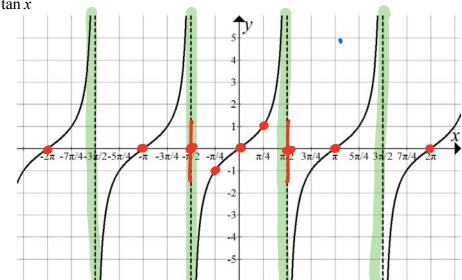
Section 5.3b Graphs of the Tangent and Cotangent Functions

The Graph of Tangent

Recall: $\tan x = \frac{\sin x}{\cos x}$ so where $\cos x = 0$, $\tan x$ has an asymptote and where $\sin x = 0$, $\tan x$ has an x- intercept.

 $f(x) = \tan x$



Period: π

Vertical Asymptote: $x = \frac{k\pi}{2}$, k is an odd integer.

The period for the function $f(x) = A \tan(Bx - C) + D$ is $\frac{\pi}{B}$.

Example 1: Let $f(x) = 5 \tan\left(\frac{x}{5}\right)$.

a. Find an asymptote.

b. Find its period.

$$\frac{T}{\sqrt{5}} = \pi \cdot \frac{5}{4} = 5\pi$$

1

How to graph $f(x) = A \tan(Bx - C) + D$:

- 1. Find two consecutive asymptotes by setting Bx C equal to $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ and then solve for x.
- 2. Divide the interval connecting the asymptotes found in step 1 into four equal parts. This will create five points. The first and last point is where the asymptotes run through. The middle point is where the x-intercept is located, assuming no vertical shift. The y-coordinates of the second and fourth points are —A and A, assuming no vertical shift.

Example 2: Sketch the graph in Example 1: $f(x) = 5 \tan\left(\frac{x}{5}\right)$.

We already found one asymptote, $\frac{5\pi}{2}$ next find another by setting: $\frac{x}{5} = \frac{5\pi}{2}$ and solve for x.

Now divide the line segment joining the two consecutive asymptotes into four equal parts.

The midpoint will be an x-intercept, assuming no vertical shifting.

The y-coordinates of the second and fourth points are –5 and 5, assuming no vertical shift.

The Graph of Cotangent

Recall: $\cot x = \frac{\cos x}{\sin x}$ so where $\cos x = 0$, $\cot x$ has an x- intercept and where $\sin x = 0$, $\cot x$ has an asymptote.



Period: π

Vertical Asymptote: $x = k\pi$, k is an integer.

The period of the function $f(x) = A \cot(Bx - C) + D$ is $\frac{\pi}{B}$.

Example 3: Let $f(x) = \cot\left(\frac{\pi x - \frac{\pi}{3}}{3}\right)$.

a. Find an asymptote.

$$O = \frac{\pi}{2} - \times \pi$$

$$T \times = T$$

b. Find its period.

3

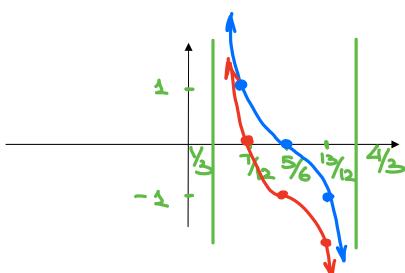
$$\Delta = \frac{T}{T} = \frac{T}{A}$$

How to graph $f(x) = A\cot(Bx - C) + D$:

- 1. Find two consecutive asymptotes by setting Bx C equal to 0 and π and then solve for x.

Example 4: Sketch the graph in Example 3: $f(x) = \cot\left(\frac{\pi x - \frac{\pi}{3}}{3}\right) - 1$.

We already found one asymptote, $\frac{1}{3}$ next find another by setting: $\pi x - \frac{\pi}{3} = \pi$ and solve for x.



Now divide the line segment joining the two consecutive asymptotes into four equal parts.

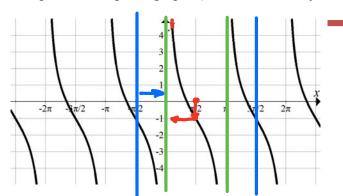
The midpoint will be an x-intercept, assuming no vertical shifting.

The y-coordinates of the second and fourth points are -1 and 1, assuming no vertical shift.

4

Lastly, shift vertically 1 unit.

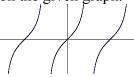
Example 5: Give an equation of the form $f(x) = A \tan(Bx - C) + D$ which could be used to represent the given graph. (Note: C or D may be zero.)



Step One:

Let's begin by recalling one cycle of the basic tangent graph. Then choose one cycle on the given graph.

5



Based on the cycle from the graph you chose, note the consecutive asymptotes.

Vertical Shift, D:

Find the midpoint. Is it on the x-axis? If so, there is no vertical shift, or D = 0. Otherwise, D = -4

Use the period to fi

nd B: Recall the period formula $\frac{\pi}{B} = 1$

Compare your chosen cycle with the basic one cycle of tangent. Any other transformations?

a.
$$f(x) = -2\tan\left(x - \frac{1}{2}\pi\right) + 1$$

b.
$$f(x) = -2\tan(x)$$

c.
$$f(x) = -2\tan\left(x - \frac{1}{2}\pi\right)$$

$$f(x) = -2\tan(x+1)-1$$

