popular math

Rotation sets for networks of circle maps

Kamlesh Parwani and Kresimir Josic

We consider continuous maps of the torus, homotopic to the identity, that arise from systems of coupled circle maps and discuss the relationship between network architecture and rotation sets. Our main result is that when the map on the torus is invertible, network architecture can force the set of rotation vectors to lie in a low-dimensional subspace. In particular, the rotation set for an all-to-all coupled cell system must be a subset of a line.

PDF

______________________________________________________________________________________________

Current Address: Department of Mathematics, PGH Building, University of Houston, Houston, Texas 77204-3008
Phone: (713) 743-3500 - Fax: (713) 743-3505


Image designed by Graham Johnson, Graham Johnson Medical Media, Boulder, Colorado