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ON THE STRUCTURE OF SOLUTIONS OF A CLASS OF
BOUNDARY VALUE PROBLEMS

XIYU LIU, BAOQIANG YAN

Communicated by Haim Brezis

Abstract. Behaviour of continua of the solution set of both operator equa-

tions and a class of boundary value problems are obtained, which partially

answers an open problem of Ambrosetti [1].

1. Introduction

In a recent paper[1], A. Ambrosetti, H. Brezis and C. Cerami studied the
combined effects of concave and convex nonlinearities to elliptic boundary value
problems of the following type







−∆u = λuq + up, x ∈ Ω
u > 0, x ∈ Ω
u = 0, x ∈ ∂Ω

(1.1)

with 0 < q < 1 < p. They proved the existence of two positive solutions to (1.1)
for λ small by upper and lower solutions and variational techniques when p is
subcritical. In that paper, they also indicated several interesting open problems.
See Ma [2] for example. One of those is what the structure of the solutions is in
the one-dimensional case.

The purpose of the present paper is to study this problem. We will give a
different approach and a general setting of the problem. The main feature is
the presence of a nonlinearity having a sublinear and superlinear behavior. By
applying topological methods on cones we will show the existence of a branch C
of solutions bifurcating from (0, 0) that touches back {0} × (P\{0}).
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As applications, we will discuss in detail a class of boundary value problems
of ordinary differential equations. Some further structure theorems are obtained,
and a partial answer is given to the question raised in [1].

2. Structure of Solutions of Operator Equations

This section is devoted to the abstract setting of the problem. We will discuss
the behaviour of continua of solutions of equations with a parameter when both
superlinear and sublinear effects are present. The main results are Theorem 2.1–
2.3.

Let E be a Banach space with a cone P , and I : R+×P → P be a completely
continuous operator, where R+ = [0,∞). Let

∑

= {(λ, x) ∈ R+ × P : x =
I(λ, x)}. Then clearly

∑

is closed and locally compact. Write Br = {x ∈ P :
‖x‖ < r} for r > 0. First we list the following conditions for this section.

(H1) lim
‖x‖→0

‖I(0,x)‖
‖x‖ < 1.

(H2) lim
‖x‖→0,λ→λ0

‖I(λ,x)‖
‖x‖ > 1, for any λ0 > 0.

(H3) lim
‖x‖→∞

‖I(λ,x)‖
‖x‖ > 1, uniformly for λ ∈ R+.

(H4) lim
λ→+∞

‖I(λ, x)‖ = ∞, uniformly for x ∈ P, ε ≤ ‖x‖ ≤ 1
ε where ε ∈ (0, 1)

is arbitrary.
(H5) lim

‖x‖→0,λ→+∞
‖I(λ,x)‖
‖x‖ > 1.

Lemma 2.1. Suppose that (H1) is satisfied. Then x = 0 is the isolated fixed
point of I(0, x). Moreover,

i(I(0, ·), 0, P ) = 1.

Proof. By condition (H1) there exists δ > 0 such that ‖I(0, x)‖ ≤ λ1‖x‖ for
‖x‖ < δ, where λ1 < 1. Hence I(0, 0) = 0 and i(I(0, ·), 0, P ) = 1 by [3].

Lemma 2.2. Suppose that (H2) is satisfied. Then for any λ1, λ2 > 0, there exists
τ > 0 such that

([λ1, λ2]×Bτ )
⋂
∑

⊂ [λ1, λ2]× {0}.

Proof. Suppose that there exists a sequence λn ∈ [λ1, λ2], xn 6= 0, xn → 0 such
that (λn, xn) ∈

∑

. Assume without loss of generality that λn → λ0 ∈ [λ1, λ2].
Then ‖xn‖ = ‖I(λn, xn)‖ in contradiction with condition (H2).

Now suppose (H1) is satisfied. Then (0, 0) ∈
∑

. Recall that a continuum is a
maximal connected set. Let C be the continuum of

∑

containing (0, 0). Clearly
C is closed.
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Lemma 2.3. Suppose that (H1)(H2) are satisfied. Let C+ = C \ ((0,∞)× {0}).
Then C+ is connected and closed.

Proof. Let (λn, xn) ∈ C+, (λn, xn) → (λ, x) ∈
∑

. Then (λ, x) ∈ C. If λ = 0,
then (λ, x) ∈ C+. If λ > 0, then by Lemma 2.2 we know x 6= 0. Hence (λ, x) ∈
C+ and C+ is closed. Next if there exist closed nonempty sets S, T such that
C+ = S

⋃

T . Let (0, 0) ∈ S. Then C = ([S
⋃

([0,∞) × {0})]
⋂

C+)
⋃

T . Clearly
T
⋂

([0,∞)×{0}) = ∅, and [S
⋃

([0,∞)×{0})]
⋂

C+ is closed, which implies that
C is not connected.

Now we are in a position to give the structure of
∑

.

Theorem 2.1. Suppose that (H1)(H2) are satisfied. Then the continuum C of
∑

containing (0, 0) has the following properties.
(i) C contains a connected closed subset C+ ⊂ [(0,∞)× (P\{0})]

⋃

({0} × P ).
(ii) λ = 0 is the bifurcation point of I if I(λ, 0) ≡ 0.
(iii) There exists λ0 > 0 such that [{λ} × (P\{0})]

⋂

C+ 6= ∅ for λ ∈ (0, λ0).

Proof. Let C+ be as in Lemma 2.3. Then C+ is closed and connected by Lemma
2.3. Thus the projection of C+ onto R+ is an interval, and we need only to show
that there exists λ > 0 such that [{λ} × (P\{0})]

⋂

C 6= ∅.
In fact, if [{λ} × (P\{0})]

⋂

C = ∅ for any λ > 0, then C ⊂ ((0,∞) ×
{0})

⋃

({0} × P ). Take λ0 > 0 and let Z = [0, λ0] × P . Then Z is closed and
convex. By Lemma 2.1, 2.2 and condition (H2) there exists τ > 0 such that
[{λ0} × Bτ ]

⋂∑

⊂ (λ0, 0), [{0} × Bτ ]
⋂∑

⊂ (0, 0), and ‖I(λ0, x)‖ > ‖x‖ for
x ∈ ∂Bτ . Write Q = [0, λ0]×Bτ . Then ∂Q = [0, λ0]× (∂Bτ

⋂

P ) in Z. Let X =
∑⋂

Q, then X is a compact metric space. Denote S1 = C
⋂

Q,S2 =
∑⋂

∂Q.
Thus S1, S2 are compact disjoint subsets of X, and no subcontinuum of X can
both meet S1 and S2. By Lemma 1.1 of [4] there exist compact disjoint subsets
K1,K2 of X such that X = K1

⋃

K2, S1 ⊂ K1, S2 ⊂ K2. Thus K1

⋂

∂Q = ∅,
and we can choose an open set U of Q with K1 ⊂ U, ∂U

⋂

K1 = ∅, ∂U
⋂

K2 = ∅,
hence ∂U

⋂∑

= ∅. By the general homotopy invariance of fixed point index (see
Amann [5]) we have

i(I(λ, ·), U(λ), P ) = µ = const, λ ∈ [0, λ0]

where U(λ) = {x : (λ, x) ∈ U}. By Lemma 2.1 µ = 1 when λ = 0. Since
‖I(λ0, x)‖ > ‖x‖ for x ∈ ∂Bτ , then by Lemma 2.3.3 of [3] (page 91) we have
i(I(λ0, ·), U(λ0), P ) = i(I(λ0, ·), 0, P ) = 0.
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Theorem 2.2. Suppose that (H1)(H2) are satisfied. Let C, C+ be as in Theorem
2.1. Then either

(i) C+ is unbounded, or
(ii) C meets {0} × (P\{0}).

Proof. Suppose C+ is bounded and C
⋂

[{0} × (P\{0})] = ∅. Take R > 0
such that C+ ⊂ [0, R) × BR. Write QR = [0, R] × BR, Z = [0, R] × P,X =
(
∑⋂

QR)
⋃

(R, 0). Then X is compact in Z, and ∂QR = [0, R] × ∂BR in Z.
Let S1 = (C

⋂

QR)
⋃

(R, 0), S2 = (
∑⋂

[∂QR
⋃

({0, R} × BR)]) \{(R, 0), (0, 0)}
which are compact disjoint subsets of X by Lemma 2.1, 2.2. By Lemma 1.1
of Rabinowitz [4] we get compact disjoint subsets K1,K2 of X such that X =
K1

⋃

K2, S1 ⊂ K1, S2 ⊂ K2, and

K1

⋂

∂QR = ∅, K1

⋂

({R} ×BR) = (R, 0), K1

⋂

({0} ×BR) = (0, 0).

Take open set U ⊂ QR such that K1 ⊂ U, ∂U
⋂

K1 = ∅, ∂U
⋂

∂QR = ∅, ∂U
⋂

K2

= ∅, U
⋂

K2 = ∅. Hence ∂U
⋂∑

= ∅, and U(R)
⋂

P = {0}. Moreover

i(I(λ, ·), U(λ), P ) = µ = const, λ ∈ [0, R].

By Lemma 2.1 µ = 1 when λ = 0 since U(0)
⋂∑

= {0}, while

i(I(R, ·), U(R), P ) = i(I(R, ·), 0, P ) = 0

by Lemma 2.3.3 of [3].

Theorem 2.3. Suppose that (H1)–(H5) are satisfied. Then the continuum C of
∑

containing (0, 0) has the following properties.
(i) C contains a connected closed subset C+ ⊂ [(0,∞)× (P\{0})]

⋃

({0} × P ).
(ii) λ = 0 is the bifurcation point of I if I(λ, 0) ≡ 0.
(iii) C+ meets {0} × (P\{0}).
(iv) There exists λ0 > 0 such that x = I(λ, x) has at least two nontrivial

solutions x′λ, x
′′
λ for λ ∈ (0, λ0), and (λ, x′λ), (λ, x′′λ) ∈ C+.

Proof. Let C+ be as in Theorem 2.1. First we will prove that C+ is bounded.
In fact, by (H3) there exists R > 0 such that ‖x‖ ≤ R for (λ, x) ∈

∑

. Let
(λn, xn) ∈

∑

, λn → ∞. If there exists ε > 0 with ‖xn‖ > ε, then by (H4) we
get a contradiction. On the other hand if xn → 0, then it will contradicts (H5).
Thus C+ is bounded and assertion (iii) is true.

Next we will show that if there exists λ > 0, x ∈ P such that C+
⋂

({λ}×P ) =
{x}, then C+

⋂

([0, λ]× P ) is connected.
In fact, if there exist nonempty closed disjoint subsets S1, S2 with C+

⋂

([0, λ]×
P ) = S1

⋃

S2 and (λ, x) ∈ S2, then C+ = S1

⋃

S3, where S3 = S2

⋃

(C+
⋂

[λ,∞)×
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P ). Evidently S3 and S1 are disjoint. This contradicts with the fact that C+ is
connected.

Now suppose that there exist λn > 0, λn → 0 such that the set C+
⋂

({λn}×P )
is single-pointed for n > 1. Let Cn = C+

⋂

([0, λn] × P ). Then Cn is connected
and closed. By (iii) there exists x0 > 0, (0, x0) ∈ C+. Let C0 = lim

n→∞
Cn = {z :

there exist a subsequence nk →∞ with znk ∈ Cnk , znk → z}. Hence (0, x0) ∈ C0.
By Liu [6] we know that C0 is connected and closed. Moreover C0 ⊂

∑

, and by
definition C0 ⊂ {0} × P . Hence x = 0 could not be an isolated fixed point of
I(λ, ·).

3. Autonomous and Non-autonomous Boundary Value Problems

In this section, we will use the results obtained in section 2 to study a class of
autonomous and non-autonomous boundary value problems of ordinary differen-
tial equations. First we consider the following non-autonomous problem

{

−(Lx)(t) = f(λ, t, x(t)), t ∈ (0, 1)
αx(0)− β lim

t→0
p(t)x′(t) = γx(1) + δ lim

t→1
p(t)x′(t) = 0 (3.1)

where (Lx)(t) = 1
p(t) (p(t)x′(t))′, p ∈ C[0, 1]

⋂

C1(0, 1), p(t) > 0 for t ∈ (0, 1),
α, β, γ, δ ≥ 0, βγ+αδ+αγ > 0, and f ∈ C[R+×(0, 1)×R+, R+]. We will assume
∫ 1

0
1
p(t)dt <∞ throughout this section. Denote τ0(t) =

∫ t

0
1
p(t)dt, τ1(t) =

∫ 1

t
1
p(t)dt,

ρ2 = βγ + αδ + αγ
∫ 1

0
1
p(t)dt, and ρ > 0. Define

u(t) =
1
ρ

[δ + γτ1(t)], v(t) =
1
ρ

[β + ατ0(t)], (3.2)

Then γv + αu ≡ ρ. Let E = C[0, 1] and

k(t, s) =
{

u(t)v(s)p(s), 0 ≤ s ≤ t ≤ 1
v(t)u(s)p(s), 0 ≤ t ≤ s ≤ 1

(3.3)

Then problem (3.1) is equivalent to the operator equation x = I(λ, x), x ∈ P [7],
where

I(λ, x) =
∫ 1

0

k(t, s)f(λ, s, x(s))ds (3.4)

and P = P (a, b) = {x ∈ E : min
t∈[a,b]

x(t) ≥ m(a, b)‖x‖}, where m(a, b) is determined

by the next lemma, and a, b ∈ (0, 1) be fixed (a = 1
4 , b = 3

4 for example).

Lemma 3.1. The following estimates hold.

min
t∈[a,b]

k(t, s) ≥ m(a, b) max
t∈[0,1]

k(t, s)
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max
t∈[0,1]

∫ b

a

k(t, s)ds ≥ max{v(a)
∫ b

a

up, u(b)
∫ b

a

vp}

where m(a, b) = min{ u(b)
u(0) ,

v(a)
v(1)}, and the operator I maps R+×P (a, b) into P (a, b)

and is completely continuous.

Proof. It is straight forward.

Now we will list the conditions used in this section.

(F1): lim
x→0

f(0,t,x)
x ≤ λ1, uniformly for t ∈ (0, 1) and λ1u(0)v(1) max

t∈[0,1]
p(t) < 1.

F(2): lim
x→0,λ→λ0

f(λ,t,x)
x ≥ λ2(λ0), uniformly for t ∈ (0, 1), where λ2(λ0)C(a, b)

> 1, C(a, b) = m(a, b) max{v(a)
∫ b

a
up, u(b)

∫ b

a
vp}, and λ0 > 0 is arbitrary.

(F3): lim
x→∞

f(λ,t,x)
x ≥ λ3, uniformly for λ ∈ R+, t ∈ (0, 1) where λ3C(a, b) > 1.

(F4): lim
λ→+∞

f(λ, t, x) = +∞, uniformly for x ∈ [x1, x2], t ∈ (0, 1), and

x1, x2 > 0.
(F5): lim

x→0,λ→+∞
f(λ,t,x)

x ≥ λ5, uniformly for t ∈ (0, 1), where λ5C(a, b) > 1.

Lemma 3.2. Let (F1)(F2) be satisfied. Then conditions (H1)(H2) are valid.

Proof. Choose r > 0 such that f(0, t, x) ≤ (λ1 +ε)x for x < r. Then for ‖x‖ < r

we have

‖I(0, x)‖ ≤
∫ 1

0

uvpf(0, s, x)ds ≤ (λ1 + ε)‖x‖
∫ 1

0

uvp

Thus condition (H1) is true. Similarly choose r > 0 such that f(λ, t, x) ≥
(λ2(λ0)− ε)x for |λ− λ0| < r, |x| < r. Then for |λ− λ0| < r, ‖x‖ < r, x ∈ P (a, b)
we have

I(λ, x)(t) =
∫ 1

0

k(t, s)f(λ, s, x)ds

≥ (λ2(λ0)− ε)
∫ b

a

k(t, s)x(s)ds ≥ (λ2(λ0)− ε)m(a, b)‖x‖
∫ b

a

k(t, s)ds

Lemma 3.3. Let (F1)–(F5) be satisfied. Then conditions (H1)–(H5) are valid.

Proof. (1) Let R > 0 such that f(λ, t, x) ≥ (λ3 − ε)x for x ≥ R, λ ≥ 0. Then
for x ∈ P (a, b), ‖x‖ > R

m(a.b) we have

I(λ, x)(t) ≥
∫ b

a

k(t, s)f(λ, s, x)ds



STRUCTURE OF SOLUTIONS OF BOUNDARY VALUE PROBLEMS 763

≥ (λ3 − ε)
∫ b

a

k(t, s)x(s)ds ≥ (λ3 − ε)m(a, b)‖x‖
∫ b

a

k(t, s)ds

(2) Let x ∈ P (a, b), ε ≤ ‖x‖ ≤ 1
ε . Then for t ∈ (a, b) we have εm(a, b) ≤ x(t) ≤

1
ε . Let λ∗ > 0 such that f(λ, t, x) > T for λ > λ∗, εm(a, b) ≤ x ≤ 1

ε . Then

I(λ, x)(t) ≥
∫ b

a

k(t, s)f(λ, s, x)ds ≥ T
∫ b

a

k(t, s)ds

(3) Let f(λ, t, x) ≥ (λ5 − ε)x for x < r, λ > λ∗. Then for λ > λ∗, ‖x‖ < r we
have

I(λ, x)(t) ≥
∫ b

a

k(t, s)f(λ, s, x)ds

≥ (λ5 − ε)
∫ b

a

k(t, s)x(s)ds ≥ (λ5 − ε)m(a, b)‖x‖
∫ b

a

k(t, s)ds

Theorem 3.1. Suppose that (F1)(F2) are satisfied. Then the continuum C con-
taining (0, 0) of the solution set

∑

of problem (3.1) has the following properties.
(i) C contains a connected closed subset C+ ⊂ [(0,∞)× (P\{0})]

⋃

({0} × P ).
(ii) λ = 0 is the bifurcation point of I if f(λ, t, 0) ≡ 0.
(iii) There exists λ0 > 0 such that [{λ} × (P\{0})]

⋂

C+ 6= ∅ for λ ∈ (0, λ0).

Theorem 3.2. Suppose that (F1)–(F5) are satisfied. Then the continuum C of
∑

containing (0, 0) has the following properties.
(i) C contains a connected closed subset C+ ⊂ [(0,∞)× (P\{0})]

⋃

({0} × P ).
(ii) λ = 0 is the bifurcation point of I if f(λ, t, 0) ≡ 0.
(iii) C+ meets {0} × (P\{0}).
(iv) There exists λ0 > 0 such that problem (3.1) has at least two nontrivial

solutions for λ ∈ (0, λ0).

Corollary 3.1. Let f(λ, t, x) = λg(t, x) + h(t, x) where g, h : [0, 1] × R+ → R+

are continuous and g(t, x) > 0 for t ∈ [0, 1], x > 0. If

lim
x→0

h(t, x)
x

= 0, lim
x→0

g(t, x)
x

= +∞, lim
x→+∞

h(t, x)
x

= +∞

Uniformly for t ∈ [0, 1], then the conclusions of Theorem 3.1–3.2 hold.

Now we consider a more special type of autonomous problems, namely
{

−2x′′(t) = λg′(x(t)) + h′(x(s)), t ∈ (0, 1)
x(0) = x(1) = 0, x ∈ C[0, 1]

(3.5)
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where g, h ∈ C1[0,∞), g(0) = h(0) = 0, g′(x), h′(x) > 0 for x > 0. Let λ ≥ 0
and x be a nontrivial solution to (3.5); i.e.; x(t) > 0 for t ∈ (0, 1), and ‖x‖ =
max
t∈[0,1]

|x(t)| = A, x(ω) = A. Then x′(t) ≥ 0 for t ∈ (0, ω) and x′(t) ≤ 0 for

t ∈ (ω, 1). By integration we have

x′
2(t) = λg(x) + h(x)− λg(A)− h(A)

Hence
x′(t) = ö

√

−λg(x)− h(x) + λg(A) + h(A)

where ö= 1 for t ∈ (0, ω) and ö= −1 for t ∈ (ω, 1). Write

FA,λ(x) =
∫ x

0

du
√

λ(g(A)− g(u)) + (h(A)− h(u))
, x ∈ (0, A] (3.6)

xλ(t) =

{

F−1
A,λ(t), t ∈ (0, ω)
F−1
A,λ(1− t), t ∈ (ω, 1)

(3.7)

E(λ,A) =
∫ A

0

du
√

λ(g(A)− g(u)) + (h(A)− h(u))
, A > 0 (3.8)

If x is a nontrivial solution of (3.5), then by (3.7) we know ω = 1
2 . Thus we have

the following:

Lemma 3.4. Let λ ≥ 0 and x be a nontrivial solution of (3.5), then E(λ, ‖x‖) =
1
2 . Conversely, if there exists λ ≥ 0, A > 0 such that E(λ,A) = 1

2 , then xλ is a
solution of (3.5), where xλ is determined by (3.7).

Lemma 3.5. E : R+ × (0,∞) → (0,∞) is a continuous function. Moreover, E
is strictly decreasing with respect to λ.

Proof. Let u = At, then

E(λ,A) =
∫ 1

0

A
√

λ(g(A)− g(At)) + (h(A)− h(At))
dt, A > 0 (3.9)

Thus for t ∈ ( 1
2 , 1) by the mean value theorem we have

A
√

λ(g(A)− g(At)) + (h(A)− h(At))

=
A

√

λg′(θ1A+ (1− θ1)At) + h′(θ2A+ (1− θ2)At)
1√

A
√

1− t

≤ C(A)
1√

1− t
where θ1, θ2 ∈ [0, 1] and C(A) is a constant. Hence E(λ,A) is continuous.
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Lemma 3.6. Suppose lim
x→0

g′(x)
x = +∞. Then

lim
A→0+

∫ 1

0

A
√

g(A)− g(At)
dt = 0

Proof. Note that g increases, hence we have 1
2 ≤ θ1 ≤ 1 such that

∫ 1
2

0

A
√

g(A)− g(At)
dt ≤ 1

2
A

√

g(A)− g(A2 )

≤ 1
2

A
√

g′(θ1A)A2
≤ 2

√
θ1A

√

g′(θ1A)
→ 0

Similarly we have 1
2 ≤ t ≤ θ2 ≤ 1 such that

∫ 1

1
2

A
√

g(A)− g(At)
dt ≤

∫ 1

1
2

√
A

√

g′(θ2A)
1√

1− t
dt

≤
√

2
∫ 1

1
2

√
θ2A

√

g′(θ2A)
1√

1− t
dt

Let M > 0, A0 > 0 be such that g′(A)
A > M for 0 < A < A0. Consequently

∫ 1

1
2

A
√

g(A)− g(At)
dt ≤ 1√

M

∫ 1

1
2

dt√
1− t

Lemma 3.7. Suppose lim
x→+∞

h′(x)
x = +∞. Then

lim
A→+∞

∫ 1

0

A
√

h(A)− h(At)
dt = 0
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Proof. Similar to the proof of Lemma 3.6, we have
∫ 1

2

0

A
√

h(A)− h(At)
dt

≤
∫ 1

2

0

A
√

h(A)− h(A2 )
dt =

1
2

A
√

h′(θ1A)
→ 0

∫ 1

1
2

A
√

h(A)− h(At)
dt

≤
∫ 1

1
2

A
√

h′(θ2A)
1√

A
√

1− t
→ 0

Theorem 3.3. Suppose that the following conditions are satisfied

lim
x→+∞

h′(x)
x

= +∞, lim
x→0

g′(x)
x

= +∞ (3.10)

Then there exists λ∗ ∈ (0,∞) such that problem (3.5) has at least two nontrivial
solutions for 0 < λ < λ∗, and no nontrivial solutions for λ > λ∗.

Proof. By Lemma 3.5–3.7 we know that E(λ,A) is continuous with respect to A,
E(λ,A) > 0 for A > 0, and for fixed λ > 0, lim

A→0+
E(λ,A) = lim

A→+∞
E(λ,A) = 0.

Let A0 > 0 be such that for A > A0
∫ 1

0

A
√

h(A)− h(At)
dt < ε

Then E(λ,A) < ε for A > A0. Let C > 0 be such that
∫ 1

0

A
√

h(A)− h(At)
dt ≤ C, 0 < A ≤ A0

Then E(λ,A) ≤ C 1√
λ

for 0 < A ≤ A0. Hence lim
λ→∞

E(λ,A) = 0 uniformly for

A > 0. As a result, equation E(λ,A) = 1
2 has no solutions for λ large enough.

In order to consider continua of the solution set, we need the following lemma.
Let

∑

, C, C+ be as before, and Ω = {(λ,A) ∈ R2 : E(λ,A) = 1
2 , λ ≥ 0, A > 0}.

Lemma 3.8. Let SE be a closed and connected subset of
∑

. Denote SR =
{(λ, ‖x‖) : (λ, x) ∈ SE}. Then SE is closed and connected in R2. Conversely, if
SR ⊂ Ω is closed and connected. Let SE = {(λ, xλ) : xλ is determined by (3.7)}.
Then SR is closed and connected in R+ × E.
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Proof. It suffices to note that the following maps are continuous,

R+ × E → R2 : (λ, x) 7→ (λ, ‖x‖)

Ω→ R+ × E : (λ,A) 7→ (λ, xλ)

where xλ is determined by (3.7).

Theorem 3.4. Suppose (3.10) is satisfied, then there exist λ∗, A∗ > 0 such that
∑

\((0,∞) × {0}) ⊂ [0, λ∗] × BR∗ , and any continuum of
∑

will either meet
{0} × P twice, or lie in {0} × P .

Proof. By the proof of Theorem 3.3 we know there exists λ∗ > 0 such that
E(λ,A) ≤ 1

4 for λ > λ∗, A > 0. By Lemma 3.7 there exists A∗ > 0 such that
E(λ,A) ≤ 1

4 for λ ≥ 0, A > A∗. Therefore Ω ⊂ [0, λ∗] × [0, A∗],
∑

\((0,∞) ×
{0}) ⊂ [0, λ∗] × BR∗ . Let Ω0 = {A > 0 : E(0, A) > 1

2}. Then Ω0 is an open set
composed of open intervals. Let J ⊂ Ω0 be one of its maximal open intervals,
then the implicit function theorem implies that there exists a continuous curve
λ = λ(A) : J → [0, λ∗] such that E(λ(A), A) = 1

2 . Hence {(λ(A), A) : A ∈ J} ⊂ Ω
is connected. Let (λ, x) ∈

∑

, λ > 0, then (0, ‖x‖) ∈ Ω0 since E(λ,A) is strictly
decreasing with respect to λ.

Theorem 3.5. Suppose the following conditions are satisfied

lim
x→0

h′(x)
x

= 0, lim
x→+∞

h′(x)
x

= +∞, lim
x→0

g′(x)
x

= +∞ (3.11)

xh′(x)− 2h(x)is strictly increasing for x > 0 (3.12)

Then
∑

= C and C+ meets {0} × P exactly twice.

Proof. By Theorem 3.2 and Corollary 3.1 we know that C+ meets {0}×(P\{0}).
Thus by Lemma 3.4, (iii) of Theorem 3.1 and Corollary 3.1 there exists λ0 > 0
with E(λ, ‖xλ‖) = 1

2 , where (λ, xλ) ∈ C+, 0 < λ < λ0. By Lemma 3.5 we know
E(0, ‖xλ‖) > 1

2 for 0 < λ < λ0. Hence (0, λ0) ⊂ Ω0. Thus by Lemma 3.4 we
need only to prove that E(0, A) is strictly decreasing. In fact, let t ∈ (0, 1),
φ(A) = h(A)−h(At)

A2 , then by (3.12)

A3φ′(A) = Ah′(A)− 2h(A) + 2h(At)−Ath′(At) > 0, t ∈ (0, 1)

Hence φ(A) is strictly increasing, and

E(0, A) =
∫ 1

0

[h(A)− h(At)
A2

]− 1
2

dt

is strictly decreasing. Therefore Ω0 is an open interval.
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Corollary 3.2. Consider problem (1.1) in the scalar case, i.e.,






−x′′ = λxq + xp, t ∈ (0, 1)
x(t) > 0, t ∈ (0, 1)
x(0) = x(1) = 0,

(3.13)

with 0 < q < 1 < p. Then all the conclusions of Theorem 3.1–3.5 hold for (3.13).
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