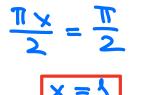

Section 5.3a Graphs of the Secant and Cosecant Functions

The Secant Graph

RECALL: $\sec x = \frac{1}{\cos x}$ so where $\cos x = 0$, $\sec x$ has an asymptote.

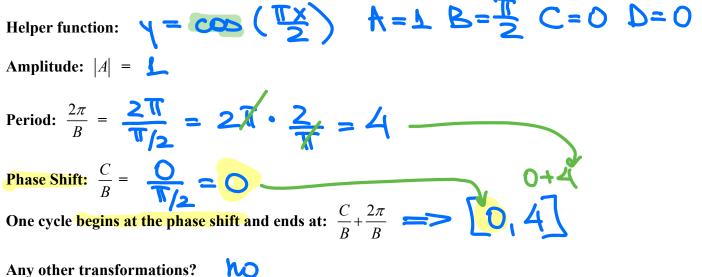
To graph $y = A \sec(Bx - C) + D$, first graph, **THE HELPER GRAPH**, $y = A \cos(Bx - C) + D$.

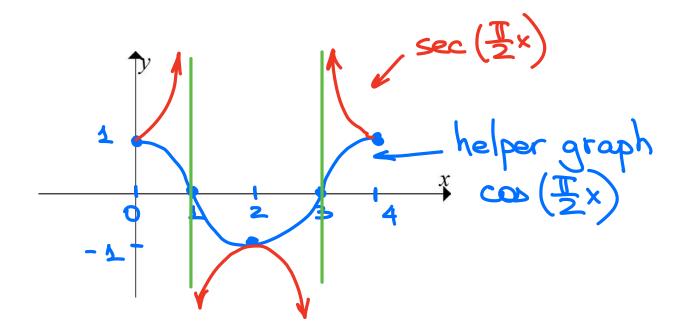

Period: 2π

Vertical Asymptote: $x = \frac{k\pi}{2}$, k is an odd integer

TV

Example 1: Let $f(x) = \sec\left(\frac{\pi x}{2}\right)$.

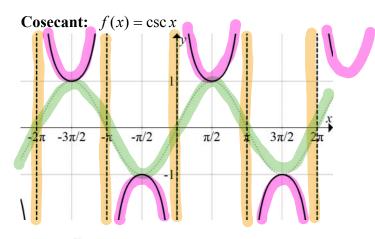

a. Give two asymptotes.



$$\frac{1}{2} = \frac{1}{2}$$

$$f(x) = \sec\left(\frac{\pi x}{2}\right)$$

b. Sketch its graph by first stating and sketching its helper graph.



The Cosecant Graph

RECALL: $\csc x = \frac{1}{\sin x}$ so where $\sin x = 0$, $\csc x$ has an asymptote.

To graph $y = A\csc(Bx - C) + D$, first graph, **THE HELPER GRAPH**, $y = A\sin(Bx - C) + D$.

Period: 2π Vertical Asymptote: $x = k\pi$, k is an integer

Example 2: Let
$$f(x) = 4 \csc\left(\frac{2x - \frac{\pi}{2}}{2}\right)$$

a. Give two asymptotes.

$$2 \times - \frac{\pi}{2} = 0 \qquad 2 \times - \frac{\pi}{2} = -\pi$$

$$2 \times = \frac{\pi}{2} \qquad 2 \times = -\pi + \frac{\pi}{2}$$

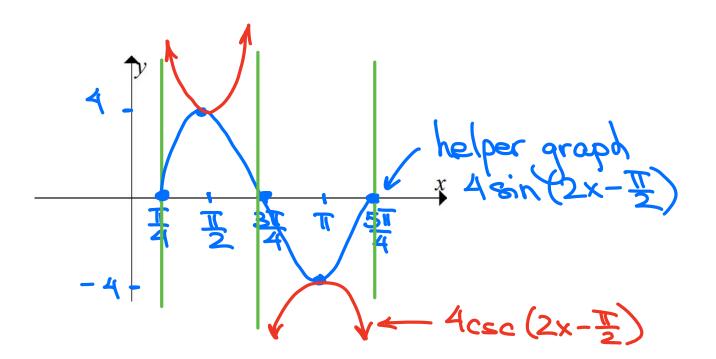
$$2 \times = -\frac{\pi}{2}$$

$$2 \times = -\frac{\pi}{2}$$

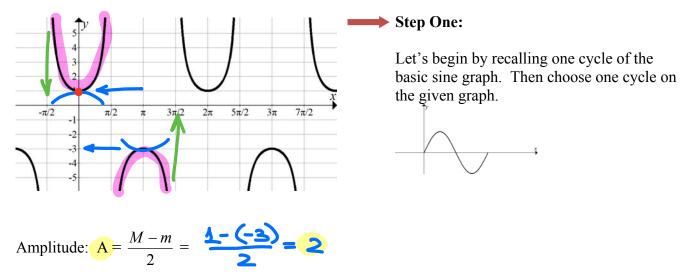
$$\times = -\frac{\pi}{4}$$

 $f(x) = 4 \csc \left(2 \times -\frac{\pi}{2}\right)$

b. Sketch its graph by first stating and sketching the helper graph.


Helper function: $\gamma = 4 \sin(2x - \frac{\pi}{2})$ A = 4 B = 2 $C = \frac{\pi}{2}$ D = 0Amplitude: |A| = 4

Period:
$$\frac{2\pi}{B} = \frac{2\pi}{2} = \pi$$


Phase Shift:
$$\frac{C}{B} = \frac{1}{2} \div 2 = \frac{1}{2} \div 2 = \frac{1}{2}$$

One cycle begins at the phase shift and ends at: $\frac{C}{B} + \frac{2\pi}{B} \implies \int \frac{1}{4} \int \frac{5}{4} \int \frac{5}{4} \int \frac{1}{4} \int \frac{5}{4} \int \frac{1}{4} \int \frac{$

Any other transformations?

Example 3: Give an equation of the form $f(x) = A \csc(Bx - C) + D$ which could be used to represent the given graph. (Note: *C* or *D* may be zero.)

Vertical Shift, D: It'll be half-way between the maximum and the minimum values.

 $\Delta = -\Delta$

Use the period to find B: Recall the period formula $\frac{2\pi}{B} = 2\mathbb{N}$ $\implies \mathbb{B} = \mathbb{A}$

 $\frac{3}{2} - \left(-\frac{\pi}{2}\right) = 2\pi$

Compare your chosen cycle to the basic one cycle of sine. Any other transformations?

a.
$$f(x) = -2\csc\left(x - \frac{1}{2}\pi\right) + 1$$

c. $f(x) = -2\csc\left(x - \frac{1}{2}\pi\right)$
e. $f(x) = -4\csc\left(x - \frac{1}{2}\pi\right) - 1$

b.
$$f(x) = -4\csc\left(x - \frac{1}{2}\pi\right) + 1$$

d. $f(x) = -2\csc\left(x - \frac{1}{2}\pi\right) - 1$