Definition: Let *A* and *B* be sets. The *union* of the sets *A* and *B*, denoted $A \cup B$, is the set that contains those elements that are either in *A* or in *B*, or in both.

Try this one: Write the union of *A* and *B* in the set builder notation.

Venn diagram for $A \cup B$

Definition: Let *A* and *B* be sets. The *intersection* of the sets *A* and *B*, denoted, $A \cap B$, is the set containing those elements in both *A* and *B*. Two sets are called *disjoint* if their intersection is empty.

Try this one: Write the intersection of *A* and *B* in the set builder notation.

Example 1:

- a. Find {5, 7, 19} ∪ {1, 2, 3}.
- b. Find $\{5, 7, 19\} \cap \{1, 2, 3\}$.

Venn diagram for $A \cap B$

Definition: Let *A* and *B* be sets. The *difference* of *A* and *B*, denoted by A - B, is the set containing the elements of *A* that are not in *B*. The difference of *A* and *B* is also called the complement of *B* with respect to *A*.

Try this one: Write the difference of *A* and *B* in the set builder notation.

Venn diagram for A - B

Example 2: Find {5, 7, 19} - {1, 2, 3}

Definition: Let *U* be the universal set. The complement of the set A, denoted by \overline{A} , is the complement of *A* with respect to *U*. Therefore, the complement of the set *A* is U - A.

Try this one: Write \overline{A} , in the set builder notation.

Venn diagram for \bar{A}

Example 3: Let *A* be the set of positive natural numbers and the universal set is the set of natural numbers. Write \overline{A} .

The cardinality of the union of two sets

 $|A \cup B| = |A| + |B| - |A \cap B|$ Inclusion-exclusion principle

Example 4: Find $|A \cup B|$ if $A = \{1, 2, 3, 4, 5\}$ and $B = \{2, 3, 4, 5, 6, 7, 8\}$.

Definition: Let A and B be sets. The *symmetric difference* of A and B, denoted by $A \oplus B$ is the set $(A - B) \cup (B - A)$.

Venn diagram for symmetric difference

Try this one: $U = \{x \in \mathbb{N} \mid x \le 10\}, A = \{1, 2, 3\}, \text{ and } B = \{3, 4, 5\}.$ Find $A \oplus B$.

Set Identities

- Identity laws: $A \cup \emptyset = A$; $A \cap U = A$
- Domination laws: $A \cup U = U$; $A \cap \emptyset = \emptyset$
- Idempotent laws: $A \cup A = A$; $A \cap A = A$
- Complementation law: $\overline{(\overline{A})} = A$
- Commutative laws: $A \cup B = B \cup A$; $A \cap B = B \cap A$
- Associative laws: $A \cup (B \cup C) = (A \cup B) \cup C$; $A \cap (B \cap C) = (A \cap B) \cap C$
- Distributive laws: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$;

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

- De Morgan's laws: $\overline{A \cup B} = \overline{A} \cap \overline{B}; \quad \overline{A \cap B} = \overline{A} \cup \overline{B}$
- Absorption laws: $A \cup (A \cap B) = A$; $A \cap (A \cup B) = A$
- Complement laws: $A \cup \overline{A} = U$; $A \cap \overline{A} = \emptyset$

Proving set identities

Different ways to prove set identities

- Prove that each set (side of the identity) is a subset of the other.
- Membership Tables: Verify that elements in the same combination of sets always either belong or do not belong to the same side of the identity. Use 1 to indicate it is in the set and a 0 to indicate that it is not.

Example 5: Construct a membership table to show $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Example 6: Prove $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ by showing that RHS set and LHS set are subsets of each other.

Definition: Let *A* and *B* be sets. The Cartesian product of *A* and *B*, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$.

Try this: Write $A \times B$ in the set builder notation.

Example 7: Let $A = \{1,2,3\}$ and $B = \{a, b\}$. Find $A \times B$ and $B \times A$.

Example 8: Find A^3 if $A = \{a\}$.

Example 9: How many different elements does $A \times B$ have if A has m elements and B has n elements?

Example 10: Suppose $A \times B = \emptyset$, where A and B are sets. What can you conclude?