 2 n, where n = N 0 + the number of operations in V (see [419] ). V is residually 
small iff V 0 can be taken to be aset in (*) of õ4, which is to say that Vhas a "good" 

coordinate representation system. For some other conditions equivalent to residual 

smallness, see [419] and [34]; also see [24] where e.g. finite bounds on s.i. algebras 

are considered. McKenzie and Shelah [301] consider bounds on the size of simple 

algebras in V and obtain a result analogous to that on 2 n just above. (An algebra is 

simple iff it is non-trivial and has no proper homomorphic image other than a trivial 

algebra. Every non-trivial variety has at least one simple algebra [273] ;but see [326] 
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for the failure of this fact for varieties of infinitary algebras.) 

Some residually small varieties' Abelian groups, commutative rings with a law 

x m = x (cf. õ 6), semilattices, distributive lattices, various "linear" varieties (as in 14.3 

above); also if V = HSP A for A finite and V has distributive congruences (e.g. A = any 

finite lattice), then V is residually small (by J6nsson's Theorem in õ 15 below). Also 

any •-product of two residually small varieties • as in 9.14) is residually small. 

(Similarly for AP and CEP.) Some non-residually small varieties: groups, rings, 

pseudocomplemented semilattices (see [216], [ 382] ), modular lattices, and HSP A 

for A either 8-element non-Abelian group (both generate the same variety - see 8.5 

above). Also cf. 12.12 above. 

A variety V is residually small iff every A in V can be embedded in an 

equationally compact algebra B [419]. Mycielski [321] defined B to be equationally 

compact iff every set [' of equations with constants from B is satisfiable in B if every 

finite subset of [' is satisfiable in B. Here is an example [321] of failure of equational 

compactness in the group of integers: 

3x 0 + x 1 = 1 

x 1 = 2x 2 

x 2 = 2x 3 
ß 

ß 

ß 

One can solve any finite subset of these equations in integers simply by solving 3x 0 + 

2n-lxn = 1, always possible; but clearly the entire set implies 3x 0 = 1, impossible. 
Equational compactness is implied by topological compactness (use the finite 

intersection property for solution sets), but not conversely. Thus we are led to this 

problem, which has been settled positively for many V. 

PROBLEM. [419]. If V is residually small, can every algebra in Vbe embedded 

in a compact Hausdorff topological algebra? (See õ 16 below.) 

There is a large body of research on equational compactness which we cannot 

begin to cover here. See the survey review [423], or [72] or [425] for references. 

Also see G. H. Wenzel's appendix to the new edition of [ 163 ]. 

Among the equationally compact B D_ A there is one which is "smallest," i.e., a 

"compactification of A" - see [419, page 40] or [29]. W•glorz [439] proved that this 
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compactification is always in HSP A. 

14.9. The conjunction of AP, CEP and residual smallness (14.6 - 14.8) is 

equivalent to the purely category-theoretic property of injectire completeness (see 

Banaschewski [30] ). (Pierce [353] noticed that injective completeness implies AP.) V 

is injectively complete (or, "has enough injectives") iff every algebra in V is 

embeddable in a V-injective, i.e. an algebra A C V such that whenever B C_ C C V and 

f: B • A is a homomorphism, there exists an extension of f to g: C • A. (See e.g. 

[ 143, õ6.2] but remember that most varieties are not Abelian categories.) The variety 

of semilattices has enough injectives (Bruns and Lakser [68], Horn and Kimura 

[190] ) and so does that of distributive lattices (Banaschewski and Bruns [32], Balbes 

[22]). For a theory of injective hulls in varieties, see [418,page 411 ]. See also [154]. 

We know examples to show that AP, CEP and residual smallness are completely 

independent properties, except for one case' 

PROBLEM. AP and Res. Small • CEP? 

For further information on varieties with enough injectives, see Day [99] and 

Garcih [150]. In 14.10 just below we will mention another category-theoretic 

property of varieties. Yet another one is that of being a binding category, investigated 

for varieties in [398] and [ 180]. 

14.10. Unique factorization of finite algebras (UFF) in V, i.e., if A 1 X -.. X 

A n-• B 1 X --. X B s • V is finite and no A i or Bj can be further decomposed as a 
product of smaller factors, then n = s and after suitably tenumbering, A 1 -• B1, A 2 • 

B 2 ..... A n -• B n. (Historically, this problem has been approached independently of any 

mention of V, but the results obtained often have an equational character.) Birkhoff 

proved [ 50, page 169] that V has UFF if V has a constant term a such that 

(*) V • F(a ..... a) = a for all operations F of V 

and V has permutable congruences, and Jdnsson [222] improved "permutable" to 

"modular" (see õ15 for these terms). Jdnsson and Tarski [230] proved that V has 

UFF if V has a constant term a obeying (*) and a binary operation + such that 

V•x+a=x=a+x. 

McKenzie showed [294] that the variety of idempotent semigroups (see 13.6) has 

UFF, but the variety of commutative semigroups does not (see [50, page 170]). UFF 
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has an influence on the fine spectrum (cf. 14.2) - see [424, pages 285-6]. For the 

closely related subject of "cancellation," see Lova'sz [262]. 

14.11. Universal varieties. We must refer the reader to the papers [359], [361] 

of Pigozzi for this relatively new notion which promises to be quite important. F is 

universal iff for every similarity type there exist F-terms o• t corresponding to the 
operations of this type such that for each A of this type there exists B C F such that A 

is a subalgebra of (B; FBt)tC T and (B; FBt)t• T obeys exactly the same laws as A. (E.g., 
the variety of quasigroups is universal.) Many of the undecidability and 

lattice-theoretic results of õ õ 12,13 above extend to universal varieties. 

14.12. The Schreier property (all subalgebras of free algebras are free) is 

investigated in Meskin [311], Kelenson [243], Aust [8], Je•ek [210] and Budkin 

[71]; cf. 12.8 above. Neumann and Wiegold (supplementary bibliography) showed 

that the only Schreier varieties of groups are all groups, all Abelian groups, and all 

Abelian groups of exponent p (prime). (Schreier earlier proved that the variety of all 

groups has this property.) T. Evans gave a parallel result for semigroups (see 

supplementary bibliography). 

15. Malcev conditions and congruence identities. Malcev proved [278] that a 

variety F has permutable congruences iff there is a ternary term p(x,y,z) such that 

F • p(x,x,y) = p(y,x,x) = y. 

(For binary relations •, •k, define •- •k = • (a,c): there exists b(a,b) • • and (b,c) • •k • 

and say that F has permutable congruences iff •- •b = •' • for all congruences on any 

A • F.) B. J6nsson proved [221 ] that all congruence lattices of algebras in F obey the 

distributive law iff there exist ternary terms Pi(x,y,z) (0 • i•n) such that the 
following equations hold identically in F: 

Pi(x,y,x) = x (0 • i • n) 

P0(x,y,z) = x pn!•X,y,z) = z 

Pi(X,X,y) = Pi+ 1 (x,x,y) (i even) 

Pi(x,y,y) = Pi+l(x,y,y) (i odd). 
(But cf. 12.10 above.) And Day [98] proved a similar result for modularity of the 

congruence lattice. ,Properties of varieties definable in this way by the existence of 

terms have come to be known as Malcev-definable (see [420], [333] or [26] for a 
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precise definition). The number of properties known to be Malcev-definable has been 

growing rapidly - see [420] for a summary of those known up to 1973 and [73] for a 

partial updating; also see [21 ], [44]. They include the following: 

IAI divides IBI whenever A C_ B G V, B finite; 

V has no topological algebras with noncommutative homotopy (cf. õ 16); 

no A G V is a union of two proper subalgebras [ 73 ]; 

V has no nontrivial finite algebras (cf. 14.1). 

The first three of these hold for all groups. The last one has the distinction that there 

is no way to recursively enumerate a Malcev condition for it, as was observed by J. 

Malitz - see [420, page 383]. See [420], [333], or [26] for a necessary and sufficient 

condition for a property of varieties to be Malcev-definable which easily entails all the 

above examples except the second (and many more). 

Permutability and modularity of congruences have been important from earliest 

times in universal algebra (cf. 14.10 above and for recent examples, see [173] [428] 

and recent work of J. Smith). But the condition which has been most important 

recently is distributivity; this importance stems from J6nsson's theorem [221] that if 

X is any subset of a congruence-distributive variety then 

S.I. c• HSP(X) c_ HSU(X) 

(here S.I. denotes the class of all subdirectly irreducible algebras (õ4) and U(X) is the 

class of all ultraproducts of families of members of X). (Also see Baker [ 18 ] .) In many 

cases this yields a very good representation theory in the sense of õ4, e.g. if X is a 

finite set of finite algebras, in which case U(X) = X. (For the finite case, see also 

Quackenbush [373] for a somewhat simpler proof; a similar argument had earlier been 

known to A. F. Pixley.) Among many uses of this result has been the investigation of 

congruence lattices (see especially 13.2 and 13.11 above), and the "internal" model 

theory of many individual varieties whose algebras have the operations of lattice 

theory among their operations. See e.g. Davey [97], Berman [45], and references 

given there. A very important kind of algebra generating a congruence-distributive 

variety is a quasi-primal algebra, i.e., within equivalence, an algebra A = (A,T,F 1 ,F2,...) 

where A is a finite set and { x if x % y T(x,y,z) = 
zifx=y 
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Every finite algebra in HSP A is uniquely a product of subalgebras of A. Many of the 

equivalence-invariants of these varieties (e.g. the fine spectrum, CEP, AP, Con(V) - see 

õ14) are relatively easy to evaluate. See Pixley [362] and Quackenbush [369] for 

details and further references - the notion goes back essentially to Pixley, building on 

work of Foster and Rosenbloom. For infinite analogs of primal algebras, see Tulipani 

[433] and Iwanik [202]. For congruence-distributivity cf. also 9.11 and 14.7. 

Clark and Krauss [89] [90] have given a remarkable theory of para primal 

algebras, a kind of non-distributive generalization of quasiprimal algebras, combining 

ideas of quasiprimality and linear algebra. Also see [371] [300] [173]; cf. 9.13 

above. 

Pixley and Wille gave an algorithm ([363] [442]; also see [420, Theorem 5.1]) 

to convert every identity on the congruence lattice (in ^, v, and o) into a Malcev 

condition. Which of these conditions are "new" remains an open question. For 

instance, Nation proved [322] that for certain lattice laws X which do not imply the 

modular law, the following holds: if all congruence lattices of algebras in a variety V 

obey X, then they all obey the modular law. 

Very recently S. V. Polin has proved that Nation's result fails for some non-trivial 

lattice law X. Non-modular "congruence varieties" are extensively investigated in a 

forthcoming paper of A. Day and R. Freese. Also see [103], [224] or [298] for 

further discussion of the state of affair just prior to Polin's result. Also see B. 

Jdnsson's appendix to the forthcoming new edition of [ 163 ]. 

Another Malcev-definable property of varieties V which has received wide 

attention is that Fv(n) • Fv(m). (See e.g. Marczewski [282], references given there, 

and various other articles in the same volume of Colloquium Mathematicum.) For 

fixed no, the set of numbers 

{n C co: Fv(n) • Fv(n0)) 

is always an arithmetic progression, and any progression can occur (S'wierczkowski, et 

al.). If Fv(n ) -• Fv(m ) with m =/= n, then V has no non-trivial finite algebras (Jdnsson 

and Tarski [231]) (cf. 14.1 ). (Also see Clark [87] .) 

See Csfik•iny [95] for a collection of properties of varieties resembling, but more 

general than, Malcev conditions. A nice special example is in Klukovits [247]. 
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16. Connections with topology. If A = (A,Ft)tC T is any algebra and T is any 

topology on A such that every F t' A nt-* A is continuous (in the nt-fold topological 
product of T), then we say that A = (A,T,Ft)tC T is a topological algebra. The space 
(A,T) is not at all independent from the equational theory of A, but rather the two 

seem to influence each other quite strongly. This influence is poorly understood, but 

many interesting examples are known. 

16.1. No sphere except S 0, S 1 , S 3, S 7 can be an "H-space," i.e., can obey 
ex = x = xe 

for binary multiplication and constant e (Adams [2]), and S 7 cannot also obey the 
associative law (James [204] ). 

16.2. The space of a topological group must be homogeneous, with Abelian 

fundamental group, and if compact and uncountable, of power >• 2 •q0. (All of these 
facts are essentially well known.) 

16.3. The space of a topological Boolean algebra, if compact, must be a power 

2 n for 2 a 2-element space. (Kaplansky [237] .) 

16.4. The space of topological semilattice has zero homotopy in each of its 

components in each dimension (Taylor [429]), and if compact, connected and 

finite-dimensional, cannot be homogeneous (Lawson and Madison [253] ). 

16.5. If V is defined by the equations (*) of 14.3 above, then it is not hard to 

check that the topological algebras in V have "square" universe (as in Evans [ 118] ), 

i.e. each is homeomorphic to the square of some other space. 

16.6. If V is the product U• W of two varieties (see [424], õ0]), then a 

topological algebra in V with product-indecomposable space must be either in U or W 

(this can be seen fairly easily from the methods outlined in [420, pages 357-358] or 

[424, pages 265-267] ). 

16.7. If a compact connected topological algebra obeys the law 

(xy)(yz) = xz, 

then it also obeys the law xy = uv. (Bednarek and Wallace [38] .) It is an old problem 

of A.D. Wallace (see [378] ) whether the "skew-associative" law 

x(yz) = (zx)y 

can hold on the unit interval without the associative law holding as well. 
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For some more examples consult [429]; also cf. 14.1 above. In [429] there is a 

fairly complete analysis of the influence of the laws obeyed by a topological algebra 

on the laws which must be obeyed by its homotopy groups. •wierczkowski's method 

[407] of topologizing free algebras was essential to this work. But we are still a long 

way from understanding the general interaction between the space of A and Eq A. 

There is of course no a priori reason for believing that Eq A is especially important 

here (rather than say the full first order theory of A), but experience has often yielded 

examples which involved identities. (For e.g. connected fields obeying px = 0, see 

[438], [320] .) 

Very closely connected is the study of functional equations - see Acz•l's book 

[1] - a vast subject in itself. It proceeds like the above, also allowing certain 

"constants," i.e. function symbols whose meaning is prescribed in advance, such as 

ordinary addition + of real numbers - a typical early result being Cauchy's theorem 

that the continuous solutions of 

f(x + y) = fix) + f(y) 

on the real numbers are the linear functions f(x) = ax. 

17. Miscellaneous. Here we list a few topics that are concerned with equations 

in one way or another, but do not fit precisely into any of the earlier sections. 

17.1. Algebraically closed algebras are defined analogously to algebraically 

closed fields. See e.g. Simmons [399], Bacsich [12], Forrest [139], Sabbagh [381] 

and Schupp [386] and references given there. All algebraically closed algebras in a 

variety V are simple iff every algebra in V can be embedded in a simple algebra of V. 

(B. H. Neumann had earlier proved that every algebraically closed group is simple.) 

(Cf. the final result of Evans in õ 12 - Word Problems, and that of McKenzie and 

Shelah in 14.8.) Of course the satisfiability of equations (in algebraically closed fields) 

is historically where the study of equations arose. In a recursively axiomatized variety 

V, if a finitely presented A C V is embeddable in every algebraically closed B c V, 

then A has solvable word problem (Macintyre [271]; see also [329], [381] and [386] •t 

17.2. Satisfiability of equations, especially their unique satisfiability, figures 

heavily in the work of Sauer and Stone characterizing concrete endomorphism 

monoids. (See [383] .) 
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17.3. See e.g. [193], [363] and references given there for "local" varieties. 

17.4. There is a rapidly growing theory of combinatorial designs as varieties. 

Bruck first observed that if a binary operation obeys the laws 

XX----X 

xy = yx 

x(xy) = y 

then one has a Steiner triple system 

({x,y,xy }: x 4:y}, 

and conversely, all Steiner triple systems arise in this way. This idea can be greatly 

extended; consult Evans [126], Ganter and Werner [148], [149], Quackenbush 

[370], Banaschewski and Nelson [35], and Ganter [147]. 

17.5. Goodstein [159] propounded an equational axiom system for the natural 

numbers, equally as strong as Peano's. It differs from the systems described here in 

that it had another rule of proof, corresponding to uniqueness for inductive 

definitions. 

17.6. An equation calculus for the recursive definition of functions was 

developed by G6del and Herbrand -it is described in [246, õ54]. But it differs widely 

from the logic of equations described here - for example, it lacks the symmetric law - 

an equation f(.-.) = g(---) is an instruction meaning roughly, "if the RHS has been 

calculated, then regard this as a way of calculating the LHS," and this process cannot 

be reversed. Of course, this calculus greatly resembles the use of equations in e.g. 

Fortran, although there are obvious differences. 

17.7. Henkin has proposed a theory of types which can be viewed as an 

equational theory. (See [ 182] .) 

17.8. A theory of "heterogeneous" varieties (objects of more than one type) was 

developed by G. Birkhoff and J. D. Lipson, A. I. Malcev, and P. J. Higgins. It was 

useful in Taylor [420] (q.v. for full references, pages 358-359). Boardman [58] used 

essentially the same theory in algebraic topology (his "colors"). 

17.9. One can study "products" of varieties in a sense which originated in group 

theory (see H. Neumann's book [330] ), and was later extended by A. I. Malcev (see 

[279, page 422]) to some other varieties. For recent developments, see [249], [258]. 
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17.10. For "identical inclusions" see e.g. [261]. An identical inclusion is a 

(non-first-order) condition of the form 

r(xl,x2,... ) C •Ol(X 1 ,x2,...), o2(x 1 ,x2,...),...•, 

where •...• denotes the subalgebra generated by .... 
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