1. Write out the cardinal functions $L_{i}(x)$ appropriate to the problem of interpolating the following table, and give the Lagrange form of the interpolating polynomial:

x	$\frac{1}{3}$	$\frac{1}{4}$	1
$f(x)$	2	-1	7

Solution The cardinal functions $L_{i}(x)$ are

$$
\begin{aligned}
& L_{0}(x)=\frac{\left(x-\frac{1}{4}\right)(x-1)}{\left(\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{3}-1\right)}=-18\left(x-\frac{1}{4}\right)(x-1) \\
& L_{1}(x)=\frac{\left(x-\frac{1}{3}\right)(x-1)}{\left(\frac{1}{4}-\frac{1}{3}\right)\left(\frac{1}{4}-1\right)}=16\left(x-\frac{1}{3}\right)(x-1) \\
& L_{2}(x)=\frac{\left(x-\frac{1}{3}\right)\left(x-\frac{1}{4}\right)}{\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)}=2\left(x-\frac{1}{3}\right)\left(x-\frac{1}{4}\right)
\end{aligned}
$$

There, the interpolating polynomial in the Lagrange form is

$$
p_{2}(x)=-36\left(x-\frac{1}{4}\right)(x-1)-16\left(x-\frac{1}{3}\right)(x-1)+14\left(x-\frac{1}{3}\right)\left(x-\frac{1}{4}\right)
$$

20 points
2. Construct a divided-difference diagram for the function f given in the following table, and write out the Newton form of the interpolating polynomial

x	1	$\frac{3}{2}$	0	2
$f(x)$	3	$\frac{13}{4}$	3	$\frac{5}{3}$

Solution The complete diagram is

x	$f[\cdot]$	$f[\cdot, \cdot]$	$f[\cdot, \cdot, \cdot]$	$f[\cdot, \cdot, \cdot, \cdot]$
1	3			
$\frac{3}{2}$	$\frac{13}{4}$	$\frac{1}{2}$	$\frac{1}{3}$	
0	3	$\frac{1}{6}$	$-\frac{5}{3}$	-2
2	$\frac{5}{3}$	$-\frac{2}{3}$		

where the first entry in column 3 is

$$
f\left[x_{0}, x_{1}\right]=\frac{\frac{13}{4}-3}{\frac{3}{2}-1}=\frac{1}{2}
$$

and after completion of column 3, the first entry in column 4 is

$$
f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}=\frac{\frac{1}{6}-\frac{1}{2}}{0-1}=\frac{1}{3}
$$

Thus, the Newton form of the interpolating polynomial is

$$
p_{3}(x)=3+\frac{1}{2}(x-1)+\frac{1}{3}(x-1)\left(x-\frac{3}{2}\right)-2(x-1)\left(x-\frac{3}{2}\right) x
$$

20 points 3 . Write out the cardinal functions $H_{i}(x)$ and $\hat{H}_{i}(x)$ appropriate to the problem of interpolating the following table, and give the Hermite interpolating polynomial:

x	$f(x)$	$f^{\prime}(x)$
0	2	1
1	1	2

Solution First compute the Lagrange polynomials $L_{i}(x)$ and their derivatives:

$$
\begin{gathered}
L_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}}=\frac{x-1}{0-1}=1-x, \quad L_{0}^{\prime}(x)=-1, \\
L_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}=\frac{x-0}{1-0}=x, \quad L_{1}^{\prime}(x)=1
\end{gathered}
$$

The cardinal functions $H_{i}(x)$ and $\hat{H}_{i}(x)$ are

$$
\begin{aligned}
& H_{0}(x)=\left[1-2\left(x-x_{0}\right) L_{0}^{\prime}\left(x_{0}\right)\right] L_{0}^{2}(x)=(1+2 x)(1-x)^{2}, \\
& \hat{H}_{0}(x)=\left(x-x_{0}\right) L_{0}^{2}(x)=x(1-x)^{2}, \\
& H_{1}(x)=\left[1-2\left(x-x_{1}\right) L_{1}^{\prime}\left(x_{1}\right)\right] L_{1}^{2}(x)=(3-2 x) x^{2}, \\
& \hat{H}_{1}(x)=\left(x-x_{1}\right) L_{1}^{2}(x)=(x-1) x^{2}
\end{aligned}
$$

Thus, the Hermite interpolating polynomial is

$$
p_{3}(x)=2(1+2 x)(1-x)^{2}+x(1-x)^{2}+(3-2 x) x^{2}+2(x-1) x^{2}
$$

20 points
4. Construct a divided-difference diagram for the function f given in the following table, and give the Hermite interpolating polynomial:

x	$f(x)$	$f^{\prime}(x)$
0	2	1
1	1	2

Solution The complete diagram is

z	$f[\cdot]$	$f[\cdot, \cdot]$	$f[\cdot, \cdot, \cdot]$	$f[\cdot, \cdot, \cdot, \cdot]$
0	2			
0	2		-2	
1	1	-1	3	5
1	1	2		
1				

where the first entry in column 3 is $f^{\prime}\left(x_{0}\right)$, the second entry in column 3 is

$$
f\left[z_{1}, z_{2}\right]=\frac{1-2}{1-0}=-1
$$

and after completion of column 3 , the first entry in column 4 is

$$
f\left[z_{0}, z_{1}, z_{2}\right]=\frac{f\left[z_{1}, z_{2}\right]-f\left[z_{0}, z_{1}\right]}{z_{2}-z_{0}}=\frac{-1-1}{1-0}=-2
$$

Thus, the Newton form of the Hermite interpolating polynomial is

$$
p_{3}(x)=2+x-2 x^{2}+5 x^{2}(x-1)
$$

20 points 5. Determine the parameters a, b, c, d, e, f, g, and h so that $S(x)$ is a natural cubic spline, where

$$
S(x)= \begin{cases}a x^{3}+b x^{2}+c x+d, & x \in[-1,0] \\ e x^{3}+f x^{2}+g x+h, & x \in[0,1]\end{cases}
$$

with interpolating conditions

$$
S(-1)=1, \quad S(0)=2, \quad S(1)=-1
$$

Solution From the interpolation conditions, we have

$$
\begin{aligned}
S(0)=2 & \Rightarrow \quad d=2, \quad h=2, \\
S(-1)=1 & \Rightarrow \quad-a+b-c+d=1 \\
S(1)=-1 & \Rightarrow \quad e+f+g+h=-1
\end{aligned}
$$

Since

$$
S^{\prime}(x)= \begin{cases}3 a x^{2}+2 b x+c, & x \in[-1,0] \\ 3 e x^{2}+2 f x+g, & x \in[0,1]\end{cases}
$$

we have $c=g$ from the continuity condition of S^{\prime} at $x=0$, i.e.,

$$
S^{\prime}(0)=c=g
$$

Also, since

$$
S^{\prime \prime}(x)= \begin{cases}6 a x+2 b, & x \in[-1,0] \\ 6 e x+2 f, & x \in[0,1]\end{cases}
$$

we have $b=f$ from the continuity condition of $S^{\prime \prime}$ at $x=0$, i.e.,

$$
S^{\prime \prime}(0)=2 b=2 f .
$$

In order for S to be a natural cubic spline, we must have

$$
\begin{aligned}
S^{\prime \prime}(-1)=0 & \Rightarrow \quad-6 a+2 b=0 \\
S^{\prime \prime}(1)=0 & \Rightarrow \quad 6 e+2 f=0
\end{aligned}
$$

From all of these equations, we obtain

$$
a=-1, \quad b=-3, \quad c=-1, \quad d=2, \quad e=1, \quad f=-3, \quad g=-1, \quad h=2
$$

