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Abstract

Studies in active matter systems and in the collective motility of organisms utilize a range

of analytical approaches to formulate continuous kinetic models of collective dynamics from the

rules or equations describing agent interactions. However, the derivation of these models often

relies on Boltzmann’s hypothesis of ”molecular chaos”, often simply called statistical independence.

While it is often the simplest way to derive tractable models it is not clear whether the statistical

independence assumption is valid in practice. In this work, we develop a Boltzmann-type kinetic

model for the nematic alignment of self-propelled rods where rod reorientation occurs upon binary

collisions. We identify relevant parameters and derive kinetic equations for the corresponding

asymptotic regime. By comparing numerical solutions of the kinetic equations to an agent-based

model that implements our microscopic alignment rules, we examine the accuracy of the continuous

model. The results indicate that our kinetic model fails to replicate the underlying dynamics due

to the formation of clusters that violate statistical independence. Additionally, we show that

a mechanism limiting cluster formation helps to improve the agreement between the analytical

model and agent simulations. These results highlight the need to improve modeling approaches for

active matter systems.

I. INTRODUCTION

Self-propelled rods are a fascinating class of active matter seen across both living and

non-living systems [1, 2, 23, 24, 32–34]. Due to their shape, such systems are intrinsically

capable of collective behavior through realignments of rods due to physical collisions [3, 4] or

longer-ranged hydrodynamic interactions when in a fluid [5, 32]. These interactions lead to

the emergence of macroscopic collective motion such as flocking, clustering, phase changes,

and vortexes. Two notable biological examples of collective motion in self-propelled rods are

the dynamics of rod-shaped gliding bacteria such as the soil bacterium Myxococcus xanthus

[21, 36, 40], and the behavior of groups of cellular cytoskeletal rods (such as F-actin [33] or

microtubules [34]) driven by molecular motors deposited on the surface. Collisions between

M. xanthus cells often result in the head of the colliding cell reorienting along the length of
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the cell that was struck (see Fig. 1) [2]. Reorientation itself occurs on a characteristic time

scale related to the ratio of the cell length to cell velocity. Microtubule collisions on a 2D

surface also exhibit asymmetric realignments upon collision, with the additional possibility

of the colliding microtubule stalling until the struck microtubule has passed [34].

FIG. 1. An example of asymmetric alignment during the collision of two M. xanthus cells due to

cell-substrate forces. Adapted from [2].

Due to the interest surrounding systems of self-propelled rods, researchers have developed

various methods of modeling them. A popular approach to studying the emergent behavior

of these systems is by deriving a probabilistic description [3, 6, 8, 12, 13, 17, 18, 20, 25, 27, 30].

A number of heuristic mean-field models based on the notion of the mean nematic director

have been considered in [11–15, 28]. Since rod reorientation takes place only when rods

collide, a more accurate approach consists in tracing rod collisions as they naturally occur

and updating the kinetic distribution function accordingly. A common starting point for

such derivations is Boltzmann formalism from gas dynamics[6, 17, 18, 25]. This approach

relies on the molecular chaos hypothesis and the assumption that rod collisions (or more

general interactions) are binary events, see for example [9] and allows the derivation of a

kinetic model from the rules for how pairs of rods realign when they interact. For example,

in Bertin et al (2006) [6], the alignment of a pair of interacting, circular-shaped cells reorients

them to the average of their pre-collision orientations with a certain amount of noise added.

The authors derived a Boltzmann-type equation for the distribution of cells and postulated a

reduced hydrodynamic-type model for the first few moments of the cell density distribution.
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In Hittmeir et al (2021) [18], the authors considered a model in which a pair of colliding

co-oriented cells (rods with angle difference |θ1−θ2| < π/2) change their orientation to their

average alignment; otherwise (|θ1 − θ2| > π/2) both colliding cells reverse their direction of

motion. With this setup, they formulated a Boltzmann-type equation under the assumption

Nl/L is finite, where N is the number of cells, l is the cell length and L is some characteristic

length scale. For special sets of cell orientations, the authors identify the corresponding set

of equilibrium distributions and derive a hydrodynamic-type model in the limit Nl/L→∞.

Over the last decade, the validity of Boltzmann formalism has come into question. Evi-

dence has shown that in some biological systems, this modeling approach is not enough to re-

produce the observed system dynamics due to either weak binary interactions when stronger,

multiparticle interactions are needed [35], or due to rapid cluster formation that violates

the molecular chaos hypothesis [17, 19, 37]. These latter studies suggest that biologically-

relevant phenomena reliant on cluster formation, such as the transitions from unordered to

collective motion [27, 29, 38], may not be accurately modeled with Boltzmann-type equa-

tions. However, results from Thüroff et al (2013) [37] suggest that a Boltzmann approach

can be appropriate for systems that align weakly or gradually over time.

In this work, we investigate the validity of the Boltzmann approach to the collective

dynamics of self-propelled rigid rods. We assume that a given rod, upon striking a sec-

ond rod, instantly turns around its head to match a second rod’s orientation. We derive a

Boltzmann-type kinetic equation for the collective motion of these rods from the first prin-

ciples by incorporating the geometry of the binary collisions. We then reduce this general

kinetic equation to a finite system of tractable PDEs by assuming only a finite number of ori-

entations are present. Next, we investigate the validity of these equations using agent-based

simulations using the same collision scheme underlying the kinetic model. We show that

even in simple cases the agent model exhibits cluster formation, with the rate of clustering

increasing with the number of rods. This corresponds to a violation of Boltzmann’s hypoth-

esis of molecular chaos, i.e. indicates a loss of statistical independence. Finally, we test

if the agreement between the two models can be improved by inhibiting cluster formation

through the addition of diffusion.
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II. DERIVATION OF KINETIC EQUATION

Our goal is to derive a tractable kinetic description of a system of N self-propelled rods

of length l moving at constant speed v, starting from a microscopic description of collisions.

Let f(x, θ, t) be Gibb’s probability a rod with orientation θ has its head located at x at time

t. We will next derive a kinetic equation for f by finding an expression for the change in

f over a single time step of size ∆t. To this end, we make several assumptions about rod

collisions. First, we assume that collisions are binary events, with the striking rod reorienting

to match the struck rod’s orientation modulo π. This results in the nematic alignment of

rods. Motivated by M. xanthus dynamics, we further assume that reorientation occurs

through the head of the rod. Since we assume binary collisions, we will make use of the

2-particle distribution function f2(x, θ, x1, θ1, t) to help calculate collision events.

Denote by ∆f the change of f along the trajectory:

∆f(x, θ, t) = f(x+ ve(θ) ∆t, θ, t+ ∆t)− f(x, θ, t),

with N∆f representing the change in the number of rods with a given location and ori-

entation. In the absence of collisions, the change is zero. If a collision occurred it could

result in the gain or loss of rods of orientation θ. The associated geometry of rods for gain

and loss is determined by fixing a spatial location x and considering two cases using two

(non-interacting) rods with orientations θ and θ1 and heads at x. We then look at the sets

of collisions in the next dt time that will result in either a gain of a rod with orientation

θ (due to a collision with a θ-rod) or an equivalent loss (due to the θ-rod colliding). This

yields two regions P1(x, θ, θ1) and P2(x, θ, θ1) where another rod could be located to cause

a collision (see Figure 2).

We can now use this setup to derive the change ∆f.

∆f(x, θ, t) =− (N − 1)

∫ π

−π

∫
P2(x,θ,θ1)

f2(x, θ, x1, θ1, t) dx1dθ1

+ (N − 1)

∫ θ+π/2

θ−π/2

∫
P1(x,θ,θ1)

f2(x, θ1, x1, θ, t) dx1dθ1

+ (N − 1)

∫ θ+π/2

θ−π/2

∫
P1(x,θ+π,θ1)

f2(x, θ1, x1, θ + π, t) dx1dθ1

(1)

To get a closed-form equation for f we employ a commonly used assumption that 2-particle

distribution f2(x, θ, x1, θ1, t) can be written as the product of the marginal distributions
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FIG. 2. Geometry of the collision scheme considered in our model. P1 is the set of heads of rods

with orientation θ1 that will hit the side of the rod with orientation θ having its head at x, at time

t, when it moves for ∆t units of time. Likewise, a rod with orientation θ at x at time t will hit the

side of a rod with orientation θ1 having its head in P2 at time t. P1 is formed by vectors le(θ) and

v∆t(e(θ1)− e(θ)). P2 is formed by vectors le(θ1) and v∆t(e(θ1)− e(θ)).

f(x, θ, t) and f(x1, θ1, t), i.e.

f2(x, θ, x1, θ1, t) = f(x, θ, t)f(x1, θ1, t), (2)

for all pairs (x, θ) and (x1, θ1). This first-order moment closure is known as statistical inde-

pendence, or molecular chaos, as it implies that the presence of one rod does not affect the

probability of finding the other at the given position and orientation. Next, we write the

integral terms using a Taylor expansion in x1

f(x1, θ1, t) = f(x, θ1, t) + ∇xf(x, θ1, t) · (x1 − x) +O(|x1 − x|2), (3)

so that only an integral over θ1 remains. Note that |x1 − x| = O(l) since two rods must be

close to enable collision. A geometric computation shows that the regions P1 and P2 where

collisions can take place have area |P1| = |P2| = lv∆t| sin(θ − θ1)|. Substituting the Taylor

expansion into the expression for ∆1f and using the areas of P1, P2 with the integrals∫
P2(x,θ,θ1)

(x1 − x) dx1 =
l2v∆t

2
| sin(θ − θ1)| e(θ1) +O(l3v∆t), (4)

and ∫
P1(x,θ,θ1)

(x1 − x) dx1 =
l2v∆t

2
| sin(θ − θ1)| e(θ) +O(l3v∆t), (5)
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we obtain

∆f(x, θ, t) = (N − 1)lv∆t

θ+π/2∫
θ−π/2

| sin(θ − θ1)|f(x, θ + π, t)f(x, θ1, t) dθ1

− (N − 1)lv∆t

θ+π/2∫
θ−π/2

| sin(θ − θ1)|f(x, θ, t)f(x, θ1 + π, t) dθ1

+
(N − 1)l2v∆t

2

θ+π/2∫
θ−π/2

| sin(θ − θ1)|f(x, θ1, t) (e(θ) ·∇xf(x, θ, t) + e(θ + π) ·∇xf(x, θ + π, t)) dθ1

− (N − 1)l2v∆t

2

θ+π/2∫
θ−π/2

| sin(θ − θ1)|f(x, θ, t) (e(θ1) ·∇xf(x, θ1, t) + e(θ1 + π) ·∇xf(x, θ1 + π, t)) dθ1

+O(Nl3v∆tmax |f |max |∇2
xf |) +O(Nl2 ∆t2).

(6)

Dividing the equation above by ∆t and letting ∆t→ 0, we obtain the kinetic equation

∂tf + ve(θ) ·∇xf = (N − 1)lvQ0 +
(N − 1)l2v

2
Q1 +O

(
Nl3vmax |f |max |∇2

xf |
)
, (7)

where

Q0 =

θ+π/2∫
θ−π/2

| sin(θ − θ1)| (f(x, θ + π, t)f(x, θ1, t)− f(x, θ, t)f(x, θ1 + π, t)) dθ1, (8)

and

Q1 =

θ+π/2∫
θ−π/2

| sin(θ − θ1)|f(x, θ1, t)e(θ) ·∇x (f(x, θ, t)− f(x, θ + π, t)) dθ1

−
θ+π/2∫
θ−π/2

| sin(θ − θ1)|f(x, θ, t)e(θ1) ·∇x(f(x, θ1, t)− f(x, θ1 + π)) dθ1.

(9)

In deriving Q1 term we used the identity e(θ + π) = −e(θ).

We nondimensionalize equation (7) by setting τ = L/v and rescaling the variables using

x̂ = x/L, t̂ = t/τ, f̂(x̂, θ, t̂) = L2f(x̂L, θ, t̂τ). (10)
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Dropping hats, the resulting scaled kinetic equation is

∂tf + e(θ) ·∇xf =
(N − 1)l

L
Q0 +

(N − 1)l2

2L2
Q1 +O

(
Nl3

L3

)
, (11)

where we assumed that the variations in the kinetic density f are bounded, that is

max |f |max |∇2
xf | ≤ C. For a typical experiment with N = 1000 M. xanthus bacteria

(l = 5µm) on a domain of size L = 103µm, parameter Nl
L

= 5 and Nl2

L2 = 0.025, and

Nl3

L3 = 0.000125. Thus, when C is of order 1, as a reasonable approximation we keep only

the first two terms on the right-hand side. We set κ = Nl2

2L2 . Parameter κ is related to the

mean free path, d, and rod length l as:

κ ≤ l

2d
,

see (A1) of the Appendix. The binary collision assumption fails if d is of order l or smaller,

meaning that κ should be small. In the numerical simulations in the subsequent sections,

we will restrict κ < 0.5. The resulting kinetic equation becomes

∂tf + e(θ) ·∇xf =
2κL

l
Q0(f) + κQ1(f). (12)

In the model of alignment that we consider in this paper, a rod after an interaction

assumes the orientation of the rod it collides with. The set of orientations θi, θi + π,

i = 1, . . . , k, if present initially, will be preserved by the dynamics of transport and collision.

In such situations, the kinetic density f is determined by the set of 2k densities of the

corresponding orientations, and equation (12) can be written as a system of 2k partial

differential equations for the orientation densities. An example of such a system is considered

in the following sections.

III. NUMERICAL SOLUTIONS AND RESULTS FROM AGENT-BASED SIMU-

LATIONS FOR CASE STUDY

To test the accuracy of our first-order kinetic equations, we compare the behavior of their

numerical solutions to agent-based simulations for a simple test case. The agent-based model

will implement the alignment dynamics of a finite set of rods colliding based on the physical

rules from which the kinetic equations were derived. For our comparisons, we will focus

on two interacting bands of rods with distinct orientations given by angles θ1 = π/4 and
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θ2 = 3π/4. This ensures no additional orientations beyond the original two appear as a result

of collisions. We will consider both models in the spatial domain (x, y) ∈ Ω = [0, L]× [0, L]

with periodic boundary conditions.

A. A model with two orientations

Consider equation (12) for distributions with two orientation angles θ1 and θ2 with |θ2−

θ1| ≤ π/2. In this case there is no nematic alignment, and the term Q0(f) vanishes and the

kinetic equation becomes

∂tf + e(θ) ·∇xf = κQ1. (13)

We are restricting rods to two possible orientations, therefore we can substitute f(x, θ, t) =

ρ1(x, t)δ(θ − θ1) + ρ2(x, t)δ(θ − θ2), yielding a system for ρ = (ρ1, ρ2) of the form

∂tρ+ A(ρ)∂xρ+B(ρ)∂yρ = 0 (14)

where the matrices A and B are given by

A =

 cos(θ1)− κ cos(θ2)ρ2 κ cos(θ1)ρ1

κ cos(θ2)ρ2 cos(θ2)− κ cos(θ1)ρ1

 ,

B =

 sin(θ1)− κ sin(θ2)ρ2 κ sin(θ1)ρ1

κ sin(θ2)ρ2 sin(θ2)− κ sin(θ1)ρ1

 .
To simplify these kinetic equations to a form easily analyzed, we will assume that all

densities vary only in the spatial direction x. In this setting, the system (14), with θ1 = π
4
,

θ2 = 3π
4

, can be written in conservation form as

∂tρ1 +

√
2

2
∂x (ρ1 [1− κρ2]) = 0

∂tρ2 −
√

2

2
∂x (ρ2 [1− κρ1]) = 0.

(15)

We restrict ourselves to the regime 0 < κ < 0.5 (see Appendix A for the underlying rationale

based on enforcing the mean free path of rods is greater than the rod length l). We will

consider a test case with two waves moving toward each other over a background density.

The linear factor 1 − κρi inside the spatial derivative will decrease both the left-and right-

moving density profiles’ speeds when they interact. In other words, the collisions in this
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model effectively result in a local decrease in the velocity, reflecting the fact that when a

rod re-orients, its head is located behind the head of the rod it hits relative to the struck

rod’s direction of motion. Finally, we impose symmetric initial conditions for the profile.

Each is a Gaussian wave (with maximum amplitude set below the bound established in

Appendix B) moving over a uniform background density of rods. The system (15) is then

solved numerically using the method described in Appendix C.

B. Agent-based model setup

For the agent-based model, we set the domain size to L = 400 and the velocity to v =
√

2.

Denote by N the number of rods that will be used in the agent simulations. The initial

locations of the rods were determined by first scaling the initial conditions of the kinetic

equations to create probability densities, then sampling from them. Collisions between rods

were determined using the schematic in Figure 2. If a rod would collide with multiple rods

in a single time step, it was assumed that it collided with the first rod in its path to ensure

collisions are binary. We restricted the mean-free path of rods to be greater than the rod

length l based on the physical timescale of reorientation l/v (see Appendix A). Therefore,

to speed up computational time we took time steps of ∆t = l/v.

As the simulation is deterministic after initial rod positions are set, we combined 1000

simulations with random initial positions to average random fluctuations and recover the

mean behavior. Since the solutions of system (15) are 1D in space, we compared them

to agent-based simulations as follows. By looking only at the x-coordinates in the set of

simulated rods over all agent simulations, we constructed a 1D kernel density estimate

(KDE). The resulting density profiles were then scaled to probability densities on x ∈ [0, 1]

and compared to the density profiles from the numerical solutions of the kinetic equations.

C. Discrepancy between agent-based model and kinetic equations due to cluster

formation

Our agent-based simulations deviate from the numerical solutions of the kinetic equations,

with the latter exhibiting a far less pronounced change in the density profile shape (Figure

3 A&B). The peaks of the density profiles for both orientations slow down slightly as they
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approach each other, but the slowdown and the increase in the peak density are much greater

in the agent framework. If this discrepancy is due to not being near the limit N →∞, l→ 0

with κ held constant, increasing the number of simulated rods while keeping κ ∝ Nl2 fixed

should theoretically improve the agreement. However, we see that this is not the case

(Figure 3C). The simulations using higher numbers of rods showed greater discrepancies.

This suggests the disagreement is due to one or more flaws in the assumptions used to derive

the kinetic equations.

FIG. 3. A) Numerical solution of the kinetic equations for κ = 0.1. B) Density profile for agent-

based simulations for κ = 0.1 with N = 2856 rods. C) Density profile for agent-based simulations

for κ = 0.1 with N = 45700 rods. (Inset) The discrepancy at the final time between the kinetic

model density profile and the density profile from agent simulations for various numbers of rods.

The results indicate that the agent simulations show much greater changes in the density profile

and do not converge to the kinetic model in the limit N →∞, l→ 0.

The key assumption used in deriving the Boltzmann-type equation was the statistical

independence of the joint probability distribution (2). This allowed us to express the prob-

ability that a pair of rods would have a spatial configuration leading to a collision in terms

of the probability of each rod individually occupying the corresponding spatial region. This

assumption is invalid if there are correlations between rods. Such correlations appear in

clusters of aligned rods since they have a high chance of having similar orientations due

to collisions. Our collision scheme results in both rods possessing the same orientation,

so cluster formation is possible and would be a violation of our assumption of statistical

independence.

To measure the clustering present in our agent simulations, we used a standard algorithm
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based on Euclidean distance to group rods. The minimum distance between the heads of

rods was picked to be the length of a rod l. We then measured the proportion of rods in

clusters of size 4 or more (Figure 4A). As expected, clusters grew over time in our agent

simulations, with the rate of growth increasing with κ for fixed N . This increase in κ

corresponds to a greater rod length, increasing the chance of collisions between rods.

D. Quantifying loss of statistical independence

Since cluster formation is linked to a loss of statistical independence [17, 19, 37], we next

quantified the extent of this loss. Observing a rod with orientation θ1 would decrease the

probability of a nearby rod having orientation θ2. We can use this idea to computationally

check the quantity f2(x1, θ1, x2, θ2, t)− f(x1, θ1, t)f(x2, θ2, t) in our agent simulations to see

if a loss of independence is present. To do this, we first divided our domain Ω = [0, L] ×

[0, L] into 210 square subregions Ωij, i, j = 1, . . . , 25. We then calculated coarse-grained

approximations of the joint and marginal distributions in two steps. First, we calculated

the proportion of rods for each orientation and the proportion of rod pairs with distinct

orientations in each subregion. The local estimates of f ij2 (θ1, θ2, t), f
ij(θ1, t), and f ij(θ2, t)

in each subregion were then obtained by averaging over all 1000 simulations. We chose

as a local metric of independence the relative difference between the averages of the joint

distribution function and the product of the marginals given by

Eij
r (t) = (f ij2 (θ1, θ2, t)− f ij(θ1, t)f ij(θ2, t))/(f ij(θ1, t)f ij(θ2, t)). (16)

We finally obtain a global average of the local estimate

Er(t) = 〈Eij
r (t)〉ij (17)

by averaging over all subregions.

As shown in Figure 4B, the metric Er(t) shows similar trends over time to the cluster

formation. The loss of statistical independence increases over time, with higher values of κ

showing a greater loss for fixed N . The fact that Er is negative reflects the fact that the

chance of finding a pair of rods with different orientations is lowered from what is expected

if statistical independence held true.

Since cluster formation is the result of co-alignment between rods upon collision, it is

natural to see if the increase in cluster growth with higher values of κ is due to a greater
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FIG. 4. A) The percentage of rods in clusters with more than 4 rods over time. This quantity

grows over time as rods collide and co-orient. B) The loss of statistical independence Er(t) from

(17) between the two sets of rods with different orientations. The negative values growing over time

indicate that it becomes rarer to see nearby rods having different orientations, indicating cluster

formation. C) Snapshots of an agent simulation at the end of a simulation. The snapshot is taken

at the center of the domain where the two waves interact.

number of collisions. Calculating the mean number of collisions per rod by time t shows that

the number does increase as κ increases (Figure 5A). Furthermore, there is strong evidence

of data collapse when plotting both the proportion of rods in clusters (Figure 5B) and the

loss of statistical independence versus the cumulative number of collisions per rod (Figure

5C). There is a slight difference in the rescaled curve for κ = 0.1 compared to the other two

curves. This is the result of some rods starting in clusters at t = 0 at higher densities. The

reasons for the deviation in the rescaled Er cure for κ = 0.1 is less clear but could be the

result of cluster-cluster interactions once most rods reside in such clusters. The rescaling is

based on rod-rod collisions, so cluster-cluster interactions might not fully be accounted for.

E. Improving agreement between agent simulations and kinetic equations by in-

hibiting cluster formation

While the results of our simulations have indicated close links between cluster formation,

loss of independence, and the discrepancy between the equations and agent simulations, they

have not shown a strict cause and effect. To illustrate that clustering is the main cause of the

discrepancy, we introduce diffusion in y-direction into our agent simulations. The addition

of this noise will cause rods forming a cluster to slowly drift apart at a rate dependent on

13



FIG. 5. A) The total number of collisions experienced on average per rod over time for κ = 0.001

(blue), κ = 0.01 (orange), and κ = 0.1 (purple). B) The fraction of rods in clusters with more

than 4 rods versus the mean number of collisions experienced per rod by time t. This is plotted for

κ = 0.001 (blue), κ = 0.01 (orange), and κ = 0.1 (purple) C) The loss of statistical independence

Er(t) between the joint and marginal distributions for the two sets of rods with different orientations

versus the mean number of collisions experienced per rod by time t. Both figures show some data

collapse when compared to Figure 3, especially for low mean rod collisions per rod.

the noise strength. This addition will not impact the test case we considered for the kinetic

model. Since initial conditions are constant in the y-direction, the system given in 15 will

remain unchanged by the vertical diffusion.

We implemented the same sets of agent simulations as before (N = 2856, κ = 0.1) with

the addition of different levels of noise σ. Agent rods step in the y-direction a random

distance drawn from a normal distribution N(0, σ) every ∆t = l/v. Since agent simula-

tions are run with unscaled variables, we nondimensionalize the noise by using the scaling

σ → σ/(l/
√

2) in order to compare the strength of the noise to the rod length l. The results

of these simulations show that the addition of noise in the y-direction improves agreement

between the agent simulations and the kinetic equations, with the former now resembling

the latter for a sufficient level of noise (Figure 6A). Increasing the noise strength from zero

reduces the measured discrepancy between the kinetic and agent density profiles (Figure

6B) and decreases the proportion of rods in clusters (Figure 6C). However, the discrepancy

is reduced only up to a point. Once the strength of the scaled noise exceeds roughly 1

(corresponding to the standard deviation of the normal distribution equaling the projection

of a rod in the y-direction), the discrepancy increases slightly before plateauing. Why this
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is the case is unclear; however, the reduction in clustering slows down at around the same

level of noise. It is possible that there are some aspects of rod correlations that the added

diffusion does not affect. For example, our collision scheme results in both rods having

similar x-coordinates. The addition of vertical diffusion does not change this either. There-

fore, successive collisions result in more rods sharing similar x-coordinates, and potentially

forming vertical bands of rods, regardless of vertical diffusion.
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FIG. 6. A) Density profile for agent-based simulations with y-directional scaled noise of 1.06

for κ = 0.1 with N = 2856 rods. A scaled noise level of 1 corresponds to an agent rod’s vertical

movement over time ∆t = l/v being distributed normally as y(t+dt)−y(t) ∼ N(l sin(θi), l sin(θi)) =

N(l/
√

2, l/
√

2) in between collisions, or equivalently to a vertical diffusion coefficient of l2/4. B)

Percentage of rods in clusters with more than 4 rods versus noise in y-direction. Increasing the

noise in the vertical direction decreases the proportion of rods in larger clusters C) Discrepancy

between the kinetic model and the agent-based simulations for different levels of white noise in the

y-direction. The discrepancy initially drops sharply but then increases slightly once the strength

of the noise increases past 1, the length of a rod projected in the y-direction. Snapshots of agent

simulations near noise levels of 0, 1, and 2 are shown on the right. The snapshots are taken at the

final time in the center of the domain ([150, 250]× [150, 250]) where the two waves interact.
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IV. DISCUSSION

In this paper, we developed a kinetic model for the alignment of self-propelled hard rods

where collisions result in asymmetric alignment. Using this model, we showed Boltzmann

formalism severely underestimates the change in rod density profiles when two opposing

waves of rods interact. We explicitly measured the loss of statistical independence that in-

validates the classic assumption of molecular chaos Boltzmann-type equations rely on. Such

a loss corresponds to the formation of rod clusters due to alignment from binary rod colli-

sions. Our results mirror those in other studies [17, 37], however, we have built upon these

works by showing that mechanisms that destroy or inhibit cluster formation help restore

agreement between the kinetic model and agent-based implementations of the microscopic

alignment rules. As this discrepancy occurs even in the simple setup we consider, our work

highlights the need to extend current methodologies beyond Boltzmann-type kinetic equa-

tions in order to accurately capture the properties of active matter in biological systems.

Boltzmann’s hypothesis can be justified when the mean free path is large compared to

the range of local interactions, however, this is rarely satisfied at realistic densities when

ordered motion is established [31]. Additionally, several studies have indicated that rapid

cluster formation can lead to a strong violation of the molecular chaos assumption needed

in the Boltzmann approach [17, 37]. While gradual alignment results in a better match, in

principle any collision rule between particles resulting in alignment can cause correlations

to appear. Such collisions are prevalent in collective dynamics at the cellular level due to a

low Reynolds number, where cells must actively exert energy to maintain their motion. This

is in contrast to Boltzmann gas dynamics, where collisions are assumed to be non-elastic

and conserve momentum, resulting in particles simply bouncing off each other. In addition

to violations of Boltzmann’s hypothesis, the assumption of binary interactions used in such

models is not enough to reproduce the observed dynamics in some biological systems [35].

Binary interactions can simply be too weak to produce the alignment seen experimentally,

even when corrections are made to account phenomenologically for correlations. These

breakdowns of Boltzmann-type models suggest they are an overly-simplistic approach to

modeling the emergence or stability of collective alignment. The emergence of local order

almost by definition involves the breakdown of statistical independence and the growth of

correlations as agents align and start moving together, violating Boltzmann’s hypothesis.
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There are several ways to extend kinetic models to incorporate orientational correlations.

Perhaps the simplest is to explicitly extend the kinetic model to explicitly include equations

for clusters of various sizes. Gain and loss terms for these additional equations are then the

natural result of collisions among clusters and rods [26, 39]. Peruani et al (2010) developed

a framework where cluster size was explicitly tracked in a hierarchy of equations, while

Weber et al (2013) [39] considered a simplified framework with two reaction equations for

clusters and single cells. Another set of approaches for incorporating correlations involves

direct modifications to the moment closure method. A simple example is replacing the

joint distribution f2(x1, θ1, x2, θ2, t) with χ(θ2 − θ1)f(x1, θ1, t)f(x2, θ2, t), where χ(θ2 − θ1)

is a phenomenological term accounting for correlations between different angles [35]. More

sophisticated methods involve higher-order moment closures of the BBGKY hierarchy [2, 7,

16]) using the so-called cluster expansion that explicitly incorporates the evolution of the

joint distribution f2 [9]. Such an approach was used by Chou and Ihle for Vicsek-style models

to extend beyond mean-field theory [10]. With the rapid advancement of biological studies

in the last decades, developing and applying new analytical models to understand active

matter in biology is of crucial importance. Creating a tractable class of models that can

capture correlations or non-binary interactions would provide a cornerstone for this young

field.
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Appendix A: Mean free path

The mean free path (MFP) is defined as the average distance that a rod moves between

collisions. This distance can be computed as the product of the speed v and the time

τ a rod moves between re-orientations. To estimate τ, we first compute the number of

rods with orientation e(θ) = (cos θ, sin θ) that will collide with a given rod (rod 1) in the

time [t∗, t∗ + ∆t], were t∗ marks the last change in rod 1’s orientation. Without loss of

generality, we consider rod 1 as moving horizontally to the right, as in Figure 7. Suppose

that a coordinate system is chosen so that the rod is at rest. Then the velocity of rods with

orientation θ is described by the vector w = v(cos θ − 1, sin θ). The heads of the rods that

rod 1 can collide with are located in a parallelogram P formed by vectors w∆t and le(θ).

The area of this parallelogram equals | sin θ|vl∆t. Using that Nf(x, θ, t∗) is the local number

of rods with a given orientation, we estimate the number of collisions with θ-oriented rods

in time dt as vlNf(x, θ, t∗)| sin θ|∆t, which is maximized at θ = π/2. Thus, the number of

collisions over all orientations in ∆t time can be estimated as

vlN ∆t

∫
f(x, θ, t∗) dθ ≤ n(x)vl∆t,

where n(x, t∗) is the local rod number density. From this, we obtain an upper bound for

the frequency of collisions as n(x, t∗)vl. The time between collisions and the MFP are then

bounded by

τ ≥ 1

n(x, t∗)vl
, d ≥ 1

n(x, t∗)l
.

Note that both τ and the MFP d are local quantities depending on x.

For the model we consider in this paper, we restrict the MFP to d ≥ l. The rationale

behind this is physics-based. When two rods collide, there is a characteristic time scale for

reorientation to occur given by τθ = l/v [1]. Therefore it makes sense to restrict the mean

time between collisions τ to the regime τ ≥ τθ = l/v. This naturally yields d ≥ l.

Our assumption that d ≥ l puts a restriction on the local density of the form n(x, t∗)l2 ≤ 1,

and subsequently on the parameter κ of the form

κ =
Nl2

2L2
≤ 1

2
l2 max

x
n(x, t∗) ≤ 1

2
. (A1)

Here we use that N/L2 is a lower bound on the maximum of n(x, t∗). Note that we cannot

have κ = 0 without the local density being identically 0.

19



FIG. 7. Vector geometry used in the estimation of the MFP. A) rod at x where e(θ) = (cos θ, sin θ)

moves with velocity ve(θ). In a reference coordinates of a horizontally moving rod with velocity

(v, 0), the rod velocity is w. B) a rod moving horizontally to the right, during time interval [t∗, t∗+

∆t] can collide with a rod which has orientation e(θ) whose center is located in the parallelogram

P, formed by vectors w ∆t and le(θ). The area of the parallelogram equals | sin θ|vl∆t.

Appendix B: Domain of hyperbolicity of system of equations(15)

Here we will determine conditions under which system (15) is hyperbolic. The system is

given by

∂tρ1 + ∂x [ρ1(1− κρ2)] = 0

∂tρ2 − ∂x [ρ2(1− κρ1)] = 0,
(B1)

where κ =
Nl2

2L2
. Denote the column vector U = (ρ1, ρ2)

T and column of the fluxes F (U) =
√
2
2

(ρ1 − κρ1ρ2,−ρ2 + κρ1ρ2)
T . Then the system of equations is expressed as

∂tU + ∇UF (U) = 0.

The system is hyperbolic if the eigenvalues of the gradient matrix

∇UF (U) =

 1− κρ2 −κρ1
κρ2 −1 + κρ1


are real. The eigenvalues equal

λ± =
1√
2

(
κ(ρ1 − ρ2)±

√
κ2(ρ1 − ρ2)2 + 4− 4κ(ρ1 + ρ2)

)
.
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Thus, the system is hyperbolic whenever

κ2(ρ1 − ρ2)2 + 4− 4κ(ρ1 + ρ2) ≥ 0

with a sufficient condition

κ(ρ1 + ρ2) ≤ 1.

Since (A1) implies κ < 0.5, our kinetic model (15) must be restricted to cases where the

sum of the maximum density profiles for ρ1 and ρ2 total less than 2.

Appendix C: Numerical Methods

We express the system in (15) in flux form

∂tU = −∂xF, (C1)

with U = (ρ1, ρ2)
T and F = A(ρ1, ρ2)

T . In particular, for two orientations π/4 and 3π/4

the fluxes become F1 = ρ1(1 + ρ2) and F2 = ρ2(1 + ρ1). Next, we discretize the equation in

space and time using the Lax-Friedrichs method [22]

Un+1
i = Un

i −
∆t

∆x
[F̂i+1/2 − F̂i−1/2]

and define

F̂i+1/2 =
F (Un

i+1) + F (Un
i )

2
− K

2
(Un

i+1 − Un
i )

where K = cos(θ1)(1 + | sin(θ2 − θ1)|) is the upper bound on the speed of propagation given

ρ1, ρ2 < 1. Therefore, the CFL condition for the scheme above is K∆t/∆x < 1, and the

additional diffusion introduced by the scheme is proportional to D = K∆x/2. The scheme

is first order in space and time, but we found that it was sufficient for our simulations.
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