40 points

1. Consider the initial value problem

$$y' = -2y + te^{3t}, \quad 0 \le t \le 1, \quad y(0) = 0.$$
 (1)

(a) Use Euler's method with h = 0.5 to approximate the solution to equation (1). Solution: Let $f(t, y) = -2y + te^{3t}$. use Euler's method

$$t_0 = 0, \quad w_0 = y(t_0) = 0,$$
for $i = 0, N$,
$$t_{i+1} = t_i + h, \quad w_{i+1} = w_i + hf(t_i, w_i) = w_i + h(-2w_i + t_i e^{3t_i}).$$

$$t_1 = t_0 + h = 0.5, \quad y(t_1) \approx w_1 = w_0 + h(-2w_0 + t_0 e^{3t_0}) = 0$$

$$t_2 = t_1 + h = 1, \quad y(t_2) \approx w_2 = w_1 + h(-2w_1 + t_1 e^{3t_1}) = 1.1204223$$

(b) The exact soltuion to the initial value problem (1) is

$$y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}$$

Determine an error bound for the approximation obtained in (a).

Solution: Let L be the Lipshitz constant L of $f(t,y) = -2y + te^{3t}$ and M be the maximum value of |y''(t)| on [0,1]. We have

$$y'(t) = \frac{3}{5}te^{3t} + \frac{2}{25}e^{3t} - \frac{2}{25}e^{-2t},$$

$$y''(t) = \frac{9}{5}te^{3t} + \frac{21}{25}e^{3t} + \frac{4}{25}e^{-2t}$$

$$\Rightarrow M = \max_{t \in [0,1]} |y''(t)| = y''(1) = 53.047$$

$$\frac{\partial f}{\partial y}(t,y) = -2 \quad \Rightarrow \quad L = \max_{t,y} \left| \frac{\partial f}{\partial y}(t,y) \right| = 2$$

Hence, an error bound is given by

$$|y(t_i) - w_i| \le \frac{hM}{2L} \left(e^{L(t_i - t_0)} - 1 \right)$$

At $t_1 = 0.5$, this bound is 11.3938, and at $t_2 = 1$, it is 42.3654.

(c) Use Taylor's method of order two with h=0.5 to approximate the solution to equation (1) Solution:

$$f'(t,y) = \frac{d}{dt}(-2y + te^{3t}) = -2y' + e^{3t} + 3te^{3t} = 4y + e^{3t}(1+t)$$

Use Taylor's method of order two

$$t_0 = 0, \quad w_0 = y(t_0) = 0,$$
for $i = 0, N$,
$$t_{i+1} = t_i + h, \quad w_{i+1} = w_i + hf(t_i, w_i) + \frac{h^2}{2}f'(t_i, w_i)$$

$$= w_i + h(-2w_i + t_i e^{3t_i}) + \frac{h^2}{2}(4w_i + e^{3t_i}(1 + t_i))$$

$$t_1 = t_0 + h = 0.5, \quad y(t_1) \approx w_1 = 0.2578125$$

$$t_2 = t_1 + h = 1, \quad y(t_2) \approx w_2 = 3.05529474$$

(d) Use the modified Euler method with h = 0.5 to approximate the solution to equation (1).

Solution: Use the modified Euler method

$$t_0 = 0, \quad w_0 = y(t_0) = 0,$$
for $i = 0, N$,
$$t_{i+1} = t_i + h,$$

$$k_1 = hf(t_i, w_i) = h(-2w_i + t_i e^{3t_i}),$$

$$k_2 = hf(t_{i+1}, w_i + k_1) = h\left[-2(w_i + k_1) + t_{i+1}e^{3t_{i+1}}\right]$$

$$w_{i+1} = w_i + \frac{1}{2}(k_1 + k_2)$$

$$t_1 = t_0 + h = 0.5, \quad y(t_1) \approx w_1 = 0.5602111$$

$$t_2 = t_1 + h = 1, \quad y(t_2) \approx w_2 = 5.3014898$$

(e) Use the Runge-Kutta method of order four with h = 0.5 to approximate the solution to equation (1).

Solution: Use the Runge-Kutta method of order four

$$t_0 = 0, \quad w_0 = y(t_0) = 0,$$

$$for \ i = 0, N,$$

$$t_{i+1/2} = t_i + h/2, \quad t_{i+1} = t_i + h,$$

$$k_1 = hf(t_i, w_i) = h(-2w_i + t_i e^{3t_i}),$$

$$k_2 = hf(t_{i+1/2}, w_i + k_1/2) = h\left[-2(w_i + k_1/2) + t_{i+1/2}e^{3t_{i+1/2}}\right]$$

$$k_3 = hf(t_{i+1/2}, w_i + k_2/2) = h\left[-2(w_i + k_2/2) + t_{i+1/2}e^{3t_{i+1/2}}\right]$$

$$k_4 = hf(t_{i+1}, w_i + k_3) = h\left[-2(w_i + k_3) + t_{i+1}e^{3t_{i+1}}\right]$$

$$w_{i+1} = w_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$t_1 = t_0 + h = 0.5, \quad y(t_1) \approx w_1 = 0.29699975$$

$$t_2 = t_1 + h = 1, \quad y(t_2) \approx w_2 = 3.314312$$

40 points 2. Consider the following Runge-Kutta method

$$w_0 = y_0,$$

for $i = 0, 1, \dots, N - 1,$
 $k_1 = hf(t_i, w_i),$
 $k_2 = hf(t_i + \alpha h, w_i + \beta k_1)$
 $w_{i+1} = w_i + a_1k_1 + a_2k_2$

(a) Show that the above Runge-Kutta method cannot have local truncation error $O(h^3)$ for any choice of constants a_1 , a_2 , α and β .

Solution:

$$y(t+h) - y(t) = hy'(t) + \frac{h^2}{2}y''(t) + O(h^3) \text{ Taylor expansion}$$

$$y'' = \frac{dy'}{dt} = \frac{df(t,y)}{dt} = f_t + f_y y' = f_t + f_y f$$

$$\Rightarrow y(t+h) - y(t) = hf + \frac{h^2}{2}(f_t + f_y f) + O(h^3)$$

$$\phi(t,y) = a_1 f(t,y) + a_2 f(t + \alpha h, y + \beta h f)$$

$$= a_1 f + a_2 (f + \alpha h f_t + \beta h f_y f + O(h^2)) \text{ Taylor expansion}$$

$$\tau(h) = \frac{y(t+h) - y(t)}{h} - \phi(t,y)$$

$$= (1 - (a_1 + a_2))f + h(1/2 - a_2\alpha)f_t + h(1/2 - a_2\beta)f_y f + O(h^2)$$

For any choice of a_1 , a_2 , α and β , there is insufficient flexibility to match the term of h^2 in the Taylor expansions, thus the method cannot have local truncation error $O(h^3)$

(b) Show that the above Runge-Kutta method is of order 2 if, for any α ,

$$\beta = \alpha, \quad a_1 = 1 - \frac{1}{2\alpha}, \quad a_2 = \frac{1}{2\alpha}.$$

Solution: To match the term of h, we need to set

$$1 - (a_1 + a_2) = 0$$
, $1/2 - a_2 \alpha = 0$, $1/2 - a_2 \beta = 0$
 $\Rightarrow \quad \alpha \neq 0 \text{ arbitrary }, \beta = \alpha, \quad a_2 = \frac{1}{2\alpha}, \quad a_1 = 1 - \frac{1}{2\alpha}$

(c) Show that by chosing $\alpha=1$ in (b), we obtain the modified Euler method. Solution:

$$\alpha = 1 \quad \Rightarrow \quad \beta = 1, \quad a_1 = a_2 = \frac{1}{2}$$

The RK method is

$$w_{i+1} = w_i + \frac{h}{2} \left(f(t_i, w_i) + f(t_i + h, w_i + hf(t_i, w_i)) \right)$$

which is the modified Euler method

(d) Show that by chosing $\alpha = \frac{1}{2}$ in (b), we obtain the midpoint method. Solution:

$$\alpha = \frac{1}{2}$$
 \Rightarrow $\beta = \frac{1}{2}$, $a_1 = 0$, $a_2 = 1$

The RK method is

$$w_{i+1} = w_i + hf\left(t_i + \frac{h}{2}, w_i + \frac{h}{2}f(t_i, w_i)\right)$$

which is the midpoint method.

3. Derive the Adams-Bashforth two step method by using the Lagrange form of the interpolating polynomial.

Solution:

$$\begin{split} f(t,y(t)) &= p_1(t) + \frac{f''(\xi,y(\xi))}{2}(t-t_i)(t-t_{i-1}), \quad p_1(t) \text{ linear Lagrange poly.} \\ p_1(t) &= L_i(t)f_i + L_{i-1}(t)f_{i-1}, \\ \int_{t_i}^{t_{i+1}} p_1(t)dt &= \left(\int_{t_i}^{t_{i+1}} L_i(t)dt\right)f_i + \left(\int_{t_i}^{t_{i+1}} L_{i-1}(t)dt\right)f_{i-1} \\ &= \frac{h}{2}\left(3f(t_i,y(t_i)) - f(t_{i-1},y(t_{i-1}))\right) \\ \int_{t_i}^{t_{i+1}} \frac{f''(\xi,y(\xi))}{2}(t-t_i)(t-t_{i-1})dt &= \frac{5h^2}{12}f''(\mu,y(\mu)). \\ y(t_{i+1}) &= y(t_i) + \int_{t_i}^{t_{i+1}} f(t,y(t))dt \\ \Rightarrow \quad w_{i+1} &= w_i + \frac{h}{2}\left(3f(t_i,w_i) - f(t_{i-1},w_{i-1})\right) \\ \Rightarrow \quad \tau_i(h) &= \frac{5h^2}{12}f''(\mu,y(\mu)) \quad \text{ for some } \mu \in [t_{i-1},t_{i+1}] \end{split}$$