1. Taylor's theorem can be used to show that centered-difference formula to approximate $f^{\prime}\left(x_{0}\right)$ can be expressed with an error formula

$$
f^{\prime}\left(x_{0}\right)=\frac{1}{2 h}\left[f\left(x_{0}+h\right)-f\left(x_{0}-h\right)\right]-\frac{h^{2}}{6} f^{\prime \prime \prime}\left(x_{0}\right)-\frac{h^{4}}{120} f^{(5)}\left(x_{0}\right)-\cdots
$$

Find approximations of order $O\left(h^{2}\right), O\left(h^{4}\right)$, and $O\left(h^{6}\right)$ for $f^{\prime}(2)$ when $h=0.2$ and $f(x)$ is represented by the following table

x	1.8	1.9	1.95	2.05	2.1	2.2
$f(x)$	10.889	12.703	13.706	15.924	17.149	19.855

Solution Let $M=f^{\prime}(2)$ and $N_{1}(h)=\frac{1}{2 h}\left[f\left(x_{0}+h\right)-f\left(x_{0}-h\right)\right]$. Then we have the $O\left(h^{2}\right)$ approximation

$$
M=N_{1}(h)+K_{1} h^{2}+K_{2} h^{4}+K_{3} h^{6}+\cdots
$$

The Richardson's Extrapolation

$$
N_{j}(h)=N_{j-1}\left(\frac{h}{2}\right)+\frac{1}{4^{j-1}-1}\left(N_{j-1}\left(\frac{h}{2}\right)-N_{j-1}(h)\right), \quad j=2,3, \ldots,
$$

gives the $O\left(h^{2 j}\right)$ approximation for $M=f^{\prime}(2)$. From the $O\left(h^{2}\right)$ approximation

$$
\begin{aligned}
& N_{1}(0.2)=\frac{1}{0.4}[f(2.2)-f(1.8)]=2.5(19.855-10.889)=22.414 \\
& N_{1}(0.1)=\frac{1}{0.2}[f(2.1)-f(1.9)]=5(17.149-12.703)=22.228 \\
& N_{1}(0.05)=\frac{1}{0.1}[f(2.05)-f(1.95)]=10(15.924-13.706)=22.183
\end{aligned}
$$

we can compute the $O\left(h^{4}\right)$ approximation

$$
\begin{aligned}
& N_{2}(0.2)=N_{1}(0.1)+\frac{1}{3}\left[N_{1}(0.1)-N_{1}(0.2)\right]=22.167 \\
& N_{2}(0.1)=N_{1}(0.05)+\frac{1}{3}\left[N_{1}(0.05)-N_{1}(0.1)\right]=22.183
\end{aligned}
$$

and finally the $O\left(h^{6}\right)$ approximation

$$
N_{3}(0.2)=N_{2}(0.1)+\frac{1}{15}\left[N_{2}(0.1)-N_{2}(0.2)\right]=22.167
$$

2. (a) Use Simpson's rule to approximate

$$
\int_{1}^{1.5} x^{2} \ln x d x
$$

(b) Find a bound for the error in the Simpson's rule approximation in part (a).

20 points Solution (a) Simpson's rule gives

$$
\int_{1}^{1.5} x^{2} \ln x d x \approx \frac{0.25}{3}\left[1^{2} \ln (1)+4(1.25)^{2} \ln (1.25)+(1.5)^{2} \ln (1.5)\right] \approx 0.19225
$$

(b) Since

$$
f^{\prime}(x)=2 x \ln x+x, \quad f^{\prime \prime}(x)=2 \ln x+3, \quad f^{\prime \prime \prime}(x)=2 / x, \quad f^{(4)}(x)=-2 / x^{2},
$$

the error is bounded on $[1,1.5]$ by

$$
\left|\frac{h^{5}}{90} f^{(4)}(x)\right| \leq \frac{(0.25)^{5}}{90} \frac{2}{1^{2}} \approx 2.17 \times 10^{-5}
$$

20 points 3. A car laps a race track in 60 seconds. The speed of the car at each 6 -second interval is determined by using a radar gun and is given from the beginning of the lap, in feet/second, by the entries in the following table. Use the Composite Simpson's rule to determine the length of the track.

Time	0	6	12	18	24	30	36	42	48	54	60
Speed	124	134	148	156	147	133	121	109	99	85	78

Solution Since the velocity $v(t)$ is the derivative of the distance $s(t)$, the total distance traveled in the 60 second interval is

$$
s(60)=\int_{0}^{60} v(t) d t
$$

However, we do not have an explicit representation for the velocity, only its values at each 6 -second interval. We can approximate the distance by doing numerical integration on the velocity. Using the Composite Simpson's rule gives the approximate length of the track as

$$
\begin{aligned}
s(60) & =\int_{0}^{60} v(t) d t \\
& \approx \frac{6}{3}(124+4(134+156+133+109+85)+2(148+147+121+99)+78) \\
& =2 * 3700=7400 \text { feet }
\end{aligned}
$$

20 points 4. Determine constants a, b, c and d that will produce a quadrature formula

$$
\int_{-1}^{1} f(x) d x=a f(-1)+b f(1)+c f^{\prime}(-1)+d f^{\prime}(1)
$$

that has degree of precision 3 .
Solution The formula must be exact for $f(x)=1, x, x^{2}$ and x^{3}. Thus

$$
\begin{aligned}
& f(x)=1, \quad f^{\prime}(x)=0 \Rightarrow \int_{-1}^{1} d x=2=a+b ; \\
& f(x)=x, \quad f^{\prime}(x)=1 \quad \Rightarrow \quad \int_{-1}^{1} x d x=0=-a+b+c+d ; \\
& f(x)=x^{2}, \quad f^{\prime}(x)=2 x \quad \Rightarrow \quad \int_{-1}^{1} x^{2} d x=2 / 3=a+b-2 c+2 d ; \\
& f(x)=x^{3}, \quad f^{\prime}(x)=3 x^{2} \quad \Rightarrow \quad \int_{-1}^{1} x^{3} d x=0=-a+b+3 c+3 d ;
\end{aligned}
$$

Solving the four equations gives $a=1, b=1, c=1 / 3$, and $d=-1 / 3$.
5. Use the Composite Simpson's rule for $n=4$ to approximate the value of the improper integral

$$
\int_{0}^{1} x^{-1 / 4} \sin x d x
$$

Solution For the sin function, the 4th Taylor polynomial about zero is

$$
p_{4}(x)=x-\frac{x^{3}}{6}
$$

and

$$
\int_{0}^{1} x^{-1 / 4} p_{4}(x) d x=\int_{0}^{1}\left(x^{3 / 4}-\frac{x^{11 / 4}}{6}\right) d x=\left[\frac{4}{7} x^{7 / 4}-\frac{2}{45} x^{15 / 4}\right]_{0}^{1}=\frac{4}{7}-\frac{2}{45}
$$

Now define

$$
G(x)= \begin{cases}x^{-1 / 4}\left(\sin x-p_{4}(x)\right), & \text { if } 0<x \leq 1 \\ 0 & \text { if } x=0\end{cases}
$$

and apply the Composite Simpson's rule with $h=1 / 4=0.25$ to $G(x)$. This gives

$$
\begin{aligned}
\int_{0}^{1} G(x) d x & =\frac{0.25}{3}[G(0)+4 G(0.25)+2 G(0.5)+4 G(0.75)+G(1)] \\
& \approx \frac{0.25}{3}[0+4(0.0000115)+2(0.000308)+4(0.00210)+0.00814] \approx 0.00143
\end{aligned}
$$

Hence

$$
\int_{0}^{1} x^{-1 / 4} \sin x d x=\int_{0}^{1} x^{-1 / 4} p_{4}(x) d x+\int_{0}^{1} G(x) d x \approx\left(\frac{4}{7}-\frac{2}{45}\right)+0.00143 \approx 0.5284
$$

