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Abstract. Let R ⊆ T be an extension of commutative rings (with the same

1). We say that R ⊆ T has FIP if the set of R-subalgebras of T is finite. If

R ⊆ T has FIP, then T must be algebraic over R; if, in addition, R is a field,

then T is a finite-dimensional R-vector space. If R ⊆ T has FIP and T is

an integral domain, then either R and T are fields or T is an overring of R.

If R is a perfect field, then the main result identifies four exhaustive cases

which serve to characterize the condition that R ⊆ T has FIP. Considering

extensions R ⊆ T having FIP with T the quotient field of R amounts to

studying integral domains R with only finitely many overrings. Such integral

domains R are characterized as the semi-quasilocal i-domains of finite Krull

dimension having only finitely many integral overrings. This property is

interpreted further in case R is either integrally closed or a pseudo-valuation

domain. Examples are given to illustrate the sharpness of the results.

1. Introduction

All rings and algebras considered below are commutative with unit. Our start-
ing point is the classical Primitive Element Theorem [2, Theorem 26]: if K ⊆ L

is a finite-dimensional field extension, then L = K[α] for some element α ∈ L

if and only if the set of intermediate fields between K and L is finite. To study
the underlying properties in the more general context of algebras, we make the
following definition. If R → T is a (unital) ring-homomorphism, we say that
R→ T has FIP (for the “finitely many intermediate algebras” property) if the set
of R-subalgebras of T is finite. It is evident that a ring-homomorphism f : R→ T
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has FIP if and only if the inclusion map f(R) ↪→ T has FIP. For this reason, we
henceforth consider FIP only for R-algebras T such that R ⊆ T . An exact anal-
ogy with the classical result fails, as Proposition 2.1 shows that, even if R ⊆ T is
an algebraic extension of rings, the condition that R ⊆ T has FIP is logically in-
dependent of the condition that T = R[α] for some α ∈ T . However, some aspects
of the classical flavor persist, as it is easy to show that FIP implies algebraicity
and, in fact, if the base ring is a field, finite-dimensionality (see Proposition 2.2
(a),(d)). Moreover, if K is a perfect field, our main result, Theorem 3.8, produces
four cases whose disjunction characterizes the extensions K ⊆ T which have FIP.

Rather complete information about FIP is available for extensions R ⊆ T where
T is a field. In this case, Theorem 2.4 (a) provides the fundamental dichotomy:
if R ⊆ L has FIP and L is a field, then either R is a field or L is the quotient
field of R. The former option is analyzed completely by Theorem 3.8 (which was
mentioned above). The latter option, dealing with integral domains R having
only finitely many overrings, is characterized in Theorem 2.6: these R are the
semi-quasilocal i-domains (in the sense of [12]) having finite (Krull) dimension
and only finitely many integral overrings. This second option is interpreted in
Corollary 2.7 when R is a pseudo-valuation domain (in the sense of [9]). When
neither R nor T is a field, results on extensions R ⊆ T having FIP are less
complete: cf. Corollary 2.3, Theorem 2.4 (b), and Corollary 3.9. These include
the fact (Proposition 3.4) that if R is a finite ring, then a ring extension R ⊆ T

has FIP if and only if T is finite.
For an integral domain D, Spec(D) denotes the set of prime ideals of D, dim(D)

denotes the Krull dimension of D, qf(D) denotes the quotient field of D, and D′

denotes the integral closure of D. Following [10, page 28], we denote the properties
of lying-over, going-up, and incomparability by LO, GU, and INC, respectively.
Any unexplained material is standard, as in [10].

2. When The Algebra is A Field

We begin by showing that the classical Primitive Element Theorem cannot be
naively extended from the context of field extensions to the context of algebras.

Proposition 2.1. (a) There exists an algebraic ring extension R ⊆ T such that
T = R[α] for some α ∈ T but R ⊆ T does not have FIP.

(b)There exists an algebraic ring extension R ⊆ T which has FIP but T cannot
be generated as an R-algebra by one element.
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Proof. (a) Let R be an infinite-dimensional valuation domain with a height 1
prime ideal P . Pick β ∈ P \ {0} and put L = qf(R). Evidently, L = R[β−1] (cf.
[10, Theorem 19]). However, R ⊆ L does not have FIP since {RP : P ∈ Spec(R)}
is an infinite set of overrings of R.

(b) Let R = F2 and T = R × R × R. View R ⊆ T by means of the diagonal
embedding R → T . Of course, T is algebraic over R. As T is finite, it is trivial
that R ⊆ T has FIP. However, it is straightforward to check that none of the
eight elements α ∈ T satisfies R[α] = T .

Remark. Although the base ring R in Proposition 2.1(b) is a field, such is not
the case in Proposition 2.1 (a). Nevertheless, there does exist a ring extension
R ⊆ T satisfying the assertion of Proposition 2.1 (a) for which R is a field. A
specific example to illustrate this is given by T = K[X]/(X4), where R = K is
an arbitrary infinite field. We defer the verification to Lemma 3.6, where a more
general result is established.

The next result collects some useful facts which explain, i.a., the emphasis in
Proposition 2.1 (and below) on algebraic algebras.

Proposition 2.2. (a) Let R ⊆ T have FIP. Then each α ∈ T is the root of a
polynomial in R[X] with a unit coefficient. In particular, T is algebraic over R.

(b) If R ⊆ T has FIP, then T is a finite-type R-algebra.
(c) If R ⊆ T is an integral extension which has FIP, then T is module-finite

over R.
(d) If K ⊆ T has FIP and K is a field, then T is a finite-dimensional K-vector

space.

Proof. (a) Fix α in T . Since R ⊆ T has FIP, there exist positive integers n < m

such that R[αn] = R[αm]. Hence

αn = r0 + r1α
m + · · ·+ rdα

dm

for some r0, r1, . . . , rd ∈ R, from which the assertions are immediate.
(b) Deny. Pick t1 ∈ T \ R. Inductively find t2, t3, · · · ∈ T such that tn+1 ∈

T \R[t1, . . . , tn] for each integer n ≥ 1. It follows that

R ⊂ R[t1] ⊂ R[t1, t2] ⊂ · · · ⊂ R[t1, . . . , tn] ⊂ · · ·

is a strictly ascending chain of rings, contradicting that R ⊆ T has FIP.
(c) Apply (b).
(d) Apply (c).
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Corollary 2.3. Let R ⊆ T be an extension of integral domains which has FIP.
Let K = qf(R) and L = qf(T ), and let A denote the integral closure of R in T .
Then:

(a) For all multiplicatively closed subsets S of R, RS ⊆ TS has FIP.
(b) [L : K] <∞, L = K(α) = K[α] for some α ∈ L, and K ⊆ L has FIP.
(c) L = qf(A).
(d) If, in addition, R is integrally closed in T , then T is an overring of R.

Proof. (a) If E is an RS-subalgebra of TS , then E∩T is an R-subalgebra of T and
a straightforward calculation shows that E = (E ∩ T )S . Hence, the assignment
E 7→ E ∩ T gives an injection from the set of RS-subalgebras of TS to the set of
R-subalgebras of T . As the latter set is finite, so is the former.

(b), (c): Consider S = R \{0}. Since L is algebraic over K, the usual clearing-
of-denominators trick (as in the proof of [13, Theorem 7, page 264]) shows that L
is contained in, and hence, coincides with AS . Then (c) follows immediately. As
for (b), apply (a) to see that K ⊆ L has FIP. By Proposition 2.2 (d), it follows that
[L : K] < ∞. Therefore, by the Primitive Element Theorem, L = K(α) = K[α]
for some α ∈ L.

(d) Since R is integrally closed in T , we have A = R. Apply (c).

Remark. (a) Note that the proof of Corollary 2.3 (a) carries over essentially ver-
batim in case R ⊆ T is an arbitrary ring extension and S is any multiplicatively
closed subset of R. One need only interpret E ∩ T as j−1(E), where j : T → TS
is the canonical structure map.

(b) It is interesting to note that there are at least two other proofs of Corol-
lary 2.3 (d). Both depend on more material than the proof given above. These
alternate proofs use Corollary 2.3 (a) to reduce to the case of quasilocal R, with
T = R[α] for some α ∈ T . The first alternate proof then uses Corollary 2.2 (a)
and the proof of the (u, u−1) lemma (cf. [10, Theorem 67]) to obtain the conclu-
sion. The second alternate proof concludes via Zariski’s Main Theorem, noting
that each prime ideal Q of T is isolated in the fiber above Q ∩ R, since R ⊆ T

satisfies INC (as a consequence of Corollary 2.2 (a) and [5, Theorem, page 38]).
(c) There is another interesting result which illustrates the typically algebraic

flavor of extensions having FIP. Let R ⊆ T be rings. Then R[X] ⊆ T [X] has FIP
⇔ R[[X]] ⊆ T [[X]] has FIP ⇔ R = T . For a proof, observe (in the polynomial
case, with power series being treated similarly) that if R 6= T , then each positive
integer n gives rise to a ring Bn = R+RX + · · ·+RXn−1 +XnT [X] contained
between R[X] and T [X], with Bn1 6= Bn2 if n1 6= n2.
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Theorem 2.4 (a) identifies the only two contexts R ⊆ T for which FIP can
occur when T is a field.

Theorem 2.4. (a) If R ⊆ L has FIP and L is a field, then either R is a field or
L = qf(R).

(b) If R ⊆ T has FIP and T is an integral domain, then either R and T are
fields or T is an overring of R.

Proof. (a) Evidently, (a) is a consequence of (b). For the sake of completeness,
we include a self-contained proof of (a). Observe that R′ is not a field if R is
not a field (cf. [10, Theorem 48]). Accordingly, we may assume, without loss of
generality, that R = R′, that is, that R is integrally closed.

Suppose the assertion fails. Hence, we have proper inclusions R ⊂ K =
qf(R) ⊂ L. Pick α ∈ L. There is no loss of generality in replacing L with K(α).
Then, in fact, L = K[α] since Proposition 2.2 (a) yields that α is algebraic over
K. By applying clearing-of-denominators to an algebraicity equation of α, we
obtain b ∈ R \ {0} such that bα is integral over R. Since K[bα] = K(bα) =
K(α) = K[α] = L, we may suppose that α is integral over R. Then, since R is
integrally closed, n = [L : K] is the minimum degree for an integrality equation
of α over R (cf. [13, Theorem 4, page 260]).

Choose a nonzero nonunit r of R. For each positive integer k, consider

Bk = R+Rrkα+Rrkα2 + · · ·+Rrkαn−1.

It is clear that each Bk is an R-submodule of L which contains R. Moreover,
since α satisfies an integrality equation of degree n over R, one easily verifies that
each Bk is a ring. Now, as R ⊆ L has FIP, there exist positive integers i < j such
that Bi = Bj . In particular,

riα = b0 + b1r
jα+ b2r

jα2 + · · ·+ bn−1r
jαn−1

for some b0, b1, . . . , bn−1 ∈ R. Since {1, α, α2, . . . , αn−1} is linearly independent
over K, we may equate the coefficients of α and hence conclude that ri = b1r

j .
Because R is an integral domain, it follows that 1 = b1r

j−i, whence r is a unit of
R, the desired contradiction.

(b) Deny. Let K = qf(R) and L = qf(T ). Since R is not a field, it follows
via LO that the integral closure of R in T is also not a field. Hence, by Corollary
2.3 (d), we may assume that T is integral over R. Writing T = R[α1, . . . , αn] by
Proposition 2.2 (b) and considering the steps in the tower

R ⊆ R[α1] ⊆ R[α1, α2] ⊆ · · · ⊆ R[α1, . . . , αn],
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we may assume that n = 1; that is, T = R[α] for some α ∈ T . If M is a maximal
ideal of R, we may replace R ⊆ T by RM ⊆ TR\M = RM [α], and so, without loss
of generality, (R,M) is quasilocal. Consider a maximal chain of pairwise distinct
intermediate rings

R = R0 ⊂ · · · ⊂ Rm = T,

with Ki = qf(Ri). For some 1 ≤ i ≤ m, Ki−1 6= Ki and so, by passing to
Ri−1 ⊂ Ri, we may assume that R and T are adjacent. (In other words, R 6= T

and there are no rings properly between R and T . Note that T = R[β] for any
β ∈ T \R.)

An appeal to [11, Corollary 2, page 7] produces the desired contradiction.
Alternatively, we may argue as follows. Observe that MT 6= M , lest R and T

share a common nonzero ideal M (and thus have the same quotient field). By
LO, MT ∩R = M , and so R is properly contained in S = R+MT . By adjacency,
S = T . However, T is a finitely generated R-module, by Proposition 2.2 (c).
Hence, by Nakayama’s Lemma, T = R, the desired contradiction.

For the rest of this section, we focus on the second case in the dichotomy
described above. To rephrase that case, notice that if R is an integral domain
and L = qf(R), then R ⊆ L has FIP if and only if R has only finitely many
overrings. Lemma 2.5 prepares the way, while sharpening a point made in the
proof of Proposition 2.1 (a).

Lemma 2.5. (a) Suppose an integral domain R has only finitely many overrings.
Then R has only finitely many prime ideals, and so dim(R) <∞ and R is semi-
quasilocal.

(b) Let R be a valuation domain. Then the set of all overrings of R is finite if
and only if dim(R) <∞.

Proof. (a) If P,Q ∈ Spec(R) are such that RP = RQ, then P = PRP ∩ R =
QRQ ∩ R = Q, and so the assignment P 7→ RP gives an injection from Spec(R)
to the set of overrings of R. The assertions follow.

(b) Since R is a valuation domain, the assignment P 7→ RP gives a one-to-one
correspondence between Spec(R) and the set of overrings of R (cf. (a) and [10,
Theorem 65]). Since Spec(R) is linearly ordered by inclusion, the assertion is
immediate.

Recall from [12] that an integral domain R is called an i-domain if the canonical
map Spec(T ) → Spec(R) is an injection for each overring T of R; equivalently,
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if Spec(R′)→ Spec(R) is an injection and R′ is a Prüfer domain; equivalently, if
R′M is a valuation domain for each maximal ideal M of R.

Theorem 2.6. For an integral domain R, the following conditions are equivalent:
(1) R has only finitely many overrings;
(2) R is a semi-quasilocal i-domain of finite Krull dimension with only finitely

many integral overrings.
Moreover, if the above conditions hold, then R′ is a semi-quasilocal Prüfer

domain and R′ is a finitely generated R-module.

Proof. (1)⇒ (2): Let L = qf(R). Suppose that R ⊂ L has FIP. Fix a maximal
ideal M of R. Since RM ⊆ L inherits FIP from R ⊆ L, it follows from the
first assertion in Proposition 2.2 (a) that R′M is a valuation domain. (See [8,
Theorem 5] or [5, Corollary 5].) By the above remarks, RM is an i-domain. As
M is arbitrary, it follows that R is an i-domain, and so R′ is a Prüfer domain.
Moreover, Lemma 2.5 (a) ensures that dim(R), dim(R′) < ∞ and that R and
R′ are semi-quasilocal. Also, by applying Proposition 2.2 (c) to the extension
R ⊆ R′, we see that R′ is a finitely generated R-module.

(2)⇒ (1): Assume (2). As R ⊆ R′ has FIP, Proposition 2.2 (c) yields that R′

is a finitely generated R-module. It follows that if P ∈ Spec(R), then there exist
only finitely many Q ∈ Spec(R′) such that Q ∩ R = P . The hypotheses on R

now ensure that R′ is a finite-dimensional semi-quasilocal Prüfer, hence Bézout,
domain. Therefore, Spec(R′) is a finite set. Since R ⊆ R′ satisfies LO (cf. [10,
Theorem 44]), Spec(R) is also finite. Accordingly, by Corollary 2.3 (a), it suffices
to prove that if T is an overring of R, then there exists finitely many P1, . . . , Pn ∈
Spec(R) such that RS ⊆ T ⊆ R′S , where S = R \ (P1 ∪ · · · ∪ Pn).

Given T , note that T ′ is an overring of the Bézout domain R′, and so T ′ = R′Σ
for some multiplicatively closed set Σ of R′. As Σ may be assumed saturated with-
out loss of generality, Σ = R′ \ (Q1∪· · ·∪Qn) for some finite subset {Q1, . . . , Qn}
of Spec(R′). Put Pi = Qi ∩R and S = R \ (P1 ∪ · · · ∪ Pn).

As elements of T which are units in T ′ must be units of T (since T ⊆ T ′ satisfies
LO), an easy calculation reveals that TS = T . Hence RS ⊆ TS = T ⊆ T ′ = R′Σ.
It suffices to show that R′Σ = R′S . Observe that Spec(R′) → Spec(R) is an
injection (since R is an i-domain) and that R ⊆ R′ satisfies GU. Thus, by the
Prime Avoidance Lemma [10, Theorem 81], the maximal ideals of R′S are QiR′S ,
for i = 1, . . . , n. Therefore, by [7, Corollary 5.2], it follows that R′S = R′Σ.
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We pause to record the facts that an integral domain R satisfying the conditions
in Theorem 2.6 need not be quasilocal; and the phrase “with only finitely many
integral overrings” cannot be deleted from condition (2) in Theorem 2.6.

Remark. (a) If V and W are distinct one-dimensional valuation domains with the
same quotient field K, then R = V ∩W is a Bézout domain with exactly two
distinct maximal ideals, and so the only overrings of R are R, V,W, and K (cf.
[10, Theorem 107]). More generally, one shows similarly that if V1, . . . , Vn are
finitely many finite-dimensional valuation domains with the same quotient field,
then ∩Vi is a Bézout domain with only finitely many overrings.

(b) The phrase “with only finitely many integral overrings” cannot be deleted
from condition (2) in Theorem 2.6. In fact, there exists a quasilocal finite-
dimensional i-domain R such that R′ is a finitely generated R-module although
R has infinitely many overrings. For an example, consider R = k + XF [[X]],
where k ⊆ F is a finite-dimensional field extension which does not satisfy the
conclusion of the Primitive Element Theorem. In view of the lore of the classical
D + M -construction [7], one needs only to establish the infinitude of the set of
overrings. This, in turn, follows by examining the set {Ei+XF [[X]]}, where {Ei}
is the (infinite) set of fields contained between k and F . Notice, as might have
been predicted from Theorem 2.6, that each of the Ei + XF [[X]] is an integral
overring of R. Another way to verify all the assertions concerning R is to invoke
Corollary 2.7 below.

The conditions in Theorem 2.6 are interpreted in Corollary 2.7 for a class of
quasilocal integral domains. First, we recall some background about pseudo-
valuation domains (PVDs). As in [9], an integral domain R is called a PVD if R
has a (uniquely determined) valuation overring V such that Spec(R) = Spec(V )
as sets. Equivalently, by [1, Proposition 2.6], an integral domain R is a PVD if
and only if there is a pullback description R = V ×F k, where (V,M) is a valuation
domain, F = V/M , and k = R/M ; moreover, the data in such a description
are uniquely determined, with V = (M : M). It is well known that a pseudo-
valuation domain R (with the above pullback description) is an i-domain if and
only if F is an algebraic field extension of k. It is also evident that a PVD must
be quasilocal.

Corollary 2.7. Let (R,M) be a PVD, with canonical pullback description R =
V ×F k. Then the following conditions are equivalent:

(1) R has only finitely many overrings;
(2) R is an i-domain of finite Krull dimension and F = k[α] for some α ∈ F .
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Proof. By Theorem 2.6 and the above remarks, we may assume, without loss
of generality, that R is an i-domain of finite Krull dimension and, in particular,
that F is an algebraic field extension of k. Since R is a quasilocal i-domain,
R′ is a valuation domain, and so R′ = V [4, Remark 4.8 (a)]. Therefore, by
Theorem 2.6, R has only finitely many overrings if and only if R ⊆ V has FIP.
(The same conclusion can be reached without appealing to Theorem 2.6. Indeed,
as R is a PVD i-domain, it follows from [6, Theorem 1.31] that each overring of
R is comparable to R′ = V with respect to inclusion; and, since V is a finite-
dimensional valuation domain, Lemma 2.5 (b) gives that V has only finitely many
overrings.) Now, R ⊆ V has FIP if and only if R/M = k ⊆ V/M = F has FIP
because R = V ×F k. It remains only to show that k ⊆ F has FIP if and only if
F = k[α] for some α ∈ F . As F is an algebraic field extension of k, this, in turn,
follows from Proposition 2.2 (d) and the Primitive Element Theorem.

Observe that Corollary 2.7 may be viewed as a generalization of Lemma 2.5
(b). Proposition 2.8 (c) provides a generalization of Lemma 2.5 (b) in a different
direction. Also, it is interesting to note that in formulating condition (2) in Propo-
sition 2.7, the “missing link” is a field extension k ⊆ F of the kind characterized
in the classical Primitive Element Theorem.

In view of Corollary 2.3 (a), it is natural to ask whether “locally FIP” implies
FIP. The next result answers the general question in the negative, while giving a
positive answer for R ⊆ T in case R is a semi-quasilocal integrally closed integral
domain whose quotient field is contained in T .

Proposition 2.8. (a) There exists an extension R ⊆ T of integral domains which
does not have FIP although RP ⊆ TR\P has FIP for each P ∈ Spec(R).

(b) Let R be an integrally closed integral domain which is properly contained in
its quotient field K, and let L be a field extension of K. Then R ⊆ L has FIP if
and only if L = K and R is a semi-quasilocal finite-dimensional Prüfer domain.

(c) Let R be an integrally closed semi-quasilocal integral domain, with K =
qf(R). Then the following conditions are equivalent:

(1) R ⊆ K has FIP;
(2) R is a finite-dimensional Prüfer domain;
(3) RM ⊆ KR\M (=K) has FIP for each maximal ideal M of R.

Proof. (a) By Lemma 2.5, it suffices to take R to be any Dedekind domain with
infinitely many maximal ideals and T = qf(R).

(b) Combine Theorems 2.4 and 2.6.
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(c) Without loss of generality, R 6= K. Then (1) ⇔ (2) by (b), with L = K.
Moreover, (1) ⇒ (3) by Corollary 2.3 (a). Finally, assume (3). For each maxi-
mal ideal M of R, Theorem 2.6 shows that RM is a finite-dimensional valuation
domain, and so M has finite height in R. Since R is assumed semi-quasilocal,
dim(R) < ∞. Furthermore, since R is locally a valuation domain, R is a Prüfer
domain, yielding (2).

To close the section, we give an example which may be viewed as a companion
for the examples in Proposition 2.1. Proposition 2.9 also serves to motivate our
main result, Theorem 3.8.

Proposition 2.9. There exist ring extensions R ⊆ S and S ⊆ T which each have
FIP such that R ⊆ T does not have FIP. It can be arranged that R is an integral
domain and that T is an overring of R.

Proof. For any prime number p, let R = Fp(X,Y ), S = Fp(X1/p, Y ), and
T = Fp(X1/p, Y 1/p). Since R ⊆ S = R[X1/p] and S ⊆ T = S[Y 1/p] are finite-
dimensional field extensions, it follows from the Primitive Element Theorem that
R ⊆ S and S ⊆ T both have FIP. On the other hand, the Primitive Element
Theorem ensures that R ⊆ T does not have FIP, since [R[α] : R] ≤ p for each
α ∈ T and [T : R] = p2.

Let R,S and T be as above. If F = T denotes the largest of these fields, let
F + M be a valuation domain with maximal ideal M 6= 0. Put A = R + M ,
B = S +M , and C = T +M . Note that C is an overring of the integral domain
A. Moreover, the extensions A ⊆ B and B ⊆ C inherit FIP from R ⊆ S and
S ⊆ T , respectively, while A ⊆ C inherits the failure of FIP from B ⊆ C. Indeed,
it suffices to observe that if V ⊆W are subrings of F , then [3, Theorem 3.1] gives
a one-to-one correspondence between the set of (V +M)-subalgebras of W +M

and the set of V -subalgebras of W .

3. When The Base Ring is A Field

In many cases, ring extensions R ⊆ T which have FIP are such that T = R[α]
for some α ∈ T . This can be seen by revisiting a standard proof of the classical
Primitive Element Theorem. For the sake of completeness, we next record this
result.

Proposition 3.1. Let R ⊆ T have FIP. Suppose that R contains an infinite set
S of units of R such that u− v is a unit of R for every pair of distinct elements
u, v of S. Then T = R[α] for some α ∈ T .
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Proof. Without loss of generality, R 6= T . Reasoning as in the proof of Propo-
sition 2.2 (b), we find α ∈ T \R such that R[α] is maximal with respect to being
a singly-generated R-subalgebra of T . Without loss of generality, we may assume
that α 6∈ R. If the assertion fails, choose β ∈ T \R[α]. Consider C = {R[α+ γβ] :
γ ∈ S}. Since R ⊆ T has FIP, C is finite, and so it follows from the Pigeonhole
Principle that there exist distinct u, v ∈ S such that R[α+ uβ] = R[α+ vβ]. Let
A denote this ring. As (u− v)β = (α+ uβ)− (α+ vβ) ∈ A, we have that β ∈ A,
since u−v is a unit of A. Then, since uβ ∈ A, we also have that α ∈ A. It follows
from the maximality of R[α] that A = R[α]. Therefore, uβ = (α+uβ)−α ∈ R[α].
As u is a unit of R[α], we obtain β ∈ R[α], the desired contradiction.

The next result gives the most important application of Proposition 3.1.

Corollary 3.2. Let R ⊆ T have FIP. If R contains an infinite field, then T =
R[α] for some α ∈ T .

Next, to prepare for Theorem 3.8, we give several technical results which are
of some independent interest.

Proposition 3.3. (a) If R ⊆ T has FIP and I is an ideal of T , then R/(I∩R) ⊆
T/I has FIP.

(b) If {Ti} is a family of faithful R-algebras such that R ⊆ ΠTi has FIP, then
R ⊆ Tj has FIP for each index j.

Proof. (a) As R/(I ∩ R) ∼= (R + I)/I, each ring contained between R/(I ∩ R)
and T/I takes the form E/I, where E is a uniquely determined ring such that
R+ I ⊆ E ⊆ T . The assertion now follows because R+ I ⊆ T inherits FIP from
R ⊆ T .

(b) Apply (a), with I the kernel of the canonical projection map from ΠTi onto
Tj .

Part (b) of the next result includes a generalization of Proposition 2.2 (d).

Proposition 3.4. (a) Let R ⊆ T = R[{αi : i ∈ I}] be rings such that dim(R) =
0. Then T is integral over R if (and only if) each αi is a root of some polynomial
fi ∈ R[X] with a unit coefficient.

(b) If R ⊆ T has FIP and dim(R) = 0, then T is integral over R and, in fact,
T is a finitely generated R-module.

(c) Let R ⊆ T be rings such that R is finite. Then T is finite if and only if
R ⊆ T has FIP.
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(d) Let T be a ring. Then T is finite if and only if T has a finite subring R
such that R ⊆ T has FIP.

Proof. (a) For each maximal ideal M of R,

RM ⊆ TR\M = RM [{αi
1

: i ∈ I}],

where αi
1 is a root of the polynomial (with a unit coefficient) in RM [X] which

is induced by fi. Hence, we may assume without loss of generality that (R,M)
is quasilocal, and it suffices to show that for each i ∈ I, α = αi is integral over
R. By hypothesis, α is a root of a polynomial f = fi ∈ R[X] having a unit
coefficient. In fact, each coefficient of f is either a unit or a nilpotent element,
since M is the only prime ideal of R. The constant term of f cannot be the
only unit coefficient, lest it be a nilpotent unit. Rewrite the equation f(α) = 0
by gathering all the terms with unit coefficients on the left-hand side of the new
equation and all the terms with nilpotent coefficients on the right-hand side. (If
f has no nilpotent coefficients, then multiplying f by some unit of R produces an
integrality polynomial for α, and we are done.) By raising both sides of the new
equation to a sufficiently high exponent, we obtain an equation whose right-hand
side is 0 and whose left-hand side is therefore a unit multiple of an integrality
polynomial for α. This completes the proof.

(b) Combine (a) with Proposition 2.2 (a), (c).
(c) and (d): The “only if” assertions are clear. It suffices to prove the “if”

assertion of (c). Since finite rings are zero-dimensional, an application of (b)
shows that T is a finitely generated module over the finite ring R, and so T is
indeed finite.

Lemma 3.5. Let K be an infinite field, and let K ⊆ T be an extension such that
T is a reduced ring. Then K ⊆ T has FIP if and only if T = K[α] for some
α ∈ T such that α is algebraic over K.

Proof. The “only if” assertion follows by combining Corollary 3.2 and Propo-
sition 2.2 (a). Conversely, suppose that T = K[α], where α is algebraic over K.
Since T is a reduced Artinian ring, Wedderburn-Artin Theory (cf. [13, Theo-
rem 3, page 209]) expresses T uniquely as the internal direct product of finitely
many fields Lj ; that is, T = L1 × · · · × Ln. For each j = 1, . . . , n, the com-
position K ↪→ T → Lj allows us to view K ⊆ Lj . Now, consider an arbitrary
K-subalgebra A of T . Since A is also Artinian, A can be uniquely expressed as
the internal direct product of finitely many fields Ki; that is, A = K1×· · ·×Km.
As above, view K ⊆ Ki for each i = 1, . . . ,m. Since T = K[α] is generated as a
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K-algebra by one element that is integral over K, the same is true of each Lj , as
Lj is a homomorphic image of T . In particular, [Lj : K] < ∞ and K ⊆ Lj has
FIP, by the classical Primitive Element Theorem.

We next claim that for each i, there exists j such that Ki is K-isomorphic to a
K-subalgebra of Lj . Suppose that the claim has been established. For each j, let
{Fjk} be the set of K-subalgebras of Lj ; this set is finite because K ⊆ Lj has FIP.
Note that m is bounded above by dimK(T ) <∞. Therefore, to prove that K ⊆ T
has FIP, the claim reduces our task to showing that for each (j, k), T has only
finitely many K-subalgebras isomorphic to the field Fjk. Since [Fjk : K] <∞, Fjk
can be generated by finitely many elements as a K-algebra, say Fjk = K[{ajkp}],
where each ajkp ∈ Lj . For each (j, k, p) and each i, the minimum polynomial of
ajkp over K has at most finitely many roots in Li. Hence, for each (j, k), there
exist only finitely many K-algebra homomorphisms Fjk → T and, a fortiori, only
finitely many K-subalgebras of T which are isomorphic to Fjk.

To prove the claim, assume without loss of generality that i = 1. Consider
the inclusion map ι : A ↪→ T . Then I = ι(K1 × 0 × · · · × 0) is nonzero, as ι
is an injection. Thus there exists j such that πj(I) is nonzero, where πj is the
canonical projection map πj : L1 × · · · ×Ln → Lj . Hence there is a nonzero map
K1 ↪→ K1 × 0 × · · · × 0 ↪→ T = L1 × · · · × Ln → Lj . Since this map K1 → Lj
is a nonzero map of fields which preserves multiplication, it sends 1 ∈ K1 to
1 ∈ Lj ; as it also preserves addition, this map therefore must be an injection. It
is easy to check that this map is a K-algebra homomorphism, and so K1 is indeed
isomorphic to a K-subalgebra of Lj . This establishes the claim and completes
the proof.

Lemma 3.6. Let K be a field and K ⊆ T a ring extension.
(a) If K is infinite and K ⊆ T has FIP, then T does not contain any nilpotent

elements with (nilpotency) index greater than 3.
(b) Suppose that K is infinite and that T = K[α], where α is a nilpotent

element of T . Then K ⊆ T has FIP if and only if α3 = 0.
(c) If K is infinite and K ⊆ T has FIP, then T does not contain two nilpotent

elements of index 2 which are linearly independent over K.
(d) Suppose that T = K[β] = K[α] × F , where β is algebraic over K, α ∈ T

satisfies α3 = 0, and K ⊆ F is a field extension having FIP. Then K ⊆ T has
FIP.

(e) Suppose that T = K[β] = K[α] ×K × · · · ×K, where β is algebraic over
K, α ∈ T satisfies α3 = 0, and there are only finitely many factors of K. Then
K ⊆ T has FIP.
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Proof. (a) If the assertion fails, T contains a nilpotent element u of index n ≥ 4.
Then {1, u, u2, . . . , un−1} is a K-vector space basis of K[u]. It is straightforward
to check that if k ∈ K, then Bk = {a + bun−2 + kbun−1 : a, b ∈ K} is a K-
subalgebra of K[u]. Also, Bk1 6= Bk2 for k1 6= k2, since un−2+k1u

n−1 ∈ Bk1 \Bk2 .
Since K is infinite, {Bk : k ∈ K} is an infinite collection of intermediate rings
between K and T , contradicting that K ⊆ T has FIP.

(b) The “only if” assertion follows from (a). Conversely, suppose that T = K[α]
and α3 = 0. If α is nilpotent of index 3, a routine calculation shows that the
only ring strictly between K and T is K[α2]. (This conclusion also follows from
the fact that the set of such rings is linearly ordered by inclusion [6, Proposition
3.5].) On the other hand, if α has index 2, then there are no intermediate rings
strictly between K and T . In either case, it is evident that K ⊆ T has FIP.

(c) If not, then T contains nilpotent elements u and v of index 2 which are
linearly independent over K. We consider two cases. First, suppose that uv = 0.
One easily checks that {1, u, v} is a K-vector space basis of K[u, v]. Then, by
an argument similar to that in (a), it follows that, as k runs through K, Ck =
{a+ bu+ kbv : a, b ∈ K} describes an infinite family of rings, contradicting that
K ⊆ T has FIP. In the remaining case, uv 6= 0. Then {1, u, v, uv} is a K-vector
space basis of K[u, v]. Another routine calculation show that as k runs through K,
Dk = {a+bu+kbuv : a, b ∈ K} describes an infinite family of rings, contradicting
that K ⊆ T has FIP.

(d) Since β is algebraic over K, dimK(T ) <∞, and so the assertion is clear if
K is finite. Assume henceforth that K is infinite. By Lemma 3.5, we may also
suppose that α 6= 0. By the proof of (b), the only K-subalgebras of K[α] are
A1 = K, A2 = K[α2], and A3 = K[α]. (Obviously, if α2 = 0, then this list is
redundant.) For each i = 1, 2, 3, observe that Bi = {(a+ bα+ cα2, a) : a, b, c ∈ K
and a + bα + cα2 ∈ Ai} is a K-subalgebra of K[α] × F . Note that B1 = 4 =
{(a, a) : a ∈ K} ∼= K. Moreover, as Ej runs through the finitely many fields
between K and F , Ai × Ej is also a K-subalgebra of K[α] × F . We claim that
the Bi and the Ai × Ej are the only K-subalgebras of K[α]× F .

To address the claim, suppose that 4 ⊆ D ⊆ K[α]×F , for some ring D which
is not one of the Bi listed above. We first prove that D is not contained in any
Bi. Suppose, on the contrary, that D is properly contained in B3. As projection
on the first factor gives a K-algebra isomorphism B3 → A3, D is identified with
one of the proper K-subalgebras of A3, namely A1 or A2. Therefore, D coincides
with either B1 or B2, contrary to the choice of D.
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The choice of D now ensures that D must contain some element of the form
(a+bα+cα2, f), where a, b, c ∈ K and f 6= a. Then D contains [(a+bα+cα2, f)−
(a, a)]3 = (0, (f − a)3). For ease of notation, rename this element as (0, g). Of
course, g 6= 0. Since F is algebraic over K, we have gm + · · · + a1g + a0 = 0 for
some ai ∈ K such that a0 6= 0. As D contains (0, g), it also contains (0, g)m +
· · ·+a1(0, g) = (0, gm+ · · ·+a1g) = (0,−a0). However, −a0 is a nonzero element
of K, and so it follows that (0, 1) ∈ D. Then (1, 0) = (1, 1)−(0, 1) ∈ D, whence D
contains K×K and D = D(1, 0)+D(0, 1). Notice that first projection T → K[α]
induces a K-algebra isomorphism D(1, 0) → D1 = {u ∈ K[α] : (u, v) ∈ D for
some v ∈ F}. Similarly, by second projection, D(0, 1) is isomorphic to the K-
subalgebra D2 = {v ∈ F : (u, v) ∈ D for some u ∈ K[α]} of F . Since D1 = Ai
for some i and D2 = Ej for some j, we conclude D = D1 ×D2 = Ai × Ej . This
establishes the claim and shows that K ⊆ K[α]× F has FIP.

(e) As in the proof of (d), we may assume that K is infinite and that α 6= 0.
By (b), we may assume that at least one factor K appears in the description of T .
Induct on the number of such copies of K. The induction basis (i.e., K ⊆ K[α]×K
has FIP) was established in (d).

Let T = K[α] × K × · · · × K = K[α] × Kn−1, where there are n − 1 ≥ 2
copies of K. Our induction hypothesis is that K ⊆ S = K[α] ×Kn−2 has FIP.
Let A1, . . . , Am be the finitely many K-subalgebras of S. For each i = 1, . . . ,m
and j = 1, . . . , n − 1, observe that Bij = {(a1 + bα + cα2, a2, . . . , an−1, an) :
a1, b, c ∈ K, (a1 + bα + cα2, a2, . . . , an−1) ∈ Ai, and an = aj} is a K-subalgebra
of T . (Note that the Bij need not be pairwise distinct.) As Bij is isomorphic
to a K-subalgebra of Ai and K ⊆ Ai has FIP, each Bij has only finitely many
K-subalgebras. In addition, Ai×K is a K-subalgebra of T for each i = 1, . . . ,m.
It therefore suffices to show that the Ai × K and the K-subalgebras of the Bij
are the only K-subalgebras of T .

To this end, suppose that 4 = {(a, . . . , a) : a ∈ K} ⊆ D ⊆ T for some ring D
which is not contained in any of the Bij listed above. Hence, D must contain some
element of the form (a1 + bα + cα2, a2, . . . , an), where a1, b, c ∈ K and an 6= a1.
By subtracting (a1, . . . , a1) and cubing the difference, we have that D contains
an element of the form (0, b2, . . . , bn) such that bn 6= 0.

We claim that D contains an element of the form (0, 0, e3, . . . , en) such that
en 6= 0. We show this first in case bn = b2. ThenD contains u = (0, 1, b′3, . . . , b

′
n−1, 1).

Moreover, since D is not contained in any of the rings Bij , D must contain an ele-
ment of the form v = (a′1+b′α+c′α2, a′2, . . . , a

′
n), where a′1, b

′, c′ ∈ K and a′n 6= a′2.
Since K has at least three elements, we may add a suitable element of 4 to v if
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necessary in order to further assume that a′2 and a′n are each nonzero. By multi-
plying u and v, we produce an element in D of the form (0, c2, . . . , cn) such that
c2, cn 6= 0 and cn 6= c2. It follows that D contains an element w = (0, 1, d3, . . . , dn)
where dn 6= 0, 1. We now see that D contains w2 − w = (0, 0, e3, . . . , en), where
en = d2

n − dn 6= 0 since dn 6= 0, 1.
In the remaining case, bn 6= b2. If b2 = 0, then we are done, by taking

(0, 0, e3, . . . , en) = (0, b2, b3, . . . , bn). Hence, we may assume that b2 6= 0. Then
D contains an element of the form y = (0, 1, f3, . . . , fn) such that fn 6= 0, 1.
Consequently, D contains y2 − y = (0, 0, g3, . . . , gn) such that gn 6= 0. Thus, the
claim has been established for all cases.

Repeating the above process, we eventually see that (0, . . . , 0, 1) ∈ D. Hence,
D contains 0⊕ · · · ⊕ 0⊕K. As in the proof of (d), let D1 and D2 be the images
of D under the projection maps T → S and T → Kn = K, respectively. Of
course, D ⊆ D1 × D2; and D1 = Ai for some i and D2 = K. It suffices to
show that D1 × D2 ⊆ D. Consider δ1 ∈ D1 and δ2 ∈ D2. Now, (δ1, p) ∈ D for
some p ∈ K. Observe that (0, δ2), (0, p) ∈ 0 ⊕ K ⊆ D. Therefore, D contains
(δ1, p)− (0, p) = (δ1, 0), and so D contains (δ1, 0) + (0, δ2) = (δ1, δ2), to complete
the proof.

As usual, it is convenient to let L denote the algebraic closure of a field L.

Lemma 3.7. (a) Let K be a field, K ⊆ T a ring extension, and F a field ex-
tension of K. If B1 and B2 are K-subalgebras of T which are finite-dimensional
K-vector spaces such that F ⊗K B1 = F ⊗K B2 (when viewed canonically inside
F ⊗K T ), then B1 = B2. Consequently, if K ⊆ K ⊗K T has FIP, then K ⊆ T

has FIP.
(b) If a field extension K ⊆ L has FIP and K is a perfect field, then K ⊆

K ⊗K L has FIP.
(c) There exists a field extension K ⊆ L which has FIP although K ⊆ K⊗K L

does not have FIP.

Proof. (a) The final assertion follows since the assignment B 7→ F ⊗K B would
give an injection from the set of K-subalgebras of T to the set of F -subalgebras of
F ⊗K T . Now, F ⊗KB1 and F ⊗KB2 can be canonically viewed as K-subalgebras
of F ⊗K T since F is K-flat. Since F ⊗KB1 = F ⊗KB2, this common algebra also
coincides with F ⊗K B1B2, where B1B2 denotes the subring of T generated by
B1∪B2. It is enough to show that B1 = B1B2 (for then, similarly, we would have
that B2 = B1B2, whence B1 = B2, as asserted). Hence, without loss of generality,
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we may suppose that B1 ⊆ B2. By considering the inclusion map B1 ↪→ B2, we
may now conclude that B1 = B2, since F is a faithfully flat K-module.

(b) Since K ⊆ L has FIP, it follows from Proposition 2.2 (d) that [L : K] <∞.
Hence, since K is perfect, L is a separable field extension of K, and so by a
standard corollary of the classical Primitive Element Theorem, L = K(α) = K[α]
for some α ∈ L. In particular, L ∼= L[X]/(f) as K-algebras for some irreducible
polynomial f ∈ K[X]. By separability, f factors as Π(X − βi) for finitely many
pairwise distinct βi ∈ L = K. Then we have canonical K-algebra isomorphisms

K ⊗K L ∼= K ⊗K K[X]/(f) ∼= K[X]/(f) ∼= ΠK[X]/(X − βi) ∼= ΠK.

(The penultimate isomorphism is due to the Chinese Remainder Theorem.) An
application of Lemma 3.5 completes the proof.

(c) Consider any prime-power positive integer q ≥ 4. Put K = Fq(Xq) and
L = Fq(X). Since [L : K] < ∞ and L = K(X) = K[X], it follows from the
Primitive Element Theorem that K ⊆ L has FIP. However, as

K ⊆ K ⊗K L ∼= K ⊗K K[Y ]/(Y q −Xq) ∼= K[Y ]/(Y q −Xq)

= K[Y ]/(Y −X)q = K[Y −X]/(Y −X)q = K[Z]/(Zq),

Lemma 3.6 (b) ensures that K ⊆ K ⊗K L does not have FIP.

We now present the titular result.

Theorem 3.8. Let K be a field. For a ring extension K ⊆ T , consider the
following four conditions:

(1) K is finite and T is a finite-dimensional K-vector space;
(2) K is infinite, T is a reduced ring, and T = K[α] for some α ∈ T which is

algebraic over K;
(3) K is infinite and T = K[α] for some α ∈ T which satisfies α3 = 0;
(4) K is infinite and T = K[β] = K[α]×K2 × · · · ×Kn, where β is algebraic

over K, α ∈ T satisfies α3 = 0, and for each i = 1, . . . , n, K ⊆ Ki is a field
extension which has FIP.
Then:

(a) If K ⊆ T has FIP, then at least one of conditions (1), (2), (3), (4) holds.
(b) If at least one of conditions (1), (2), or (3) holds, then K ⊆ T has FIP.
(c) If K is a perfect field and condition (4) holds, then K ⊆ T has FIP.
(d) Assume further that K is a perfect field. Then K ⊆ T has FIP if and only

if at least one of conditions (1), (2), (3), (4) holds.
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Proof. (a) Assume that K ⊆ T has FIP. If K is finite, then Proposition 2.2
(d) yields condition (1). Thus, we may henceforth assume that K is an infinite
field. By Corollary 3.2 and Proposition 2.2 (d), T = K[β] for some β which is
algebraic over K. If T is reduced, Lemma 3.5 yields condition (2). Thus, we
may also assume that T is not reduced. By Wedderburn-Artin Theory, express
T uniquely as the internal direct product of finitely many Artinian local rings:
T = A1 × · · · ×An. As in the proof of Lemma 3.5, we may view K ⊆ Ai for each
i. Then, by Proposition 3.3 (b), K ⊆ Ai has FIP for each i.

If there exist distinct i, j such that Ai and Aj each fail to be reduced, one
obtains a contradiction via Lemma 3.6 (c). Therefore, at least n − 1 of the Ai
are reduced local Artinian K-algebras, hence field extensions of K. As T is not
reduced, we may assume that K[β] = T = A1 is an Artinian local K-algebra, in
which case, it remains only to prove that T = K[α] for some α ∈ T such that
α3 = 0.

Since T is a local zero-dimensional ring, β must be either a unit or a nilpotent.
If β is nilpotent, then it must have index 2 or 3 by Lemma 3.6 (a), and hence
condition (3) is satisfied. Thus, we may assume that β is a unit. Since T is not
reduced, Lemma 3.6 (a) allows us to choose a nilpotent element u of T having
index 2. Of course, βu 6= 0. Moreover, {βu, u} must be linearly dependent over
K, by Lemma 3.6 (c), and so βu = au for some a ∈ K. Then γ = β−a annihilates
u, and so γ is a nonunit of T . Since T is local and zero-dimensional, γ must
be a nilpotent element, whence γ3 = 0, by Lemma 3.6 (a). Then T = K[β] =
K[β − a] = K[γ], yielding condition (3), as desired.

(b) If condition (1) is satisfied, then T is finite and K ⊆ T trivially has FIP.
If condition (2) holds, apply Lemma 3.5; and if condition (3) is satisfied, invoke
Lemma 3.6 (b).

(c) By Lemma 3.7 (a), it suffices to show that K ⊆ K ⊗K T has FIP. Note
that K ⊗K T = K[1⊗ β] and that 1⊗ β is algebraic over K. Moreover,

K ⊗K T ∼= (K ⊗K K[α])×
n
∏

j=2

(K ⊗K Kj).

Now, by the above argument, K ⊗K K[α] = K[1 ⊗ α], and (1 ⊗ α)3 = 0. Also,
since K is perfect, we may reason as in the proof of Lemma 3.7 (b) to show that
for each j = 2, . . . , n, K⊗KKj is K-algebra isomorphic to the product of [Kj : K]
copies of K. In sum,

K ⊗K T = K[1⊗ β] ∼= K[1⊗ α]×Km
,
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where m =
∑n
j=2[Kj : K]. Hence, by Lemma 3.6 (e), K ⊆ K ⊗K T has FIP, as

desired.
(d) Combine (a), (b) and (c).

Remark. In condition (4) of Theorem 3.8, it is redundant to suppose that T takes
the form K[β] for some element β which is algebraic over K. For a proof, note first
that K[α] ∼= K[X]/(Xi) for some i = 1, 2, 3. Next, write Kj = K[γj ] = K(γj).
As K is infinite and nonzero polynomials have only finitely many roots in L, the
Pigeonhole Principle provides elements k2, . . . , kn ∈ K such that the minimum
polynomials of γ2 + k2, . . . , γn + kn over K are pairwise distinct and unequal
to X. Observe that Kj = K[γj + kj ] for each j. Let gj denote the minimum
polynomial of γj + kj over K. Since γj + kj 6= 0 without loss of generality,
gj 6= X. Put h = Xig2 · · · gn. By the Chinese Remainder Theorem, K[X]/(h) ∼=
K[X]/(Xi) × K[X]/(g2) × · · · × K[X]/(gn) ∼= K[α] × K[γ2] × · · · × K[γn] =
K[α]×K2 × · · · ×Kn = T . Therefore, the canonical image in T of the (h)-coset
represented by X is a satisfactory β.

As a complement to Corollary 2.7, we next address FIP in some cases where
the base ring is a PVD whose integral closure need not be finitely generated.

Corollary 3.9. (a) Let R ⊆ T be a ring extension such that M = (R : T ) is a
maximal ideal of R. Assume either that R/M is finite or T/M is a reduced ring.
Assume also that T = R[α] for some α ∈ T such that α is a root of a polynomial
in R[X] with a unit coefficient. Then R ⊆ T has FIP.

(b) Let k ⊆ F be an algebraic field extension. Let V = F +M be a nontrivial
valuation domain with maximal ideal M , and put R = k + M . Then R ⊆ R[α]
has FIP for each α ∈ F .

Proof. (a) It is evident that R ⊆ T has FIP if and only if R/M ⊆ T/M has
FIP. If R/M is finite, the assertion follows from Theorem 3.8 (b), since T/M is a
finite-dimensional vector space over R/M . If R/M is infinite and T/M is reduced,
the assertion also follows from Theorem 3.8 (b).

(b) Put T = k[α] +M . As k(α) +M = T = R[α] and T/M ∼= k(α) is reduced,
an application of (a) completes the proof.

Remark. (a) The example in Proposition 2.1 (a) shows that one cannot delete
the hypothesis that M = (R : T ) is a maximal ideal of R in Corollary 3.9 (a).
Indeed, with the notation in the proof of Proposition 2.1 (a), take T = L, so that
M = 0 and T/M = L is evidently reduced. Moreover, α = β−1 is a root of the
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polynomial βX − 1. As noted in Proposition 2.1 (a), R ⊆ T does not have FIP.
Of course, M is not a maximal ideal of R since R is not a field.

(b) We next record a result which, while outside the PVD context, retains
some of the flavor of Corollary 3.9 (b). Let R be a PID with infinitely many prime
ideals. By Theorem 2.6, R has infinitely many overrings; that is, R ⊆ K does not
have FIP, where K denotes the quotient field of R. However, R ⊆ R[ 1

a ] does have
FIP, for each nonzero nonunit a ∈ R. Indeed, consider rings R ⊆ T ⊆ R[ 1

a ]. Since
R is a Bézout domain, there exists a saturated multiplicatively closed subset S of
R such that T = RS . Also, since R is a UFD, S is generated by a set of prime
elements of R. In order to prove that there are only finitely many possible T , it
suffices to show that if p ∈ S is a prime element of R, then p divides a in R. We
can write 1/p = r/an for some r ∈ R, n ≥ 1. Since p divides an and p is a prime
element, the assertion follows.

We close with a modest contribution to the study of FIP for algebras over
non-perfect fields.

Proposition 3.10. Let K be a field of characteristic p = 2, 3. Let K ⊆ T be a
ring extension such that T = K[α] for some element α satisfying αp ∈ K. Then
K ⊆ T has FIP.

Proof. Since K and T are each K-flat, we can identify each of them with their
canonical images in K⊗K T . When this is done, α is identified with 1⊗α, and an
easy calculation reveals that K ⊗K T is then identified with K[α]. Accordingly,
by Lemma 3.7 (a), it suffices to prove that K ⊆ K[α] has FIP. In other words,
we may assume that K is algebraically closed. Hence, there exists b ∈ K such
that bp = αp. As char(K) = p, we have that (b − α)p = bp − αp = 0. Thus,
(b − α)3 = 0. Since K[b − α] = K[α] = T , an application of Lemma 3.6 (b)
completes the proof.

References

[1] D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Canad. J.

Math. 32 (1980), 362-384.

[2] E. Artin, Galois Theory, second ed., Notre Dame Mathematical Lectures, No. 2, Univ.

Notre Dame, 1955.

[3] E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form D + M ,

Mich. Math. J. 20 (1973), 79-95.

[4] D. E. Dobbs, Coherence, ascent of going-down and pseudo-valuation domains, Houston J.

Math. 4 (1978), 551-567.

[5] D. E. Dobbs, On INC-extensions and polynomials with unit content, Canad. Math. Bull.

23 (1980), 37-42.



THE PRIMITIVE ELEMENT THEOREM FOR COMMUTATIVE ALGEBRAS 623

[6] M. S. Gilbert, Extensions of commutative rings with linearly ordered intermediate rings,

Ph. D. dissertation, Univ. Tennessee, Knoxville, 1996.

[7] R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.

[8] R. Gilmer and J. F. Hoffmann, A characterization of Prüfer domains in terms of polyno-

mials, Pacific J. Math. 60 (1975), 81-85.

[9] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978),

137-147.

[10] I. Kaplansky, Commutative Rings, rev. ed., Univ. Chicago Press, Chicago, 1974.

[11] M. L. Modica, Maximal subrings, Ph. D. dissertation, Univ. Chicago, Chicago, 1975.

[12] I. J. Papick, Topologically defined classes of going down rings, Trans. Amer. Math. Soc.

219 (1976), 1-37.

[13] O. Zariski and P. Samuel, Commutative Algebra, vol. I, Van Nostrand, Princeton, 1958.

Received October 20, 1998

(D. D. Anderson) Department of Mathematics, University of Iowa, Iowa City, IA

52242-1419

E-mail address: dan-anderson@uiowa.edu

(D. E. Dobbs) Department of Mathematics, University of Tennessee, Knoxville, TN

37996-1300

E-mail address: dobbs@novell.math.utk.edu

(Bernadette Mullins) Department of Mathematics and Statistics, Youngstown State

University, Youngstown, OH 44555-3302

E-mail address: bmullins@math.ysu.edu


