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FINITISTIC SPACES AND DIMENSION

YASUNAO HATTORI

Communicated by Jun-iti Nagata

Abstract. We shall consider two dimension-like properties on finitistic spaces.

We shall prove that there is a universal space for the class of metrizable fini-

tistic spaces of given weight. This answers [10, Question 2] affirmatively. We

shall also prove that a Pasynkov’s type of factorization theorem for finitistic

spaces.

1. Introduction

The concept of finitistic spaces was introduced by Swan [19] for working in
fixed point theory and is applied to the theory of transformation groups by using
the cohomological structures (cf. [1]).

Let U be a family of a space X. By the order of U we mean the largest number
n such that U contains n members with non-empty intersection. The order of U
is denoted by ordU . We say a family U has finite order if ordU = n for some
natural number n.

Definition 1. [19] A space X is said to be finitistic if every open cover of X has
an open refinement with finite order.

By the definition, it is clear that all compact spaces and all finite dimensional
(in the sense of the covering dimension dim) paracompact spaces are finitistic
spaces. More precisely, we have the following characterization.
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Proposition 1.1. [7], [10] A paracompact space X is finitistic if and only if there
is a compact subspace K of X such that dimF <∞ for every closed subspace F
with F ∩K = ∅.

In the dimension theoretic points of view, some properties of finitistic spaces
are investigated by several authors ([4], [5], [6], [7] and [10]). We shall further
dimension theoretic properties of finitistic spaces.

Let C be a class of topological spaces. We say a topological space X is a
universal space for the class C if X ∈ C and every Y ∈ C is homeomorphic
to a subspace of X. In [10], the author asked whether if there is a universal
space for the class of metrizable finitistic spaces of given weight. We shall answer
the question affirmatively in section 2. The following Pasynkov’s factorization
theorem is also fundamental in dimension theory: For every continuous mapping
f : X → Y of a normal space X to a metrizable space Y there is a metrizable space
Z and continuous mappings g : X → Z and h : Z → Y such that dimZ ≤ dimX,
w(Z) ≤ w(Y ), g(X) = Z and f = hg, where w(Y ) and w(Y ) denote the weight
of Y and Z respectively. In section 3, we shall prove a factorization theorem for
finitistic spaces.

For a metric space (X, ρ), a subset A of X and ε > 0 we denote Sε(A) = {x ∈
X : ρ(x,A) < ε}. We refer the reader to [9] and [13] for basic results in dimension
theory.

2. A universal space theorem

In this section, we shall prove a universal theorem for finitistic spaces.

Theorem 2.1. Let τ be an infinite cardinal number. Then there is a metric
finitistic space L(τ) of weight τ such that for every metrizable finitistic space X
of weight ≤ τ is embedded in L(τ).

Proof. It is trivial that the Hilbert cube Iω is the universal space for the class of
separable metrizable finitistic spaces. Hence, we assume that τ > ω. Let A be a
set of the cardinality τ and fix a∗ ∈ A. Let J(τ) = (I×A)/{(0, a) : a ∈ A} be the
hedgehog space of weight τ and J∗(τ) = {(x, a) : x ∈ I and a ∈ A−{a∗}} ⊂ J(τ).
We denote the point {(0, a) : a ∈ A} of J(τ) by 0. Let M(τ) = {((xi, ai))∞i=1 :
(x1, a1) ∈ J∗(τ) and (xi, ai) ∈ J(τ) for every i ≥ 2 } be the subspace of J(τ)ω,
where J(τ)ω is the countable product of J(τ). For each n we put

Mn(τ) = {((xi, ai))∞i=1 ∈M(τ) : non-zero rational xi’s are at most n}.
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Then Mn(τ) is a universal space for the class of n-dimensional metrizable spaces
of weight ≤ τ . Let

I(τ) = {((xi, ai))∞i=1 ∈ J(τ)ω : a1 = a∗ and xi = 0 for every i ≥ 2 }.

For each k, we shall define a subspace Yk of (J(τ)ω)ω. Let 0 = (0,0, . . . ) ∈ J(τ)ω,

Y1 = M1(τ)×M2(τ)× {0} × {0} × · · · ,
and for each k ≥ 2,

Yk =
k−2
∏

i=1

Ii(τ)×Mk−1(τ)×Mk(τ)×Mk+1(τ)× {0} × {0} × · · · ,

where Ii(τ) is a copy of I(τ) for each i ≤ k − 2. We put

L(τ) =
∞
∏

i=1

Ii(τ) ∪
∞
⋃

k=1

Yk,

where Ii(τ) is a copy of I(τ) for each i.
We shall show that the space L(τ) is desired.

It is clear that L(τ) is a metric space of weight τ . We shall show that L(τ)
is finitistic. It should be noticed that

∏∞
i=1 Ii(τ) is homeomorphic to the Hilbert

cube. Let U be an open set of L(τ) which contains
∏∞
i=1 Ii(τ) and U ′ be the open

set of (J(τ)ω)ω such that U ′ ∩ L(τ) = U . By the Wallace Theorem ([8, Theorem
3.2.10]), there are a natural number k0 and a positive number ε such that

∞
∏

i=1

Ii(τ) ⊂
k0
∏

i=1

Sε(Ii(τ))× J(τ)ω × J(τ)ω × · · · ⊂ U ′.

We put W =
∏k0
i=1 Sε(Ii(τ)) × J(τ)ω × J(τ)ω × · · · . Then for each k ≥ k0 + 2,

we have Yk ⊂ W . Hence we have Yk ⊂ W ∩ L(τ) ⊂ U ′ ∩ L(τ) = U . Therefore,
L(τ)\U ⊂

⋃k0+1
i=1 Yk . Since each Yk is finite dimensional, it follows that L(τ)\U

is finite dimensional. Therefore, L(τ) is finitistic by Proposition 1.1.
To show the universality of L(τ), let X be a metrizable finitistic space of

weight ≤ τ . By Proposition 1.1, there is a compact subspace K of X such that
dimF <∞ for every closed subspace F with F ∩K = ∅. For each n ≥ 1, we put

U1 = X \ S 1
2
(K), and Un = S 1

n−1
(K) \ S 1

n+1
(K).

Then we have X \ K =
⋃∞
n=1 Un and dimUn < ∞ for each n. Without loss of

generality, we may assume that dimUn ≤ n for each n. It is also noticed that
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Un ∩ Um = ∅ whenever |n−m| > 1. Since K is compact, it follows that there is
a countable family {(Fn, Gn) : n = 1, 2, 3, . . . } of pairs of subsets of X such that

(2.1) Fn is closed in X, Gn is open in X and Fn ⊂ Gn,

(2.2) for each x ∈ K and a closed set F of X with x /∈ F there is n such that
x ∈ Fn ⊂ Gn ⊂ X \ F , and

(2.3) Gn ⊂ S 1
n+2

(K) for each n.

It follows from (2.3) that Gn ∩ Un = ∅. For each n there is a continuos mapping
fn : X → I(τ) such that fn(Fn) ⊂ {((1, a∗),0,0, . . . )} and fn(X \ Gn) ⊂ {0}.
Since Mn(τ) is a universal space for the class of n-dimensional metrizable spaces of
weight ≤ τ , it follows from [9, Remark 4.2.12] that there is a continuous mapping
gn : X → Mn(τ) such that the restriction gn|Un is a homeomorphic embedding
and gn(X \ Un) ⊂ {0}. Now, we define hn : X → I(τ) ∪Mn(τ)(⊂ J(τ)ω) as
follows:

hn(x) =
{

fn(x), if x ∈ X \ Un,
gn(x), if x ∈ X \Gn.

Then hn is well-defined and continuous. Let h : X →
∞
∏

n=1

(In(τ) ∪Mn(τ)) be

the diagonal product of {hn : n = 1, 2, . . . }, where In(τ) = I(τ) for each n. It
suffices to show that h is a homeomorphic embedding and h(X) ⊂ L(τ). To
show that h is an embedding, we shall show that the family {hn : n = 1, 2, . . . }
separates points from closed sets (cf. [8, Theorem 2.3.20]). Let x ∈ X and F be
a closed set of X with x /∈ F . First we suppose that x ∈ K. By (2.2), there is
n such that x ∈ Fn ⊂ Gn ⊂ X \ F . Then hn(x) = fn(x) = ((1, a∗),0,0, . . . ).
Since Gn ∩ F = ∅, it follows that hn(F ) = gn(F ) ⊂ Mn(τ). It is clear that
((1, a∗),0,0, . . . ) /∈ Mn(τ). Hence hn(x) /∈ hn(F ). Next, we suppose that x /∈ K.
Let n be a natural number such that x ∈ Un. By the construction of gn (cf. [9,
Remark 4.2.22]), gn(x) 6= 0. Since gn|Un is an embedding, gn(x) /∈ gn(F ∩ Un).
Therefore, it follows that gn(x) /∈ gn(F ), because gn(F ) ⊂ gn(F ∩ Un) ∪ {0}.
Since Gn ∩ Un = ∅, it follows that x /∈ Gn and this implies that hn(x) = gn(x).

Since gn(x) ∈Mn(τ)\{0}, it follows that gn(x) /∈ I(τ). Hence hn(x) = gn(x) /∈
gn(F ) ∪ I(τ) ⊃ gn(F ) ∪ fn(F ) ⊃ hn(F ). This implies that h is a homeomorphic
embedding.

Finally, we shall show that h(X) ⊂ L(τ). Let x ∈ K. Then x /∈ Un for
each n. Hence for each n hn(x) = fn(x) ∈ I(τ). Therefore, we have h(x) ∈
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∏∞
n=1 In(τ) ⊂ L(τ). Let x ∈ X \K. There is n0 such that x ∈ Un0 . If n ≥ n0 +2,

then x /∈ Un ∪ Gn. Hence hn(x) = gn(x) = 0. If n ≤ n0 − 2, then x /∈ Un.
Hence hn(x) = fn(x) ∈ I(τ). If n0 − 1 ≤ n ≤ n0 + 1, then Gn ⊂ S 1

n+2
(K) ⊂

S 1
n0+1

(K) by (2.3). Furthermore, Un0 ∩ S 1
n0+1

(K) = ∅. Hence x /∈ Gn and hence

hn(x) = gn(x) ∈Mn(τ). Therefore, h(x) ∈
∏n0−2
n=1 In(τ)×Mn0−1(τ)×Mn0(τ)×

Mn0+1(τ)× {0} × {0} × · · · ⊂ Yn0 ⊂ L(τ).

Let Kn(τ) be the Nagata’s universal space for the class of n-dimensional
metrizable spaces of weight ≤ τ . For a space X and a metric space Y we de-
note by C(X,Y ) the space of all continuous mappings of X to Y endowed with
the uniform convergence topology. Pol [17] proved that for an n-dimensional
metrizable space X, {h ∈ C(X, J(τ)ω) : h : X → Kn(τ) is an embedding}
is dense in C(X, J(τ)ω). Since L(τ) is not dense in (J(τ)ω)ω, it is clear that
{h ∈ C(X,L(τ)) : h is an embedding} is not dense in C(X, (J(τ)ω)ω). However,
we can ask the following.

Question 1. Let X be a metrizable finitistic space of weight ≤ τ . Is {h ∈
C(X,L(τ)) : h is an embedding} dense in C(X,L(τ))?

In [16], Pol also proved that if X is a separable metrizable space, then X is
finitistic if and only if

{h ∈ C(X, Iω) : h is an embedding and h(X) \ h(X) is countable-dimensional}

is residual in C(X, Iω). By a similar argument to [16, Theorem 4.1] using [18,
Proposition 4.3], it is easy to see that for a paracompact finitistic space X

{f ∈ C(X, Iω) : f(X) \ f(X) is countable-dimensional} is residual in C(X, Iω).
However, we do not know the converse holds. That is, we can ask the following.

Question 2. Let X be a metrizable (or paracompact) space such that {f ∈
C(X, Iω) : f(X) \ f(X) is countable-dimensional} is residual in C(X, Iω). Is X
finitistic?

3. A factorization theorem

In this section, we shall prove a Pasynkov’s type of factorization theorem for
finitistic spaces. For a family U of subsets of a space X and a subset A, we denote
U = {U : U ∈ U} and St(A,U) =

⋃

{U ∈ U : U ∩ A 6= ∅}. Further, for coverings
U and V of a space X let U ∧ V = {U ∩ V : U ∈ U and V ∈ V}.
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Lemma 3.1. Let X be a normal finitistic space. Then there is a compact sub-
space K of X such that dimF <∞ for every closed set F with F ∩K = ∅.

Proof. We notice that the lemma is announced in [10] without the proof. We
put
Pn = {x ∈ X : there is an open neighborhood U of x such that dimU ≤ n}.

Put K = X \
∞
⋃

n=1

Pn. Suppose that K is not compact. Since K is weakly para-

compact, K is not countably compact. Hence, there is a discrete closed sub-
set {xn : n = 1, 2, . . . } of K. Since X is normal, there is a discrete family
{Uk : k = 1, 2, . . . } of open sets in X such that xk ∈ Uk. Then dimUk = ∞ for
each k. For each k, there is an open family Uk of X such that (∪Uk)∩ (∪Um) = ∅,
Uk covers Uk and there is no open refinement of Uk|Uk of order ≤ k. It is easy to

see that U =
∞
⋃

k=1

Uk ∪ {X \
∞
⋃

k=1

Uk} is an open covering of X which does not have

an open refinement of finite order. This is a contradiction.
Next, let F be a closed subset of X which does not meet K. By the point

finite sum theorem for dim ([9, Theorem 3.1.13] or [9, Theorem 3.1.14]), it suffices
to show that F ⊂ Pn for some n. Suppose on the contrary. Then we may have
a sequence {nk : k = 1, 2, . . . } of natural numbers and a sequence {xk : k =
1, 2, . . . } in F such that xk+1 ∈ Pnk+1 \ Pnk . Let x0 be an accumulation point
of {xk : k = 1, 2, . . . }. Since F is closed in X, x0 ∈ F . Hence there is n0 such
that x0 ∈ Pn0 . Let U0 be an open neighborhood of x0 such that dimU0 ≤ n0.
Then there is k such that nk > n0 and xk ∈ U0. By the definition of Pn’s, it
follows that xk ∈ Pn0 . This contradicts the choice of xk. Hence the sequence
{xk : k = 1, 2, . . . } is discrete in X. As similar to the above argument, we can
show that there is an open covering U of X which has no open refinement of finite
order. This is a contradiction.

If every normal finitistic space is paracompact, then the lemma immediately
follows from the proposition in the introduction. Unfortunately, there is a normal
finitistic space which is not subparacompact ([3, Example 1.6]). Now, we describe
the factorization theorem for finitistic spaces.

Theorem 3.2. Let X be a normal space, Y a metrizable space and f : X → Y

a continuous mapping. If X is a finitistic space, then there is a metrizable space
Z and continuous mappings g : X → Z and h : Z → Y such that Z is a finitistic
space, w(Z) ≤ w(Y ), g(X) = Z and f = hg
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Proof. By Lemma 3.1, there is a compact subspace K ofX such that dimF <∞
for every closed set F of X with F ∩K = ∅. Let {Ui}∞i=0 be a sequence of locally
finite open coverings of Y such that U0 = {Y } and for each i ≥ 1,

(3.1) mesh Ui < 1/i,

(3.2) Ui+1 is a star refinement of Ui.

Then for each i ≥ 1 we have

(3.3) St(f(K),Ui+1) ⊂ St(f(K),Ui).

For each k we put Fk = X \ f−1(St(f(K),Uk)). We need the following lemma.

Lemma 3.3. There are a sequence {Vi}∞i=0 of locally finite cozero set coverings
of X and a sequence {mi}∞i=1 of natural numbers such that V0 = {X}, and for
each i ≥ 1,

(3.4) mi =
∑i
j=1(dimFj+1 + 1),

(3.5) Vi is a star refinement of Vi−1 ∧ f−1(Ui−1),

(3.6) ord(Vi|Fk) ≤ mk for each k ≤ i, and

(3.7) {f−1(U) : U ∈ Ui and U ∩ f(K) 6= ∅} ⊂ Vi.

Proof. Since dimF2 < ∞, there is a locally finite cozero set covering G1 of F2

such that ordG1 ≤ dimF2 + 1. We put

V1 = {G \ f−1
(

St(f(K),U2)
)

: G ∈ G1} ∪ {f−1(U) : U ∈ U1 and U ∩ f(K) 6= ∅}.

Then V1 satisfies the above conditions.
Suppose that Vk is defined for each k ≤ i. Let H be a locally finite cozero

set covering of X such that H is a star refinement of Vi ∧ f−1(Ui+1), where
f−1(Ui+1) = {f−1(U) : U ∈ Ui+1}. For each k ≤ i + 1 there is a locally finite
cozero set covering Gk of Fk+1 such that Gk is a refinement of H|Fk+1 and ordGk ≤
dimFk+1 + 1. For each k ≤ i + 1 and each G ∈ Gk we put G∗ = G \ (Fk−1 ∪
f−1

(

St(f(K),Uk+1)
)

, and

Vi+1 =
i+1
⋃

k=1

{G∗ : G ∈ Gk} ∪ {f−1(U) : U ∈ Ui+1 and U ∩ f(K) 6= ∅}.
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It is easy to see that Vi+1 is a locally finite cozero set covering of X. We shall show
that Vi+1 satisfies the conditions (3.5) - (3.7). By the construction, it is clear that
Vi+1 satisfies (3.7). We shall show Vi+1 satisfies (3.5). For each G ∈

⋃i+1
k=1 Gk,

there is Vi ∈ Vi and UG ∈ Ui+1 such that St(G,H) ⊂ Vi ∩ f−1(UG).

Case 1. We suppose that G∗ ∩ f−1(St(f(K),Ui+1) = ∅. Then St(G∗,Vi+1) ⊂
St(G,H) ⊂ Vi ∩ f−1(UG) ⊂ Vi ∩ f−1(Ui) for some Ui ∈ Ui.
Case 2. We suppose that G∗ ∩ f−1(St(f(K),Ui+1) 6= ∅. There is U ′G ∈ Ui+1

such that G∗ ∩ f−1(U ′G) 6= ∅ and U ′G ∩ f(K) 6= ∅. Since Gk is a refinement
of H and H is a star refinement of f−1(Ui+1), there is U i+1

G ∈ Ui+1 such that
St(G∗,H) ⊂ f−1(U i+1

G ). By (3.2), there is Ui ∈ Ui such that St(U i+1
G ,Ui+1) ⊂ Ui.

Then

St(G∗,Vi+1) ⊂ St(G∗,H) ∪ St(G∗, f−1(Ui+1))

⊂ f−1(U i+1
G ) ∪ St(f−1(U i+1

G ), f−1(Ui+1))

= St(f−1(U i+1
G ), f−1(Ui+1))

⊂ f−1(Ui).

On the other hand, Ui ∩ f(K) ⊃ St(U i+1
G ,Ui+1) ∩ f(K) ⊃ UG ∩ f(K) 6= ∅.

Hence f−1(Ui) ∈ Vi ∩ f−1(Ui) and hence f−1(Ui) ∈ Vi ∧ f−1(Ui).

On the other hand, by (3.2), it is clear that for each U ∈ Ui+1 with U∩f(K) 6= ∅
we have St(f−1(U),Vi+1) ⊂ St(f−1(U), f−1(Ui+1)) ⊂ f−1(Ui) for some Ui ∈ Ui.
Therefore Vi+1 is a star refinement of Vi ∧ f−1(Ui) and hence the condition (3.5)
is satisfied.

We shall show (3.6). Let k ≤ i + 1. For each j with k + 1 ≤ j ≤ i + 1 and
each G ∈ Gj we have G∗ ∩ Fk = ∅. By the definition of Fi+1, it follows that
f−1(St(f(K),Ui+1) ∩ Fk ⊂ f−1(St(f(K),Ui+1) ∩ Fi+1 = ∅. Hence,

ordVi+1|Fk =
k
∑

j=1

ord{G∗ : G ∈ Gj} ≤
k
∑

j=1

(dimFj+1 + 1) = mk.

This completes the proof of Lemma 3.3.

We continue the proof of Theorem 3.2. Let {Vi}∞i=1 be a sequence of locally fi-
nite cozero set coverings of X described in Lemma 3.3. Without loss of generality,
we may assume that |Vi| ≤ w(Y ) for each i. To construct the space Z and contin-
uous mappings g and h, we modify the proof of Pasynkov’s factorization theorem
([14], [15]) presented in [9, Theorem 4.2.5] which is obtained by amalgamating
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the proofs due to [2] and [11]. We outline the construction for the convenience of
the reader.

First, we introduce a new topology on X, which is coarser than the original
one, by defining an interior operator as follows: For a subset S of X let

S◦ = {x ∈ X : there is i such that St(x,Vi) ⊂ S}.
Let X ′ be the topological space with this new topology on the set X. For each i

we put V◦i = {V ◦ : V ∈ Vi}. Then it is easy to see that V◦i is an open covering of
X ′ and V◦i+1 is a star refinement of V◦i . It follows from (3.5) that f is continuous
with respect to X ′. For x, y ∈ X ′ we define an equivalence relation as follows:
x ∼ y if and only if y ∈ St(x,Vi) for each i. Let Z = X ′/ ∼ and g : X → Z be
the composition of the identity and the natural quotient map q : X ′ → Z. We
define a mapping h : Z → Y as h(g(x)) = f(x) for each x ∈ X. It follows that h
is well-defined and continuous. As shown in the proof of [9, Theorem 4.2.5], Z is
a metrizable space of weight ≤ w(Y ). It is noticed that {Wi}∞i=1 is a development
for Z, where Wi = {g(V ◦) : V ∈ Vi}.

Finally, we shall show that Z is a finitistic space. It suffices to see that F
is finite dimensional for each closed set F of Z which does not meet g(K). We
suppose that f(g−1(F )) ∩ f(K) 6= ∅. Let y0 ∈ f(g−1(F )) ∩ f(K) and x0 ∈ K

such that f(x0) = y0. For each k there is Uk+1 ∈ Uk+1 such that y0 ∈ Uk+1.
Then Uk+1 ∩ f(g−1(F )) 6= ∅. Since y0 ∈ Uk+1 ∩ f(K), it follows from (3.7) that
f−1(Uk+1) ∈ Vk+1. Hence St(xo,Vk+1)∩g−1(F ) ⊃ f−1(Uk+1)∩g−1(F ) 6= ∅. Since
Vk+1 is a star refinement of Vk, there is Vk ∈ Vk such that St(f−1(Uk+1),Vk+1) ⊂
Vk. Then for each x ∈ f−1(Uk+1) we have St(x,Vk+1) ⊂ St(f−1(Uk+1),Vk+1) ⊂
Vk. Hence x ∈ V ◦k , and hence f−1(Uk+1) ⊂ V ◦k . Therefore V ◦k ∩ g−1(F ) ⊃
f−1(Uk+1)∩g−1(F ) 6= ∅. It follows that g(V ◦k )∩F 6= ∅. Thus, for each k we have
St(g(x0),Wk) ∩ F 6= ∅. Since {Wi}∞i=1 is a development for Z, g(x0) ∈ F = F .
Hence g(x0) ∈ g(K) ∩ F . This contradicts with F ∩ g(K) = ∅. Therefore,
f(g−1(F )) ∩ f(K) = ∅. Since f(K) is compact and mesh Uk < 1/k for each
k, there is k such that f(g−1(F )) ∩ St(f(K),Uk) = ∅. Then g−1(F ) ⊂ X \
f−1(St(f(K),Uk)) = Fk. For each x ∈ Fk and each i ≥ k it is easy to see that
ordg(x)Wi ≤ ordx Vi. It follows from (3.6) that ordWi|g(Fk) ≤ ordVi|Fk ≤ mk.
Hence dimF ≤ dim g(Fk) ≤ mk − 1 ([12], [9, Theorem 4.2.3] or [13, Corollary to
Theorem V.1]) and hence Z is finitistic.

Acknowledgement. The author wishes to thank S. Watson for his helpful com-
ments.
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