20 points

1. Taylor's theorem can be used to show that centered-difference formula to approximate $f^{\prime}\left(x_{0}\right)$ can be expressed with an error formula

$$
f^{\prime}\left(x_{0}\right)=\frac{1}{2 h}\left[f\left(x_{0}+h\right)-f\left(x_{0}-h\right)\right]-\frac{h^{2}}{6} f^{\prime \prime \prime}\left(x_{0}\right)-\frac{h^{4}}{120} f^{(5)}\left(x_{0}\right)-\cdots
$$

Find approximations of order $O\left(h^{2}\right), O\left(h^{4}\right)$, and $O\left(h^{6}\right)$ for $f^{\prime}(2)$ when $h=0.2$ and $f(x)$ is represented by the following table

x	1.8	1.9	1.95	2.05	2.1	2.2
$f(x)$	10.889	12.703	13.706	15.924	17.149	19.855

2. (a) Use Simpson's rule to approximate

$$
\int_{1}^{1.5} x^{2} \ln x d x
$$

(b) Find a bound for the error in the Simpson's rule approximation in part (a).

20 points
3. A car laps a race track in 60 seconds. The speed of the car at each 6 -second interval is determined by using a radar gun and is given from the beginning of the lap, in feet/second, by the entries in the following table. Use the Composite Simpson's rule to determine the length of the track.

Time	0	6	12	18	24	30	36	42	48	54	60
Speed	124	134	148	156	147	133	121	109	99	85	78

20 points 4. Determine constants a, b, c and d that will produce a quadrature formula

$$
\int_{-1}^{1} f(x) d x=a f(-1)+b f(1)+c f^{\prime}(-1)+d f^{\prime}(1)
$$

that has degree of precision 3 .
20 points
5. Use the Composite Simpson's rule for $n=4$ to approximate the value of the improper integral

$$
\int_{0}^{1} x^{-1 / 4} \sin x d x
$$

