40 points

1. Consider the initial value problem

$$
\begin{equation*}
y^{\prime}=-2 y+t e^{3 t}, \quad 0 \leq t \leq 1, \quad y(0)=0 \tag{1}
\end{equation*}
$$

(a) Use Euler's method with $h=0.5$ to approximate the solution to equation (1).
(b) The exact soltuion to the initial value problem (1) is

$$
y(t)=\frac{1}{5} t e^{3 t}-\frac{1}{25} e^{3 t}+\frac{1}{25} e^{-2 t}
$$

Determine an error bound for the approximation obtained in (a).
(c) Use Taylor's method of order two with $h=0.5$ to approximate the solution to equation (1)
(d) Use the modified Euler method with $h=0.5$ to approximate the solution to equation (1).
(e) Use the Runge-Kutta method of order four with $h=0.5$ to approximate the solution to equation (1).

40 points
2. Consider the following Runge-Kutta method

$$
\begin{aligned}
& w_{0}=y_{0} \\
& \text { for } i=0,1, \cdots, N-1, \\
& k_{1}=h f\left(t_{i}, w_{i}\right) \\
& k_{2}=h f\left(t_{i}+\alpha h, w_{i}+\beta k_{1}\right) \\
& w_{i+1}=w_{i}+a_{1} k_{1}+a_{2} k_{2}
\end{aligned}
$$

(a) Show that the above Runge-Kutta method cannot have local truncation error $O\left(h^{3}\right)$ for any choice of constants a_{1}, a_{2}, α and β.
(b) Show that the above Runge-Kutta method is of order 2 if, for any α,

$$
\beta=\alpha, \quad a_{1}=1-\frac{1}{2 \alpha}, \quad a_{2}=\frac{1}{2 \alpha} .
$$

(c) Show that by chosing $\alpha=1$ in (b), we obtain the modified Euler method.
(d) Show that by chosing $\alpha=\frac{1}{2}$ in (b), we obtain the midpoint method.

20 points
3. Derive the Adams-Bashforth two step method by using the Lagrange form of the interpolating polynomial.

