25 points 1. Apply the Linear Shooting method to solve

$$
\begin{aligned}
& y^{\prime \prime}=4(y-x), \quad x \in(0,1), \\
& y(0)=0, \quad y(1)=2
\end{aligned}
$$

and write down the detailed algorithm using the 4th order Runge-Kutta method.

25 points
2. Apply the Nonlinear Shooting method to solve

$$
\begin{aligned}
& y^{\prime \prime}=-\left(y^{\prime}\right)^{2}-y+\ln x, \quad x \in(1,2) \\
& y(1)=0, \quad y(2)=\ln 2
\end{aligned}
$$

and write down the detailed algorithm using the 4th order Runge-Kutta method.
25 points
3. Apply the Linear Finite-Difference method to solve

$$
\begin{aligned}
& y^{\prime \prime}=4(y-x), \quad x \in(0,1) \\
& y(0)=0, \quad y(1)=2
\end{aligned}
$$

and write down the detailed algorithm.
25 points
4. Apply the Nonlinear Finite-Difference method to solve

$$
\begin{aligned}
& y^{\prime \prime}=-\left(y^{\prime}\right)^{2}-y+\ln x, \quad x \in(1,2), \\
& y(1)=0, \quad y(2)=\ln 2
\end{aligned}
$$

and write down the detailed algorithm using the Newton method.

