20 points

1. Write out the cardinal functions $L_{i}(x)$ appropriate to the problem of interpolating the following table, and give the Lagrange form of the interpolating polynomial:

x	$\frac{1}{3}$	$\frac{1}{4}$	1
$f(x)$	2	-1	7

20 points
2. Construct a divided-difference diagram for the function f given in the following table, and write out the Newton form of the interpolating polynomial

x	1	$\frac{3}{2}$	0	2
$f(x)$	3	$\frac{13}{4}$	3	$\frac{5}{3}$

20 points
3. Write out the cardinal functions $H_{i}(x)$ and $\hat{H}_{i}(x)$ appropriate to the problem of interpolating the following table, and give the Hermite interpolating polynomial:

x	$f(x)$	$f^{\prime}(x)$
0	2	1
1	1	2

20 points
4. Construct a divided-difference diagram for the function f given in the following table, and give the Hermite interpolating polynomial:

x	$f(x)$	$f^{\prime}(x)$
0	2	1
1	1	2

20 points
5. Determine the parameters a, b, c, d, e, f, g, and h so that $S(x)$ is a natural cubic spline, where

$$
S(x)= \begin{cases}a x^{3}+b x^{2}+c x+d & x \in[-1,0] \\ e x^{3}+f x^{2}+g x+h & x \in[0,1]\end{cases}
$$

with interpolating conditions

$$
S(-1)=1, \quad S(0)=2, \quad S(1)=-1
$$

