Predicates

Propositional logic is not enough to express the meaning of all statements in mathematics and natural language.

Examples:

Is "x > 1" True or False?

Is "x is a great tennis player" True or False?

Predicate Logic

- Variables: *x*, *y*, *z*, etc.
- Predicates: P(x), Q(x), etc.
- Quantifiers: Universal and Existential.
- Connectives from propositional logic carry over to predicate logic.
- A **predicate** P(x) is a declarative sentence whose truth value depends on one or more variables.
- P(x) is also said to be the value of the **propositional function** P at x.

P(x) becomes a **proposition** when a value of x is assigned from the domain U.

Examples (Propositional Functions):

- 1. Let P(x) be " $x \ge 1$." Determine the truth value of
 - a. P(2) b. $P(-2) \rightarrow P(1)$
- 2. Let R(x, y, z) be "x + y = z." Find these truth values:
 - a. R(2, -1, 5) b. R(x, 3, z)

Quantifiers

We need *quantifiers* to express the meaning of English words including *all* and *some*:

- "All students in this class are computer science majors"
- "There is a math major student in this class"

The two most important quantifiers are:

- Universal Quantifier, "For all," symbol: ∀
- *Existential Quantifier*, "There exists," symbol: ∃

We write as in $\forall x P(x)$ and $\exists x P(x)$.

• $\forall x P(x)$ asserts P(x) is true for <u>every</u> x in the *domain*.

If = { x_1, x_2, \dots, x_n }, then $\forall x P(x) = P(x_1) \land P(x_2) \dots \land P(x_n)$.

• $\exists x P(x)$ asserts P(x) is true for some x in the domain.

If = { $x_1, x_2, ..., x_n$ }, then $\exists x P(x) = P(x_1) \lor P(x_2) ... \lor P(x_n)$.

Examples:

- 1. Let P(x): "x > -x" with the domain of all positive real numbers. Find the truth value of $\forall x P(x)$.
- 2. Let P(x): "x > -x" with the domain of all real numbers. Find the truth value of $\forall x P(x)$.
- The truth value of $\exists x P(x)$ and $\forall x P(x)$ depends BOTH on the propositional function P(x) and on the domain *U*.

Quantifiers		
Statement	When True?	When False?
$\forall x P(x)$	P(x) is true for every x .	There is an x for which $P(x)$ is false.
$\exists x P(x)$	There is an x for which $P(x)$ is true.	P(x) is false for every x .

Example: Suppose the domain of the propositional function $P(x): x^2 \le x$ consists of {1, 2, 3}. Write out each of the following propositions using conjunction or disjunction and determine its truth value.

1. $\forall x P(x)$ 2. $\exists x P(x)$

An element for which P(x) is false is called a **counterexample of** $\forall x P(x)$

Precedence of Quantifiers

The quantifiers \forall and \exists have higher precedence than all the logical operators.

Example: $\forall x P(x) \lor Q(x)$ means $(\forall x P(x)) \lor Q(x)$. $\forall x (P(x) \lor Q(x))$ means something different.

Negating Quantifiers

De Morgan laws for quantifiers (the rules for negating quantifiers) are:

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

- **Example:** Express each of these statements using quantifiers. Then form a negation of the statement, so that no negation is left of a quantifier. Next, express the negation in simple English.
 - 1. "Some old dogs can learn new tricks."

2. "Every bird can fly."

3. $\forall x(x^2 > x)$

Translating from English into Logical Expressions

Examples: Translate the statements into the logical symbols. Let *x* be in set of all students in this class.

- 1. Someone in your class can speak Hindi.
- 2. Everyone in your class is friendly.
- 3. There is a student in your class who was not born in California.

H(x) ="x speaks Hindi", F(x) ="x is friendly," C(x) ="x was born in California."

Example: Translate the following sentence into predicate logic and give its negation:

"Every student in this class has taken a course in Java."

Solution:

First, decide on the domain *U*!

Solution 1: If *U* is all students in this class, define a propositional function J(x) denoting "x has taken a course in Java" and translate as

Solution 2: But if *U* is all people, also define a propositional function S(x) denoting "x is a student in this class" and translate as

Example: Translate the following sentence into predicate logic:

"Some student in this class has taken a course in Java."

Solution:

First, decide on the domain *U*!

Solution 1: If *U* is all students in this class, translate as

Solution 2: But if *U* is all people, then translate as