Discrete Mathematics Sets

Definition: A set is an **unordered** collection of **distinct** objects. **Examples:**

- a. the students in this class
- b. the chairs in this room
- c. counting numbers

Definition: The objects in a set are called the *elements*, or *members* of the set. A set is said to *contain* its elements.

Notation:

- The notation $a \in A$ denotes that a is an element of the set A.
- If *a* is not a member of *A*, write $a \notin A$.

Ways to describe a set

- 1. Roster method
 - List all elements of a set
 - Order NOT important
 - Each distinct object is either a member or not; listing more than once does not change the set.
 - Ellipses (...) may be used to describe a set without listing all of the members $A = \begin{cases} 2+2 \\ 2,4 \\ \dots \end{cases}$ when the pattern is clear.

Example:
$$S = \{a, b, c, d\}$$

Usually elements in a set have a common property but this is NOT necessary.

Example: $C = \{I, love, math, 10, Houston\}$

2. Set builder notation

Specify a property that all elements in a certain set must have. Example: $B = \{x \mid x \text{ is an even positive integer less than } 12\}$ $B = \{2, 4, 6, 8, 10\}$ ne important sets such that

Some important sets

$$\mathbb{N} = natural numbers = \{0, 1, 2, 3 \dots\}$$

$$\mathbb{Z} = integers = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

 $\mathbb{Z}^+ = positive integers = \{1, 2, 3, \dots\}$

- 🗩 ℝ = set of *real numbers*
 - \mathbb{R}^+ = set of *positive* real numbers
 - \mathbb{C} = set of *complex numbers*.
 - $\mathbb{Q} = \text{set of } rational numbers$

© 2020, I. Perepelitsa

Example: $B = \{x \mid x \text{ is an even positive integer less than 12}\}$

Example: $\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$

Definition: Two sets are equal if and only if they have the same elements. **Notation:** $A = B \ iff \ \forall x \ (x \in A \leftrightarrow x \in B)$ **Example:** $A = \{red, blue, black\}, B = \{black, red, blue\}$ **Example:** $A = \{red, red, red, red\}, B = \{red\}$ **A = b**

Venn Diagrams

Sets can be represented graphically using Venn diagrams. Venn diagrams are often used to show relations between sets.

John Venn (1834-1923) Cambridge, UK

The *universal set U* is the set containing everything currently under consideration.

- Sometimes implicit
- Sometimes explicitly stated.
- Contents depend on the context.

The *empty (null) set* is the set with no elements. Symbolized Ø, but {} also used.

Example: Draw a Venn diagram that represents $V = \{a, e, i, o, u\}$.

U = English alphabet

Example: $A = \{x \in \mathbb{N} | x < 0\} = 43$

Definition: A set with one element is called a singleton set.

Example: $A = \{x \in \mathbb{N} | x \le 0\}$ = $\{0\}$

Definition: The set *A* is a *subset* of *B* if and only if every element of *A* is also an element of *B*.

A is a *strict (proper)* subset of *B* if *A* is a subset of *B* and *A* is not equal to *B*. **Notation:** $A \subseteq B$ and $A \subset B$ respectively.

Example: $\{1, 2\} \subset \{1, 2, 3, 4\} \subseteq \{1, 2, 3, 4\}$

- To show that $A \subseteq B$, show that if x belongs to A, then x also belongs to B.
- To show that $A \not\subseteq B$, find a single $x \in A$ such that $x \notin B$.
- For every set $S, \emptyset \subset S$ and $S \subseteq S$.

Prove: For every nonempty set $S, \emptyset \subset S$.

Proof:

Definition: Given a set *A*, cardinality (size) of *A* is the number of elements in *A*. **Notation:** |*A*|

Definition: The power set is the set of all subsets of a given set, and is denoted by $\mathcal{P}(A)$. The power set contains 2^n elements.

