Discrete Mathematics Sets

Definition: A *set* is an unordered collection of distinct objects.

Examples:

- a. the students in this class
- b. the chairs in this room
- c. counting numbers

Definition: The objects in a set are called the *elements*, or *members* of the set. A set is said to *contain* its elements.

Notation:

- The notation $a \in A$ denotes that *a* is an element of the set *A*.
- If *a* is not a member of *A*, write $a \notin A$.

Ways to describe a set

- 1. Roster method
 - List all elements of a set
 - Order NOT important
 - Each distinct object is either a member or not; listing more than once does not change the set.
 - Ellipses (...) may be used to describe a set without listing all of the members when the pattern is clear.

Example: $S = \{a, b, c, d\}$

Usually elements in a set have a common property but this is NOT necessary.

Example: $C = \{I, \text{ love, math, } 10, \text{ Houston}\}$

- 2. Set builder notation
 - Specify a property that all elements in a certain set must have.

Example: $B = \{x \mid x \text{ is an even positive integer less than 12}\}$

Some important sets

$\mathbb{N} = natural \ numbers = \{0, 1, 2, 3 \dots \}$	$\mathbb{R} = $ set of <i>real numbers</i>
$\mathbb{Z} = integers = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$	\mathbb{R}^+ = set of <i>positive real numbers</i>
\mathbb{Z}^+ = positive integers = {1,2,3,}	$\mathbb{C} = $ set of <i>complex numbers</i> .
	$\mathbb{Q} = $ set of <i>rational numbers</i>

Example: $B = \{x \mid x \text{ is an even positive integer less than 12}\}$

Example: $\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$

Definition: Two sets are equal if and only if they have the same elements. **Notation:** A = B *iff* $\forall x (x \in A \leftrightarrow x \in B)$

Example: $A = \{red, blue, black\}, B = \{black, red, blue\}$

Example: $A = \{red, red, red, red\}, B = \{red\}$

Venn Diagrams

Sets can be represented graphically using Venn diagrams. Venn diagrams are often used to show relations between sets.

John Venn (1834-1923) Cambridge, UK

The *universal set U* is the set containing everything currently under consideration.

- Sometimes implicit
- Sometimes explicitly stated.
- Contents depend on the context.

The *empty (null) set* is the set with no elements. Symbolized Ø, but {} also used.

Example: Draw a Venn diagram that represents $V = \{a, e, i, o, u\}$.

Example: $A = \{x \in \mathbb{N} \mid x < 0\}$

Definition: A set with one element is called a singleton set.

Example: $A = \{x \in \mathbb{N} | x \le 0\}$

Definition: The set *A* is a *subset* of *B* if and only if every element of *A* is also an element of *B*.

A is a *strict (proper) subset* of B if A is a subset of B and A is not equal to B.

Notation: $A \subseteq B$ and $A \subset B$ respectively.

Example: $\{1, 2\} \subset \{1, 2, 3, 4\} \subseteq \{1, 2, 3, 4\}$

- To show that $A \subseteq B$, show that if x belongs to A, then x also belongs to B.
- To show that $A \nsubseteq B$, find a single $x \in A$ such that $x \notin B$.
- For every set S, $\emptyset \subset S$ and $S \subseteq S$.

Prove: For every nonempty set *S*, $\emptyset \subset S$.

Proof:

Definition: Given a set *A*, cardinality (size) of *A* is the number of elements in *A*.

Notation: |A|

Definition: The power set is the set of all subsets of a given set, and is denoted by $\mathcal{P}(A)$.

If a set has n elements, its power set contains 2^n elements.

Try this:

- $A = \{1, \{2\}, \{3,4\}\}, B = \{1, 2, 3, 4\}$ 1. True or False? a. $1 \in A$ b. $2 \in A$ c. $\{3\} \subset A$ d. $2 \in B$ e. $\{3\} \subset B$ f. $\emptyset \in A$ g. $\emptyset \subset B$ h. $A \subseteq B$
 - 2. Find
 - a. |*A*|
 - b. |*B*|
 - c. $\mathcal{P}(A)$
 - d. |Ø|
 - e. |{Ø}|
 - f. $\mathcal{P}(\emptyset)$
 - g. $\mathcal{P}(\{\emptyset\})$