Definition: A *function* f from a set A to a set B, denoted $f: A \rightarrow B$ is a well-defined rule that assigns each element of A to exactly one element of B.

We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

Example:

Recall: Let *A* and *B* be sets. The *Cartesian product* of *A* and *B*, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$.

We can define a function $f: A \rightarrow B$ as a subset of the Cartesian product $A \times B$.

Given a function $f: A \rightarrow B$:

- We say *f* maps *A* to *B* or *f* is a mapping from *A* to *B*.
- *A* is called the *domain* of *f*.
- *B* is called the *codomain* of *f*.
- If f(a) = b,
 - then *b* is called the *image* of *a* under *f*.
 - *a* is called the *preimage* of *b*.
- The range of *f* is the set of all images of points in **A** under *f*. We denote it by *f*(*A*).
- Two functions are *equal* when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain.

Example: Let $f: A \to B$, where $A = \{a, b, c, d\}$, $B = \{x, y, z\}$, and f(a) = z, f(b) = y, f(c) = z, f(d) = z.

- a. f(a) = ?
- b. The image of *d* is?
- c. The domain of *f* is?
- d. The codomain of *f* is?
- e. The preimage of *y* is?
- f. f(A) = ?
- g. The preimage(s) of z is (are)?
- h. The range of *f* is?

Definition: A function f is said to be *one-to-one*, or *injective*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be an *injection* if it is one-to-one.

Example:

Definition: A function f from A to B is called *onto* or *surjective*, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function f is called a *surjection* if it is *onto*.

Example:

Definition: A function f is a *one-to-one correspondence*, or a *bijection*, if it is both one-to-one and onto (surjective and injective).

Example:

Suppose that $f: A \rightarrow B$.

To show that *f* **is injective:** Show that if f(x) = f(y) for arbitrary $x, y \in A$, then x = y.

To show that *f* **is** *not* **injective:** Find particular elements $x, y \in A$ such that $x \neq y$ and

$$f(x) = f(y).$$

To show that *f* is surjective: Consider an arbitrary element $y \in B$ and find an element $x \in B$

A such that f(x) = y.

To show that *f* **is** *not* **surjective:** Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Example: Let *f* be the function from $\{a, b, c, d\}$ to $\{1, 2, 3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is *f* an onto function?

Example: Is the function $f(x) = x^2$ from the set of integers to the set of integers onto?

Example: Determine if each function is a bijection.

a.
$$f(x) = 2x + 1$$

b.
$$f(x) = x^2 + 1$$

Definition: Let *f* be a bijection from *A* to *B*. Then the *inverse* of *f*, denoted f^{-1} , is the function from *B* to *A* defined as $f^{-1}(y) = x$ iff f(x) = y.

No inverse exists unless f is a bijection. Why?

Example: Let *f* be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is *f* invertible and if so what is its inverse?

Example: Let $f: \mathbb{Z} \to \mathbb{Z}$ be such that f(x) = 2x + 1. Is f invertible, and if so, what is its inverse?

Example: Let $f: \mathbb{R} \to \mathbb{R}$ be such that f(x) = |x|. Is f invertible, and if so, what is its inverse?

Definition: Let $f: B \to C, g: A \to B$. The *composition of* f *with* g, denoted $f \circ g$ is the function from A to C defined by $(f \circ g)(x) = f(g(x))$.

Example: $f(x) = x^2$ and g(x) = 2x + 1. Find $(f \circ g)(x)$ and $g \circ f(x)$.

Example: Let *g* be the function from the set $\{a, b, c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let *f* be the function from the set $\{a, b, c\}$ to the set $\{1,2,3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1.

What is the composition of *f* and *g*, and what is the composition of *g* and *f*.

Some important functions

- The *floor* function, denoted $\lfloor x \rfloor$ is the largest integer less than or equal to *x*.
- The *ceiling* function, denoted [x] is the smallest integer greater than or equal to x.

Example:

- (1b) $\lceil x \rceil = n$ if and only if $n 1 < x \le n$
- (1c) |x| = n if and only if $x 1 < n \le x$
- (1d) $\lceil x \rceil = n$ if and only if $x \le n < x + 1$

(2)
$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

- $(3a) \quad \lfloor -x \rfloor = -\lceil x \rceil$
- $(3b) \quad \lceil -x \rceil = -\lfloor x \rfloor$
- (4a) $\lfloor x + n \rfloor = \lfloor x \rfloor + n$
- (4b) $\lceil x + n \rceil = \lceil x \rceil + n$

• Factorial function

Definition: $f: \mathbb{N} \to \mathbb{Z}^+$, denoted by f(n) = n! is the product of the first *n* positive integers. $f(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n \cdot f(0) = 0! = 1$

Example: Find f(2), f(3), f(4).