20 points

1. Taylor's theorem can be used to show that centered-difference formula to approximate $f'(x_0)$ can be expressed with an error formula

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f'''(x_0) - \frac{h^4}{120} f^{(5)}(x_0) - \cdots$$

Find approximations of order $O(h^2)$, $O(h^4)$, and $O(h^6)$ for f'(2) when h = 0.2 and f(x) is represented by the following table

Solution Let M = f'(2) and $N_1(h) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)]$. Then we have the $O(h^2)$ approximation

$$M = N_1(h) + K_1h^2 + K_2h^4 + K_3h^6 + \cdots$$

The Richardson's Extrapolation

$$N_j(h) = N_{j-1}\left(\frac{h}{2}\right) + \frac{1}{4^{j-1} - 1}\left(N_{j-1}\left(\frac{h}{2}\right) - N_{j-1}(h)\right), \quad j = 2, 3, \dots,$$

gives the $O(h^{2j})$ approximation for M = f'(2). From the $O(h^2)$ approximation

$$N_1(0.2) = \frac{1}{0.4} [f(2.2) - f(1.8)] = 2.5(19.855 - 10.889) = 22.414$$
$$N_1(0.1) = \frac{1}{0.2} [f(2.1) - f(1.9)] = 5(17.149 - 12.703) = 22.228$$
$$N_1(0.05) = \frac{1}{0.1} [f(2.05) - f(1.95)] = 10(15.924 - 13.706) = 22.183$$

we can compute the $O(h^4)$ approximation

$$N_2(0.2) = N_1(0.1) + \frac{1}{3} [N_1(0.1) - N_1(0.2)] = 22.167$$
$$N_2(0.1) = N_1(0.05) + \frac{1}{3} [N_1(0.05) - N_1(0.1)] = 22.183$$

and finally the $O(h^6)$ approximation

$$N_3(0.2) = N_2(0.1) + \frac{1}{15} [N_2(0.1) - N_2(0.2)] = 22.167$$

2. (a) Use Simpson's rule to approximate

$$\int_{1}^{1.5} x^2 \ln x dx$$

20 points

(b) Find a bound for the error in the Simpson's rule approximation in part (a).Solution (a) Simpson's rule gives

$$\int_{1}^{1.5} x^2 \ln x dx \approx \frac{0.25}{3} \left[1^2 \ln(1) + 4(1.25)^2 \ln(1.25) + (1.5)^2 \ln(1.5) \right] \approx 0.19225$$

(b) Since

$$f'(x) = 2x \ln x + x$$
, $f''(x) = 2 \ln x + 3$, $f'''(x) = 2/x$, $f^{(4)}(x) = -2/x^2$,

the error is bounded on [1, 1.5] by

$$\left|\frac{h^5}{90}f^{(4)}(x)\right| \le \frac{(0.25)^5}{90}\frac{2}{1^2} \approx 2.17 \times 10^{-5}$$

20 points 3. A car laps a race track in 60 seconds. The speed of the car at each 6-second interval is determined by using a radar gun and is given from the beginning of the lap, in feet/second, by the entries in the following table. Use the Composite Simpson's rule to determine the length of the track.

Time	0	6	12	18	24	30	36	42	48	54	60
Speed	124	134	148	156	147	133	121	109	99	85	78

Solution Since the velocity v(t) is the derivative of the distance s(t), the total distance traveled in the 60 second interval is

$$s(60) = \int_0^{60} v(t)dt.$$

However, we do not have an explicit representation for the velocity, only its values at each 6-second interval. We can approximate the distance by doing numerical integration on the velocity. Using the Composite Simpson's rule gives the approximate length of the track as

$$s(60) = \int_0^{60} v(t)dt$$

$$\approx \frac{6}{3} (124 + 4(134 + 156 + 133 + 109 + 85) + 2(148 + 147 + 121 + 99) + 78)$$

$$= 2 * 3700 = 7400 \text{ feet}$$

20 points | 4. Determine constants a, b, c and d that will produce a quadrature formula

$$\int_{-1}^{1} f(x)dx = af(-1) + bf(1) + cf'(-1) + df'(1)$$

that has degree of precision 3.

Solution The formula must be exact for f(x) = 1, x, x^2 and x^3 . Thus

$$f(x) = 1, \quad f'(x) = 0 \quad \Rightarrow \quad \int_{-1}^{1} dx = 2 = a + b;$$

$$f(x) = x, \quad f'(x) = 1 \quad \Rightarrow \quad \int_{-1}^{1} x dx = 0 = -a + b + c + d;$$

$$f(x) = x^{2}, \quad f'(x) = 2x \quad \Rightarrow \quad \int_{-1}^{1} x^{2} dx = 2/3 = a + b - 2c + 2d;$$

$$f(x) = x^{3}, \quad f'(x) = 3x^{2} \quad \Rightarrow \quad \int_{-1}^{1} x^{3} dx = 0 = -a + b + 3c + 3d;$$

Solving the four equations gives a = 1, b = 1, c = 1/3, and d = -1/3.

20 points 5. Use the Composite Simpson's rule for n = 4 to approximate the value of the improper integral

$$\int_0^1 x^{-1/4} \sin x dx$$

Solution For the sin function, the 4th Taylor polynomial about zero is

$$p_4(x) = x - \frac{x^3}{6}$$

and

$$\int_0^1 x^{-1/4} p_4(x) dx = \int_0^1 \left(x^{3/4} - \frac{x^{11/4}}{6} \right) dx = \left[\frac{4}{7} x^{7/4} - \frac{2}{45} x^{15/4} \right]_0^1 = \frac{4}{7} - \frac{2}{45} x^{15/4} = \frac{1}{7} - \frac{1}{7} + \frac{1}{7}$$

Now define

$$G(x) = \begin{cases} x^{-1/4}(\sin x - p_4(x)), & \text{if } 0 < x \le 1\\ 0 & \text{if } x = 0 \end{cases}$$

and apply the Composite Simpson's rule with h = 1/4 = 0.25 to G(x). This gives

$$\int_0^1 G(x)dx = \frac{0.25}{3} \left[G(0) + 4G(0.25) + 2G(0.5) + 4G(0.75) + G(1) \right]$$

$$\approx \frac{0.25}{3} \left[0 + 4(0.0000115) + 2(0.000308) + 4(0.00210) + 0.00814 \right] \approx 0.00143$$

Hence

$$\int_0^1 x^{-1/4} \sin x \, dx = \int_0^1 x^{-1/4} p_4(x) \, dx + \int_0^1 G(x) \, dx \approx \left(\frac{4}{7} - \frac{2}{45}\right) + 0.00143 \approx 0.5284$$