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VOLUME FORMS IN FINSLER SPACES
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Abstract. This paper considers two possible volume forms on a Finsler

space and uses them to characterize Riemannian spaces and state a condition

which Berwald spaces must satisfy. The first form is Busemann’s previously

known volume form, and the second is the volume form arising from a Rie-

mannian metric canonically associated to the Finsler metric. The first form

always exceeds the second; they agree if and only if the Finsler manifold

actually is Riemannian. In a Berwald space, the “ratio” of the two forms is

a constant.

1. Main Results

Finsler manifolds are a natural class of metric spaces; they generalize Rie-
mannian spaces yet possess many similarities. For example, Finsler spaces possess
geodesics and an exponential map, and [Busemann] has exhibited a natural Finsler
volume form. After a preliminary exposition of these, this paper associates to any
Finsler manifold a canonical Riemannian metric.

Definition 1. Let (Mn, F ) be an n-dimensional Finsler manifold. In the co-
ordinate system (xi, Xj = ∂

∂xj ) for some neighborhood in M, let

Ix = {X ∈ TxM |F (X) ≤ 1}(1.1)

be the unit indicatrix in TxM. Define the symmetric, positive-definite, twice-
contravariant tensor

Kij(x) = (n+ 2)

∫

Ix
XiXjdX
∫

Ix
dX

.(1.2)

This tensor (or its inverse) is the osculating Riemannian metric for (Mn, F ).

In addition to Busemann’s form, this Riemannian metric gives another vol-
ume form and the comparison of the two yields an inequality which characterizes
Riemannian spaces as “extremal cases” of Finsler spaces.
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Theorem 1.1. Let (M,F ) be a Finsler manifold with osculating Riemannian
metric Kij and Busemann volume form ω(x)dx. Let k(x)dx be the volume form
arising from the metric Kij. Then ω(x) ≥ k(x), and ω(x) = k(x) if and only if
(M,F ) actually is Riemannian, with metric Kij.

Furthermore, the “ratio” of these two volume forms yields a scalar invariant
function V(x) for a Finsler manifold.

Definition 2. Let (M,F ) be a Finsler manifold with osculating Riemannian met-
ric Kij and Busemann volume form ω(x)dx. Let k(x)dx be the volume form
arising from the metric Kij . Define

V(x) =
k(x)
ω(x)

.

V(x) is clearly identically 1 only on a Riemannian space, and we show that, on
a Berwald space (that is, a Finsler space whose geodesic equations

ẍi = −Γijk(x)ẋj ẋk(1.3)

are formally identical to the Riemannian equations in that the Christoffel symbols
Γijk depend only on x), V(x) is a constant.

Theorem 1.2. Let (M,F ) be a Berwald manifold, with volume invariant V(x).
Then V(x) is constant.

The author obtained the results in this paper while writing his doctoral thesis
at the University of Toronto, where they also appear.

2. Preliminaries

We will use the following notation. M or Mn is a manifold of dimension n with
local co-ordinates xi around a point x. If X ∈ TxM , then X = Xi ∂

∂xi , where the
Xi are co-ordinates for the tangent bundle canonically induced from the xi for
the base manifold. F is a Finsler metric, i.e. a function F : TM −→ R where

1. F is positive-definite: F (x,X) ≥ 0, with equality iff X = ~0.
2. F is smooth except on the zero-section: F |TM\{(x,~0)|x∈M} is C∞.

3. F is strictly convex: at any (x,X), rank
[

∂2F
∂Xi∂Xj

]

= n− 1.
4. F is homogeneous: F (x, kX) = |k|F (x,X), for all k ∈ R.

Finsler metrics are a natural generalization of Riemannian metrics. A Finsler
space (Mn, F ) is Riemannian if and only if F has the form

F 2(x,X) = gij(x)XiXj ,
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where the coefficients gij are independent of the tangent vector X. When this
happens, every unit ball, or indicatrix Ix, at any point x,

Ix = {X ∈ TxM |F (X) ≤ 1},

is an ellipsoid.
Several commonly used Finsler quantities appear also in Riemannian space,

and generally have the same interpretation there, though most Finsler quantities
are functions of TM rather thanM. Some frequently used quantities and relations:

gij(x,X) :=
1
2
∂2F 2(x,X)
∂Xi∂Xj

F 2(Xi ∂

∂xi
) = gij(x,X)XiXj

gjkgij = δki

Γijk(x,X) :=
1
2
gir(x,X)

(

∂gjr
∂xk

(x,X)− ∂gjk
∂xr

(x,X) +
∂grk
∂xj

(x,X)
)

As in Riemannian spaces, define, for a Finsler manifold, the distance between
a pair of points to be the length of the shortest curve, or geodesic, joining them,
where a curve’s length is the integral of the “lengths” F (X(t)) of its tangent
vectors X(t). Let M be a differentiable manifold with a Finsler metric F . For
x ∈ M , let U ⊂ M be a co-ordinate chart with x ∈ U . Now define a function
ρx : U −→ R, where ρx(y) is the Finsler distance from y to x. Then ρx is
non-negative, 0 only at x, continuous at x, and smooth on U \ {x}.

We can also use F to define a nowhere-zero volume form [Busemann, §6]. To
see how, note that, as a metric space, (M,F ) has defined on it a natural Hausdorff
measure. Choose the volume form which generates the n-dimensional measure,
i.e. take, in the co-ordinate system (xi, Xi),

ω(x)dx =
(

κn
∫

I
dX

)

dx,

where κn is the volume of the unit sphere in Rn, and dx (resp. dX) abbreviates
dx1dx2 . . . dxn (resp. dX1dX2 . . . dXn). κn is chosen so that Busemann’s form
generalizes the Riemannian volume form.

Like a Riemannian manifold, a Finsler manifold also has an intrinsically de-
fined exponential map, which sends one-dimensional subspaces of a tangent space
isometrically onto geodesics. A geodesic in a Finsler manifold is a parametrized
path x(t) = (x1(t), x2(t), . . . xn(t)) which satisfies the differential equation

ẍi = −Γijk(x, ẋ)ẋj ẋk,(2.1)
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where a dot above the x indicates differentiation with respect to t. We note, in
contradistinction to the Riemannian case, that the Christoffel symbols Γijk are
functions on the tangent bundle rather than the manifold. This equation allows
us to write exp in local co-ordinates around a point p ∈M as

exp : TpM −→ M

xi(exp (X))) = Xi − 1
2

Γijk(X)XjXk +O(|X|3)

In a Riemannian space, exp is C∞ everywhere on TpM ; in a Finsler space, exp
is C∞ everywhere except the origin (p,~0), at which it is only C1 [Rund, Chap. 3,
§6].

One of the results of this paper involves a special class of spaces, Berwald
spaces, which contains Riemannian spaces and is contained in Finsler spaces.

Definition 3 (AIM, §3.1.2). Let (M,F ) be a Finsler manifold. Then (M,F ) is
a Berwald space if, for any x ∈M , and X ∈ TxM,

∂

∂X l
(Γijk)

∣

∣

∣

∣

(x,X)

= 0;

equivalently, we could say that the Christoffel symbols Γijk depend only on the
base-point x and not on the tangent vector X.

In a Berwald space, the equations of geodesics (2.1) simplify to

ẍi = −Γijk(x)ẋj ẋk,(2.2)

which is formally equivalent to the Riemannian case. This simple expression
ensures the smoothness of normal co-ordinates on a Berwald manifold. We obtain
normal co-ordinates in a Finsler space just as we do in a Riemannian space: at
a fixed point p ∈ M, we use the pull-back of the exponential map to move a
neighborhood of p ∈M to a neighborhood of ~0 ∈ TpM. The co-ordinates on TpM
are then used as normal co-ordinates for that neighborhood. In the Riemannian
case, we typically make a further adjustment so that

F 2(p,X) = XiXi.(2.3)

This normalization is not possible in a non-Riemannian Finsler space. Because
exp is only C1 at p, normal co-ordinates are also only C1 at p (but C∞ away
from p) in a general Finsler space. In a Berwald space, however, 2.2 guarantees
that both exp and normal co-ordinates are C∞ at p as well as away from it. This
added smoothness is essential in what follows.
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3. The Osculating Riemannian Metric

Riemannian spaces are the best-known and most thoroughly studied class of
Finsler spaces, so it makes sense to ask how the two are related. As a result of his
investigation of Laplacians on Finsler spaces, [Centore] arrived at a Riemannian
metric canonically associated to a Finsler metric.

Definition 4. Let (Mn, F ) be an n-dimensional Finsler manifold. In the co-
ordinate system (xi, Xj) , with

Ix = {X ∈ TxM |F (X) ≤ 1}(3.1)

the unit indicatrix in TxM, define the symmetric, positive-definite, twice-
contravariant tensor

Kij(x) = (n+ 2)

∫

Ix
XiXjdX
∫

Ix
dX

.(3.2)

This tensor (or its inverse) is the osculating Riemannian metric for (Mn, F ).

This Riemannian metric was known earlier [BCS], and its appearance in this
new context raised a natural question. We have two volume forms: Busemann’s
form, and, now, the volume form arising from the osculating Riemannian metric.
If we know only these two volume forms, can we say anything about the Finsler
space? The following theorem contains the answer (the “equality if and only if”
part of this theorem was also known to [BL]).

Theorem 3.1. Let B ⊂ Rn = {(X1, X2, . . . , Xn)|Xi ∈ Rn} be a bounded, open,

measurable set. Let Kij := (n+ 2)
R

BX
iXjdX

R

B dX
. We know that the components

Kij are the inverse components of that ellipsoid E which is the unit ball of the
Euclidean metric F 2(X) = KjkX

jXk, where KijKjk = δik. Then
∫

B
dX ≤

∫

E
dX,

with equality if and only if
B = E .

To see the significance of this result, think of B as a unit indicatrix Ix of some
Finsler metric F. Saying B is an ellipsoid E is saying that F is Riemannian at
the point x. If Ix is an ellipsoid at every point x, then in fact the Finsler metric
is Riemannian. The proof is a pointwise proof, that is, it uses solely the Finsler
function restricted to the tangent space (which is isomorphic to Rn) at one point,
and takes no account of neighboring points or even infinitesimal changes in the
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metric. The only data needed for the proof is the unit Finsler ball B at a particular
point, and we don’t need either B’s convexity or its symmetry, two hallmarks of
a Finsler metric.

Proof. Choose co-ordinates so that Kij = δij , i.e

(n+ 2)

∫

BX
iXjdX

∫

B dX
= δij .(3.3)

The ellipsoid arising from these co-ordinates is just the unit sphere

E = {(X1, X2, . . . , Xn) ∈ Rn|Σ(Xi)
2

= 1},

and if we can obtain the result in this case, then we can obtain the result for any
ellipsoid E simply by an appropriate linear transformation.

We first prove “equality if and only if,” i.e. that
∫

B dX =
∫

E
dX implies B = E.

Let (r, θ1, θ2, . . . , θn−1) be the usual spherical co-ordinates. Then
∫

B
r2dX =

∫

B
Σ(Xi)

2
dX

=
n

n+ 2

∫

B
dX (using (3.3))

=
n

n+ 2

∫

E

dX (by hypothesis)

=
∫

E

r2dX(because E is the unit sphere)

∴
∫

B
r2dX =

∫

E

r2dX.(3.4)

We need only this equation and the hypothesis
∫

B
dX =

∫

E

dX(3.5)

for the proof of the equality case.
Now consider that

B ∪ (E\B) = E ∪ (B\E);

∴
∫

B
h(X)dX +

∫

E\B
h(X)dX =

∫

E

h(X)dX +
∫

B\E
h(X)dX

for any function h : Rn −→ R. In particular, for the two cases h(X) = r2 and
h(X) = 1, expressions (3.4) and (3.5) allow us to cancel the first integral on each
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side:
∫

E\B
r2dX, =

∫

B\E
r2dX,(3.6)

∫

E\B
dX =

∫

B\E
dX.(3.7)

Note, however, that r2 ≤ 1 inside E and thus on E\B, while r2 ≥ 1 outside E
and thus on B\E, i.e.

r2|B\E ≥ r2|E\B.(3.8)

(3.7) says that E\B and B\E have the same volume, yet (3.6) says that the
positive function r2, which is bigger on B\E than on E\B by (3.8), has the same
integral over these two regions. This is possible only if E\B and B\E are empty,
i.e.

E = B.

To prove the inequality, again use the function r2 in the set identity

B ∪ E\B = E ∪ B\E :
∫

B
r2dX +

∫

E\B
r2dX =

∫

E

r2dX +
∫

B\E
r2dX.(3.9)

As before,

r2 ≥ 1 on B\E =⇒
∫

B\E
r2dX ≥

∫

B\E
dX,(3.10)

r2 ≤ 1 on E\B =⇒
∫

E\B
r2dX ≤

∫

E\B
dX,(3.11)

and
∫

E

r2dX =
n

n+ 2

∫

E

dX.

Use the hypothesis (n+ 2)
R

B
XiXjdX
R

B
dX

= δij to get
∫

B
r2dX =

n

n+ 2

∫

B
dX(3.12)

Substitute (3.10)-(3.12) into (3.9):

n

(n+ 2)

∫

B
dX +

∫

E\B
dX ≥ n

(n+ 2)

∫

E

dX +
∫

B\E
dX.
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Use the set identities

B = (E ∪ B)\(E\B)

E = (E ∪ B)\(B\E)

on the first term on each side:

n

(n+ 2)

(

∫

E∪B
dX −

∫

E\B
dX

)

+
∫

E\B
dX

≥ n

(n+ 2)

(

∫

E∪B
dX −

∫

B\E
dX

)

+
∫

B\E
dX.

Cancel the term n
(n+2)

∫

E∪B dx, and divide by 2
(n+2) to get

∫

E\B
dX ≥

∫

B\E
dX

∫

E∩B
dX +

∫

E\B
dX ≥

∫

E∩B
dX +

∫

B\E
dX

∫

E

dX ≥
∫

B
dX .(3.13)

This theorem characterizes Riemannian spaces as a subset of Finsler spaces
solely in terms of volume functions. Typically we characterize Riemannian spaces
as Finsler spaces whose Cartan tensor

Cijk(x,X) :=
1
4

∂3F 2

∂Xi∂Xj∂Xk
(x,X)

vanishes. The Cartan tensor is a third-order tensor, whose components are func-
tions of a manifold’s 2n-dimensional tangent bundle. The osculating Riemannian
volume form is a zero-order tensor density, whose components are functions of the
n-dimensional manifold. Thus the volume form criterion is simpler, and should
be easier to apply in many circumstances. In technical terms, we state

Theorem 3.2. Let (M,F ) be a Finsler manifold with osculating Riemannian
metric Kij and Busemann volume form ω(x)dx. Let k(x)dx be the volume form
arising from the metric Kij. Then ω(x) ≥ k(x), and ω(x) = k(x) if and only if
(M,F ) actually is Riemannian, with metric Kij.
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Proof. If B(x) is the Finsler unit ball at a point x, then the coefficient of Buse-
mann’s volume form is

ω(x) =
κn
∫

B dX
.

The coefficient of the volume form from the osculating Riemannian metric, on
the other hand, is

k(x) =
κn
∫

E dX
.

where E is the unit ball of the osculating Riemannian metric at x. By Theorem
1, we always have

∫

B
dX ≤

∫

E
dX.

Therefore k(x) ≤ ω(x), with equality exactly when B = E , i.e. when (M,F ) is
the Riemannian space (M,Kij).

4. The Volume Invariant V(x)

Theorem 2 suggests the definition of a new quantity, an invariant volume func-
tion reminiscent of the one defined by Bao & Shen [BS]. Given two volume forms
as above, we can always consider their “ratio,” that is, the (sole) component of
the first form in some co-ordinate system, divided by the (sole) component of the
second form in that co-ordinate system. The result is clearly a scalar invariant.

Definition 5. Let (M,F ) be a Finsler manifold with osculating Riemannian met-
ric Kij and Busemann volume form ω(x)dx. Let k(x)dx be the volume form
arising from the metric Kij . Define

V(x) =
k(x)
ω(x)

,(4.1)

or, substituting in expressions for k and ω:

= κn(n+ 2)n
(∫

I

dX

)n+1

det
[ ∫

I

XiXjdX

]

.(4.2)

Because k(x) ≤ ω(x), and both k(x) and ω(x) are always positive, we have

0 < V(x) ≤ 1(4.3)

for any x ∈ M. Furthermore, by Theorem 2,V(x) ≡ 1 if and only if the Finsler
manifold is actually Riemannian. Already we see a difference between V(x) and
Bao & Shen’s invariant Vol(x) : on a Riemannian space Vol(x) ≡ κn−1 [BS, §1],
but, as they remark in their second-last paragraph, some non-Riemannian spaces
also take on the value κn−1 identically. (The disagreement of the numbers 1 and
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κn−1 is not important here, because this could be remedied by a scaling factor;
the important point is that the volume functions are constant over M.)

Apart from working out the derivative of Vol(x), Bao & Shen also prove the
important result that Vol(x) is constant (with a constant value not generally κn−1)
on any Landsberg space. We will prove the similar result that V(x) is constant
on any Berwald space. Bao & Shen’s method involved the Chern connection on
points of the unit indicatrix. Our method will be radically different. We will
use the fact that normal co-ordinates on a Berwald manifold are C∞, instead of
just C1 as on a general Finsler manifold. We start by proving Finsler versions
of the First-Variation Formula and the Gauss Lemma, then prove the essential
fact that the derivatives of a Berwald metric vanish in normal co-ordinates, and
finally prove V(x) is constant.

4.1. First-Variation Formula. . Let Σ : (−ε, ε)× [a, b]→ (Mn, F ) be a smooth
variation. Let s ∈ (−ε, ε), t ∈ [a, b]. In co-ordinates xi, (s, t) 7→ Σ(s, t) = xi(s, t),
for all i = 1..n. Define

T := dΣ
(

∂

∂t

)

; T i :=
∂xi

∂t

V := dΣ
(

∂

∂s

)

; V i :=
∂xi

∂s

We require that F (T ) = cs (a constant depending on s but not on t). Let

L(s) := length of the s−curve in the variation Σ

=
∫ b

a

F (T )dt

=
∫ b

a

F (ẋi(s, t))dt

With the above definitions and conditions, we have the Finsler First-Variation
Formula:

∂L(s)
∂s

∣

∣

∣

∣

s=0

=
1
c0

(

〈V, T 〉T |ba −
∫ b

a

〈

V,

(

∂T j

∂t
+ Γjkl(T )T kT l

)

∂

∂xj

〉

T

dt

)

Gauss Lemma. Let Σ be a variation as above, but now insist in addition that
σs(t) = Σ(s, t) is a geodesic for every s, and L(s) = c for any s (i.e. every geodesic
in the variation has the same length). Also require that V (s, a) = 0 for every s,
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so that all the geodesics originate from the same point Σ(0, 0). Thus Σ sweeps
out a curve on the sphere of radius c around Σ(0, 0). Then

〈V (s, b), T (s, b)〉T (s,b) = 0

for any s.
Results like the two above, whose proofs we omit, have appeared elsewhere in

various formulations; see for example [Shen, Lemma 2.4], [AP, §1.5], or [BC, §3].

Lemma 4.1. Let (M,F ) be a Finsler manifold with a normal co-ordinate system
x̄i around a point p. In this co-ordinate system, away from p, for any radial
tangent vector X̄ = X̄k ∂

∂x̄k
, where X̄k = ak, we have

X̄(F 2
r (x̄, X̄)) =

∂F 2

∂x̄r
(x̄, X̄),

where F 2
r = ∂F 2

∂X̄r
.

Proof. Because we are working away from p, normal co-ordinates are smooth,
so we can take derivatives and define Christoffel symbols without any trouble.
The geodesic equations for a path x̄(t) are

¨̄xi + Γijk( ˙̄x) ˙̄xj ˙̄xk = 0,

or, if X̄i = ˙̄xi,
¨̄xi + Γijk(X̄)X̄jX̄k = 0.

In normal co-ordinates, the paths

x̄(t) = t(a0, a1, . . . an)

are geodesics for any set of constants ai. Along these geodesics, ¨̄xi = 0, so

Γijk(X̄)X̄jX̄k = 0.

Expand:

1
2
ḡir
(

∂ḡjr
∂x̄k

+
∂ḡkr
∂x̄j

− ∂ḡjk
∂x̄r

)

X̄jX̄k = 0

1
2
ḡir
(

2
∂ḡjr
∂x̄k

X̄jX̄k − ∂ḡjk
∂x̄r

X̄jX̄k

)

= 0.

Since ḡir is invertible,

2
∂ḡjr
∂x̄k

X̄jX̄k =
∂ḡjk
∂x̄r

X̄jX̄k.
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Since ḡjr(X̄)X̄j = 1
2F

2
r by the homogeneity of F 2 on each tangent space, we have

∂

∂x̄k

(

∂F 2

∂X̄r

)

X̄k =
∂

∂x̄r
(ḡjkX̄jX̄k)

X̄(F 2
r ) =

∂

∂x̄r
(F 2(X̄)).(4.1.1)

Lemma 4.2. Let (M,F ) be a Finsler manifold with a normal co-ordinate system
x̄i around a point p. In these co-ordinates, if T̄ ∈ TpM , and x is a point on the
geodesic generated by T̄ , then

ḡij(p, T̄ )T̄ i = ḡij(x̄, T̄ )T̄ i.

Proof. Let ρ : M −→ R be the distance function from p. In normal co-ordinates,
then,

F 2(p; y1, y2, . . . , yn) = ρ2(y1, y2, . . . , yn),

for any set yi. Let X̃ ∈ TT̄TpM be a vertical vector such that X̃ = V̄ i ∂
∂yi . Then

X̃ is tangent to the indicatrix at T̄ if and only if

dF 2(X̃) = 0(4.1.2)

(consider F 2 as solely a function of the tangent vectors yi, i.e. restrict F to TpM).
Then, because F 2 and ρ2 are written with respect to the same co-ordinates,

dρ2(V̄ ) = 0.(4.1.3)

Now X̃ is tangent to the indicatrix at T if and only if

ḡij(p, T̄ )T̄ iV j = 0.(4.1.4)

Furthermore, because normal co-ordinates give a geodesic variation about p, the
Gauss Lemma tells us that

ḡij(x̄, T̄ )T̄ iV̄ j = 0.(4.1.5)

Statements (4.1.2)—(4.1.5) are equivalent, so in particular

ḡij(p, T̄ )T̄ iV̄ j = ḡij(x̄, T̄ )T̄ iV j .

(ḡij(p, T̄ )T̄ i)V̄ j = (ḡij(x̄, T̄ )T̄ i)V j .
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The vectors V̄ j for which both sides are 0 form an (n − 1)-dimensional vector
space, so the “vectors” ḡij(p, T̄ )T̄ i and ḡij(x̄, T̄ )T̄ i are determined and equal up
to a multiplicative constant k(x):

ḡij(p, T̄ )T̄ i = k(x)ḡij(x̄, T̄ )T̄ i.

Since, however, F 2(p, T̄ ) = F 2(x̄, T̄ ) (because T̄ is the tangent to a geodesic
parametrized by arclength), and since

F 2(T̄ ) = ḡij(T̄ )T̄ iT̄ j ,

the multiplicative constant k(x) must be identically 1. ∴

ḡij(p, T̄ )T̄ j = ḡij(x̄, T̄ )T̄ j .

The discussion so far has involved only a general Finsler manifold, and has always
worked away from p. The final step specializes only to Berwald manifolds, and
explicitly uses their extra differentiability for normal co-ordinates at p.

Theorem 4.3. Let (M,F ) be a Berwald manifold with a normal co-ordinate sys-
tem x̄i around a point p. In this co-ordinate system, for every T̄ ∈ TpM ,

∂F 2

∂x̄i
(p, T̄ ) = 0.

Proof. Since normal co-ordinates on the tangent bundle of a Berwald manifold
are at least C1 everywhere, it follows that

lim
x→p

∂F 2

∂x̄i
(x̄, T̄ )

exists, and

lim
x→p

∂F 2

∂x̄i
(x̄, T̄ ) =

∂F 2

∂x̄i
(p, T̄ ).

Furthermore, we can evaluate the limit along any path leading to p. Choose as a
path the geodesic in the direction T̄ (this will allow us to use Lemma 2). From
Lemma 1,

lim
x→p

∂F 2

∂x̄i
(x̄, T̄ ) = lim

x→p
T̄ (F 2

i (x̄, T̄ ))

= lim
x→p

T̄

(

∂2F 2

∂X̄i∂X̄j
(x̄, T̄ )T̄ j

)

= lim
x→p

T̄ (2ḡij(x̄, T̄ )T̄ j).
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Lemma 2 says that the argument of T̄ in the line above is constant along the
geodesic generated by T̄ , so

lim
x→p

∂F 2

∂x̄i
(x̄, T̄ ) = 0.(4.1.6)

Corollary 4.4. Recall the volume form component ω = κnR

Ix
dX

on a Berwald

manifold(M,F ). In normal co-ordinates x̄i around p,
∂

∂x̄i
κn

∫

Ip
dX

∣

∣

p
= 0(4.1.7)

for any i = 1, 2, . . . , n.

Proof. Examine the expression κnR

Ip
dX

, where we recall that

Ip = {X ∈ TpM |F 2(p,X) ≤ 1}.

This is the only place in the expression that the metric function F appears, so
the derivative of κnR

Ip
dX

will involve only integrals with integrands containing ∂F 2

∂x̄i .

Since all these terms vanish, the expression (4.1.7) must vanish.

Corollary 4.5. Recall that Kjk = (n+ 2)
R

Ix
XjXkdX
R

Ix
dX

is the expression for the

osculating Riemannian metric to a Berwald manifold (M,F ). In normal co-
ordinates x̄i around p,

∂

∂x̄i
(Kjk)

∣

∣

p
= 0

for any i = 1, 2, . . . , n.

The foregoing two corollaries are the only machinery we need to reach the final
result.

Theorem 4.6. Let (M,F ) be a Berwald manifold, with volume invariant V(x).
Then V(x) is constant, i.e. dV(x) = 0 everywhere.

Proof. Recall that

V(x) =
k(x)
ω(x)

,(4.1.8)

where k(x) is the (coefficient in some co-ordinate system of the) volume form of
the osculating Riemannian metric, and ω(x) is (the coefficient in the same co-
ordinate system of) Busemann’s volume form.

Choose for a co-ordinate system normal co-ordinates x̄i around a point p ∈M.
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By Corollary 1, any first derivative of ω(x) vanishes at p in these co-ordinates,
i.e.

d̄(ω(x))|p = 0;(4.1.9)

where d̄ is the exterior derivative in normal co-ordinates of the function ω(x),
where ω(x)dx is Busemann’s volume form in normal co-ordinates.

By Corollary 2, any first derivative of Kjk|x vanishes at p in normal co-
ordinates, where Kjk is the osculating Riemannian metric to (M,F ). The Kjk

generate a volume form, given in co-ordinates by

k(x)dx =
√

det[Kkl(x)]dx,(4.1.10)

where KklK
jk = δjl . Since

d̄(Kjk(x))|p = 0,(4.1.11)

we have

d̄(k(x))|p = 0,(4.1.12)

in normal co-ordinates.
Now consider d̄V(x). By the quotient rule,

d̄V(x)|p =
d̄k(x)|pω(p)− d̄ω(x)|pk(p)

ω2(p)
(4.1.13)

=
0− 0
ω2(p)

= 0.

(4.1.14)

Unlike k(x) and ω(x), which are not really functions but rather components of
volume forms, V(x) genuinely is a scalar function, so d̄V(x) is genuinely its exterior
derivative. Since d̄V(x) vanishes in one co-ordinates system at p, it must vanish
in any co-ordinate system at p, so

dV(x)|p = 0.

Since p was chosen arbitrarily, we could work through the above steps for any
p ∈M, and thus get

dV(x) = 0

everywhere.
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