What is a proposition?

Definition: A proposition (or a statement) is a sentence that is either true or false, but not both.

Examples of Propositions:

- a. Austin is the capital of Texas.
- b. Texas is the largest state of the United States.
- c. 1 + 0 = 1

Examples that are NOT Propositions:

- a. Watch out!
- b. What time is it?
- c. x + 3 = 5
- Letters are used to denote propositions: *p*, *q*, *r*, *s*...
- The truth value of a proposition that is always true denoted by *T*, the truth value of a proposition that is always false denoted by *F*.

New propositions (compound propositions) can be formed from existing propositions using logical operators.

Definition: Let p be a proposition. The *negation* of p, denoted by $\neg p$, the statement "It is not the case that p."

Examples:

- a. Proposition: A triangle has three sides.
 Negation: It is not the case that triangle has three sides.
 Negation in simple English: A triangle does not have three sides.
- b. Proposition: All fish can swim.
 Negation: It is not the case that all fish can swim.
 Negation in simple English: Some fish cannot swim.
- c. Proposition: 2 + 3 > 5 Negation:

A proposition and its negation have OPPOSITE truth values!

Construct a truth table for the negation of *p*.

$\neg p$

Definition: Let p and q be propositions. The *conjunction* of p and q, denoted by $p \land q$, is the proposition "p and q." The conjunction is true when BOTH p and q are true and is false otherwise.

Example: Construct a truth table for the conjunction.

p	q	$oldsymbol{p}\wedgeoldsymbol{q}$

Example: Find the conjunction of the following propositions and determine its truth value.

a. *p*: All birds can fly.

q: 2 + 3 = 5

Conjunction:

Definition: Let p and q be propositions. The *disjunction* of p and q, denoted by $p \lor q$, is the proposition "p or q." The disjunction is false when BOTH p and q are false and is true otherwise.

Example: Construct the truth table for the disjunction.

р	q	$p \lor q$
Т	Т	
Т	F	
F	Т	
F	F	

Example: Find the disjunction of the following propositions and determine its truth value.

a. p: Triangles are square.q: Circles are round.Disjunction:

Definition: Let p and q be propositions. The *exclusive* of p and q, denoted by $p \oplus q$, is the proposition "p or q, but not both." The exclusive is true when ONE of p and q is true and is false otherwise.

Example:

Students who have taken calculus or computer science can take this class.

Soup or salad comes with this entrée.

Example: Construct the truth table for the exclusive.

р	q	$p\oplus q$
Т	Т	
Т	F	
F	Т	
F	F	

Definition: Let *p* and *q* be propositions. The *conditional statement (implication)* $p \rightarrow q$ is the proposition "if *p*, then *q*."

The conditional statement $p \rightarrow q$ is false then p is true and q is false, and true otherwise.

In the conditional statement $p \rightarrow q$, p is called hypothesis and q is called conclusion.

Example: The Truth Table for the Conditional Statement $p \rightarrow q$.

р	q	$oldsymbol{p} o oldsymbol{q}$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- Connection between the hypothesis and conclusion is NOT necessary.
- Think: Implication = Contract.

Example:

- a. If you get 100% on the final, then you will get an A.
- b. If the Moon made of cheese, then 1 + 1 = 2.

Different Ways of Expressing p ightarrow q

if p, then q	p implies q
if <i>p</i> , <i>q</i>	p only if q
q unless ¬p	q when p
<i>q</i> if <i>p</i>	
q whenever p	p is sufficient for q
q follows from p	q is necessary for p
a necessary condi	ition for <i>p</i> is q
a sufficient condi	tion for q is p

Example:

Write the statement in the "If..., then..." form.

a. It is hot whenever it is sunny.

b. To get a good grade it is necessary that you study.

Definitions:

The proposition $q \rightarrow p$ is called *converse*. The proposition $\neg p \rightarrow \neg q$ is called *inverse*. The proposition $\neg q \rightarrow \neg p$ is called *contrapositive*.

Example: Write the converse, inverse, and contrapositive for the following statement.

a. If $3 \ge 5$, then 7 > 7.

Converse:

Inverse:

Contrapositive:

b. I come to class whenever there is going to be a quiz. (Hint: Rewrite the proposition in the "if, then" form)

Converse:

Inverse:

Contrapositive:

Definition: Let p and q be propositions. The *biconditional statement* $p \leftrightarrow q$ is the proposition "p if and only if q." The biconditional statement $p \leftrightarrow q$ is true when p and q have the SAME truth values, and is false otherwise.

"if and only if" = "iff"

Example: You can drive a car if and only if your gas tank is not empty.

Example: The Truth Table for the Biconditional Statement $\leftrightarrow q$.

р	q	$p \leftrightarrow q$
Т	Т	
Т	F	
F	Т	
F	F	

Expressing the Biconditional *p* is necessary and sufficient for *q* if *p* then *q*, and conversely *p* iff *q*

Truth Tables for Compound Propositions Construction of a truth table:

- 1. Rows
 - Need a row for every possible combination of values for the atomic propositions.
- 2. Columns
 - Need a column for the compound proposition (usually at far right)
 - Need a column for the truth value of each expression that occurs in the compound proposition as it is built up.

Example: Construct a truth table for $(p \lor \neg q) \rightarrow (p \land q)$

		$(p \lor \neg q) \\ \rightarrow (p \land q)$

Equivalent Propositions

Definition: Two propositions are equivalent if they always have the same truth value.

Example: Show using a truth table that the conditional is equivalent to the contrapositive.

Precedence of Logical Operators

Operator	Precedence
	1
Λ	2
V	3
\rightarrow	4
\leftrightarrow	5

Example:

 $p \lor q \rightarrow \neg r$ is equivalent to

If the intended meaning is $p \lor (q \rightarrow \neg r)$ then parentheses must be used.