
Section 5.3a Graphs of the Secant and Cosecant Functions

The Secant Graph

RECALL: $\sec x = \frac{1}{\cos x}$ so where $\cos x = 0$, $\sec x$ has an asymptote.

To graph $y = A \sec(Bx - C) + D$, first graph, **THE HELPER GRAPH**, $y = A \cos(Bx - C) + D$.

Period: 2π

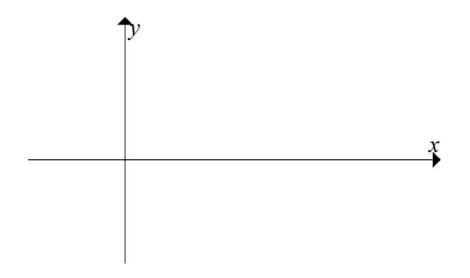
Vertical Asymptote: $x = \frac{k\pi}{2}$, k is an odd integer

Example 1: Let $f(x) = \sec\left(\frac{\pi x}{2}\right)$.

a. Give two asymptotes.

b. Sketch its graph by first stating and sketching its helper graph.

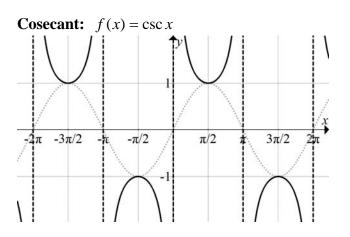
Helper function:


Amplitude: |A| =

Period:
$$\frac{2\pi}{B}$$
 =

Phase Shift: $\frac{C}{B}$ =

One cycle begins at the phase shift and ends at: $\frac{C}{B} + \frac{2\pi}{B}$


Any other transformations?

The Cosecant Graph

RECALL: $\csc x = \frac{1}{\sin x}$ so where $\sin x = 0$, $\csc x$ has an asymptote.

To graph $y = A\csc(Bx - C) + D$, first graph, **THE HELPER GRAPH**, $y = A\sin(Bx - C) + D$.

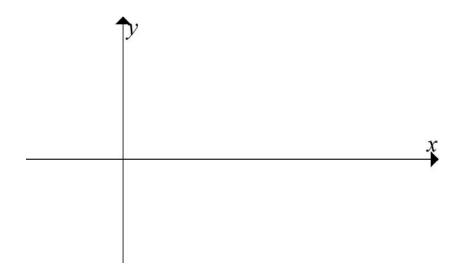
Period: 2π Vertical Asymptote: $x = k\pi$, *k* is an integer

Example 2: Let
$$f(x) = 4\csc\left(2x - \frac{\pi}{2}\right)$$

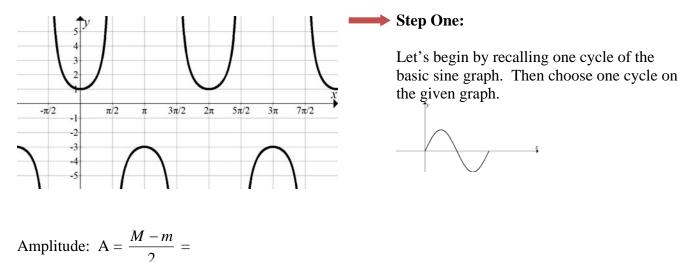
a. Give two asymptotes.

b. Sketch its graph by first stating and sketching the helper graph.

Helper function:


Amplitude: |A| =

Period:
$$\frac{2\pi}{B}$$
 =


Phase Shift: $\frac{C}{B}$ =

One cycle begins at the phase shift and ends at: $\frac{C}{B} + \frac{2\pi}{B}$

Any other transformations?

Example 3: Give an equation of the form $f(x) = A \csc(Bx - C) + D$ which could be used to represent the given graph. (Note: *C* or *D* may be zero.)

Vertical Shift, D: It'll be half-way between the maximum and the minimum values.

Use the period to find B: Recall the period formula $\frac{2\pi}{B}$ =

Compare your chosen cycle to the basic one cycle of sine. Any other transformations?

a.
$$f(x) = -2\csc\left(x - \frac{1}{2}\pi\right) + 1$$

b. $f(x) = -4\csc\left(x - \frac{1}{2}\pi\right) + 1$
c. $f(x) = -2\csc\left(x - \frac{1}{2}\pi\right)$
d. $f(x) = -2\csc\left(x - \frac{1}{2}\pi\right) - 1$
e. $f(x) = -4\csc\left(x - \frac{1}{2}\pi\right) - 1$