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ON EXPANDING ENDOMORPHISMS OF THE CIRCLE II
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Abstract. In this paper we give sufficient conditions for weak isomorphism

of Lebesgue measure-preserving expanding endomorphisms of S1.

1. Introduction

In [2] the first author gave necessary and sufficient conditions for two real an-
alytic Lebesgue measure-preserving expanding endomorphisms of the circle to be
isomorphic upto a phase factor. This was a partial answer to the problem of
finding complete measure theoretic invariants for isomorphisms posed by Shub
and Sullivan in [5]. In this paper it is shown that the condition given in [2] is
sufficient for weak-isomorphism.

For i = 1, 2 let fi be endomorphisms of the Lebesgue spaces (Xi,Bi, µi). We
say that the two systems (X1,B1, µ1, f1) and (X2,B2, µ2, f2) are isomorphic if
there are sets of measure zero A1 ⊂ X1, A2 ⊂ X2 and a one-to-one onto map
φ : X1 \ A1 → X2 \ A2 such that φf1 = f2φ on X1 \ A1 and µ1(φ−1E) = µ2(E)
for all measurable E ⊂ X2 \A2. The classification problem in ergodic theory is to
determine when two given endomorphisms are isomorphic. As usual in measure
theory, we do not distinguish between functions which coincide almost every-
where.

Let 1 ≤ r ≤ ω and f : S1 → S1 be a Cr Lebesgue measure-preserving endomor-
phism. Then if Df denotes the derivative of f we say that f is expanding if there
exists λ ∈ R such that |Df(z)| > λ > 1 for all z ∈ S1.

Countable-to-one positively measurable non-singular maps have Jacobian deriva-
tives (see [3,4,6] for details) which we denote by |D|. For C1 Lebesgue measure-
preserving endomorphisms the Jacobian derivative is simply the absolute value of
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the derivative of the endomorphism. We say that the Jacobian derivatives |Df |
and |Dg| are isomorphic if there is a Lebesgue measure-preserving automorphism
φ of S1 such that |Df | = |Dg|φ. If φ is a Lebesgue measure-preserving automor-
phism of S1 then |Dφ| = 1. Therefore, if φ is an isomorphism between f and g, we
have by the chain rule that |Df | = |Dg|φ and so the Jacobians will be isomorphic.
When our endomorphisms are real analytic and expanding, the following theorem
of Shub and Sullivan shows that this invariant is nearly complete.

Theorem 1 (cf. [5] ). Let f and g be real analytic expanding endomorphisms of
S1 which preserve Lebesgue measure. Suppose that the Jacobian derivatives of
f and g are isomorphic; then there are isometries R1 and R2 of S1 such that
R−1

1 gR1 = R2f.

2. The phase group

In [2] the first author introduced a certain group that can be associated with
a continuous surjection f : S1 → S1. More precisely, for such an f , let

Gf = {α ∈ S1 : ∃ β ∈ S1 such that f(αz) = βf(z) ∀z ∈ S1};
then Gf is a group, where the multiplication of group elements is given by

normal multiplication of complex numbers. We call Gf a phase group; Gf is never
empty since 1 ∈ Gf and as Gf is a closed subgroup of S1 it is either all of S1 or
the pth roots of unity for some integer p ≥ 1.

Examples were given of real analytic expanding Lebesgue measure-preserving en-
domorphisms of the circle with degree d whose phase group has order m for any
integers d ≥ 2 and m ≥ 1. The following two lemmas were also proved:

Lemma 1 (cf. [2] ). If f : S1 → S1 is a continuous surjection with degree d then
f(z) = czd for some constant c ∈ S1 if and only if Gf = S1.

Lemma 2 (cf. [2] ). Suppose that f : S1 → S1 is a continuous surjection with
degree d; then if α ∈ Gf , we have that f(αz) = αdf(z) for all z ∈ S1.

Let fn denote the n-fold composition of f. The main result of [2] was to give
complete measure theoretic invariants for f and αg to be isomorphic, where (in
the non-trivial case) α is an element of the finite group Gg :

Theorem 2 (cf. [2] ). Let f, g be real analytic Lebesgue measure-preserving ex-
panding endomorphisms of S1 with the same degree. Then there exists an α ∈ Gg
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such that f is isomorphic αg, if and only if there exists a Lebesgue measure-
preserving automorphism φofS1 such that |Df |(z) = |Dg|(φ(z)) and |Df2|(z) =
|Dg2|(φ(z)).

In [5] it was shown that this isomorphism is an isometry. We say that f and g
are weakly isomorphic if there exists n ∈ N such that fn and gn are isomorphic.
In this paper we show that the condition of Theorem 2 is sufficient for weak-
isomorphism:

Theorem 3. Let f, g be real analytic Lebesgue measure-preserving expanding en-
domorphisms of S1 with the same degree. If there exists a Lebesgue measure-
preserving automorphism φ, of S1 such that |Df |(z) = |Dg|(φ(z)) and |Df2|(z) =
|Dg2|(φ(z)) then f and g are weakly isomorphic.

To investigate examples of endomorphisms that satisfy the hypothesis of The-
orem 3, but are not isomorphic, one needs to look at functional equations formed
by m-fold covers of the restriction to the circle of certain Blaschke products. This
will be contained in a forthcoming paper.

3. Some Number Theory

The proof of Theorem 3 relies on a sequence of mostly number theoretic lem-
mas. In what follows, unless otherwise stated, we let m and d be positive integers
where m > 1 and d > 2. We denote the greatest common divisor of two integers,
a and b by (a, b). Let (m, d− 1) = e.

Lemma 3. There exist integers x ≥ 1 and k ≥ 0 such that ekx ≡ 0(modm),
where (x, d− 1) = 1.

Proof. If (m, d − 1) = 1, set k = 0 and m = x. Otherwise let m = ex1 and
consider (x1, d−1). If (x1, d−1) = 1, set k = 1 and x1 = x. Otherwise (x1, d−1) =
e1 and let x1 = e1x2. Repeating the above, since m is finite, the process eventually
terminates in k steps.
Then (xk, d − 1) = 1 and m = ee1e2 . . . ek−1xk. Now since for 1 ≤ i ≤ k − 1,
m ≡ 0(mod ei), d − 1 ≡ 0(mod ei) and (m, d − 1) = e we have e ≡ 0(mod ei).
Hence ek ≡ 0 (mod ee1 . . . ek−1) where xk−1 = x.

Lemma 4. If (x, d− 1) = 1, then for any integer l ≥ 1, there exists an integer s
such that (s(d− 1) + l) ≡ 0(modx).

Proof. Since (x, d−1) = 1, we can find integers u and v with ux+ v(d−1) = 1.
Multiplying through by l we have lux+lv(d−1) = l. Hence −lv(d−1)+l ≡ 0(mod
x) and we can set s = −lv.
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We will need the following well known result:

Lemma 5. Let n ≥ 2 and 1 ≤ r < n then 1Cr +2 Cr + . . .+n−1 Cr = nCr+1.

Since (m, d−1) = e, there exists an integer y with d = ey+1. We next consider
the sum 1 + d + d2 + . . . + dn with d = ey + 1 and n = ek − 1 for some integer
k ≥ 1.

Lemma 6. In the expansion of 1 + (ey + 1) + (ey + 1)2 + . . .+ (ey + 1)e
k−1, for

1 ≤ r < k, the coefficient of (ey)r is ekCr+1.

Proof. 1 + (ey + 1) + (ey + 1)2 + . . .+ (ey + 1)e
k−1

=

1 +
1
∑

r=0

1Cr(ey)r +
2
∑

r=0

2Cr(ey)r + . . .+
ek−1
∑

r=0

ek−1Cr(ey)r.

Thus the coefficient of (ey)r is 1Cr +2 Cr + . . . +ek−1 Cr which by Lemma 5 is
equal to ekCr+1.

Lemma 7 ( cf.[1] ). Let r + 1 be a positive integer and p be a prime, then the
exponent of the highest power of p that divides (r + 1)! is

∞
∑

i=1

[

r + 1
pi

]

where the series is finite since
[

r+1
pi

]

= 0 for pir+1. (here [ ] is the usual greatest
integer function).

Proposition 1. Given m > 1 and d > 2 are positive integers there exists integers
s and n ≥ 0 such that for any l with 1 ≤ l < m, (s(d− 1) + l)(1 + d+ . . .+ dn) ≡
0(modm).

Proof. From Lemma 3 we can find integers x ≥ 1 and k ≥ 0 such that ekx ≡
0(mod m) where (x, d − 1) = 1. Then from Lemma l ≥ 1 we can find an integer
s such that (s(d− 1) + l) ≡ 0(mod x).
Again setting d = ey+ 1 and n = ek− 1 we want to show that 1 + (ey+ 1) + . . .+
(ey + 1)e

k−1 ≡ 0(modek). Firstly we note that the constant term in the above
sum is ek and (ey)rek) for r ≥ k. By Lemma 6, for 1 ≤ r < k, the coefficient
of (ey)r in the sum is ekCr+1. It then remains to show that for 1 ≤ r < k,
ekCr+1(ey)r ≡ 0(mod ek).
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Let p ≥ 2 be a prime with e ≡ 0(mod p), (r + 1) ≡ 0(mod p) and let λ be the
exponent of the highest power of p th Then

λ < (r + 1)
(

1
p

+
1
p2

+ . . .

)

and hence λ < r+1
p−1 . Since p ≥ 2 we then have λ ≤ r. Now

ekCr+1 =
(

ek(ek − 1) . . . (ek − r)
(r + 1)!

)

,

so it follows that er(ek−1) . . . (ek−r) ≡ 0(mod (r+1)!) and hence e
k

Cr+1(ey)r ≡
0(mod ek).
So finally we have found integers s and n ≥ 0 such that for any 1 ≤ l < m

(s(d− 1) + l)(1 + d+ d2 + . . .+ dn) ≡ 0(mod ekx) where ekx ≡ 0(mod m).

4. Proof of Theorem 3

If the degree of f and g is 2 then Corollary 2.4 of [2] gives that the invariant
is in fact a complete invariant for isomorphism. Hence, for the remainder of the
proof, we will assume that the degree is strictly greater than 2.
Let the degree of f and g be d. Let the order of Gf be m. As the Jacobians
are isomorphic, we have that the order of Gg = m (c.f. Proposition 2 of [2]).
From Theorem 2, there exists 1 ≤ l ≤ m such that f is isomorphic to αlg where
α = e

2πi
m . If l = m then f is isomorphic to g and the theorem is proved. Thus we

can assume 1 ≤ l < m.

Let s and n be the integers given by Proposition 1. That is
(s(d− 1) + l)(1 + d+ . . .+ dn) ≡ 0(mod m).
From Theorem 1 there exists an isometry R1(z) such that fR1(z) = R1α

lg(z).
Now let R2(z) = αsz and let R(z) = R1R2(z). Then we have, by repeated use of
Lemma 2 that
fn+1R(z) = fn+1R1R2(z) = fn+1R1(αsz)
= fn+1αskR1(z) = αskd

n+1
fn+1R1(z)

(where k = 1 if R1 is orientation preserving and k = −1 if R1 is orientation
reversing)
= αskd

n+1
αlk(1+d+...+dn)R1g

n+1 = αskd
n+1+lk(1+d+...+dn)α−skRgn+1

= αsk(dn+1−1)+lk(1+d+...+dn)Rgn+1 = αk(s(d−1)+l)(1+d+...+dn)Rgn+1

= Rgn+1.

Thus the theorem is proved.
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