
Chapter 3: The Real Numbers

1. Overview

In one sense real analysis is just doing calculus all over again, only this time we
prove everything. But in another larger sense this class is much more than that. It’s
about setting up a system to analyze things like calculus thoroughly and rigorously
so that we can move beyond calculus.

Our system is built up on the axiomatic assumptions (or definitions) on the real
numbers.

So, what is a real number? In mathematics, the real numbers may be described
informally as numbers that can be given by an infinite decimal representation, such
as 2.4871773339. The real numbers include both rational numbers, such as 42 and
-23/129, and irrational numbers, such as π and

√
2, and can be represented as points

on an infinitely long number line.

A more rigorous definition of the real numbers was one of the most important
developments of 19th century mathematics. In this book, we use an axiomatic
definition (i.e. we assume these properties automatically hold) of the real numbers
as the unique complete Archimedean ordered field, i.e. we assume that R has
the following mathematical structures (click here to see more) :

(a) (Archimedean fields): There are two operations “+” and “·” on R, i.e. we
can do addition and multiplication for any two real numbers;

(b)(ordered): There is also an order or relation ” < ” on R, i.e. we can compare
two real numbers to see which one is bigger;

(c) (complete): Every nonempty subset S of R that is bounded above has a
least upper bound. That is, sup S exists and is a real number (i.e. the set R is big
enough, it contains sup S for every subset S).

Note that axioms are some starting assumptions from which other statements
are logically derived. Unlike theorems, axioms can not be derived by principles of
deduction nor demonstrable by formal proofs, simply because they are starting as-
sumptions and there is nothing else they logically follow from (otherwise they would
be called theorems). Based on these axioms, more theorems are derived in Section
12.
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Using ” < ”, we can define |x|, the absolute values of x). Using the absolute value,
we have the concept of the distance of two real numbers. The distance concept allows
us to define the neighborhood (see section 13, P. 129). Then we can introduce the
concepts of interior point, boundary point, open set, closed set, ..etc.. (see Section 13:
Topology of the reals). All these concepts have something to do with the distance,
which describes how close two points are. These concepts will be used in the study
of limit, continuity, ...etc..

Finally, we introduce the concept of compact set (see section 14). A set S in R
is compact if and only if it is closed and bounded. The most important property
for a compact set S is that every open cover (usually it contains infinitely many
open sets) has a finite subcover. This important property allows us to pass from
infinitely many to finitely many (this trick will be used quite often in the proofs
of this course).

Section 10: Induction

When a statement involves natural numbers (i.e. non-negative integers), you
usually use the method of induction (click here to see more) to prove it. The procedure
goes as follows: Step 1: Verify the statement holds for n = 1 (base step); Step
2: Assume that, for each natural number n, the statement holds for n (Induction
hypothesis, or IH), try to verify the statement also holds for n + 1.

Example. Prove that

1

2!
+

2

3!
+ · · ·+ n

(n + 1)!
= 1− 1

(n + 1)!
.

Proof: We use induction on n.
Base Step: n = 1. Then

1

2!
=

1

2
= 1− 1

1 + 1
.

Inductive Step: Assume that n ≥ 1 and that (here (IH) means the “induction
hypothesis”)

(IH)
1

2!
+

2

3!
+ · · ·+ n

(n + 1)!
= 1− 1

(n + 1)!
.

Then

1

2!
+

2

3!
+ · · ·+ n + 1

(n + 2)!
=

1

2!
+

2

3!
+ · · ·+ n

(n + 1)!
+

n + 1

(n + 2)!

2

http://en.wikipedia.org/wiki/Mathematical_induction


= 1− 1

(n + 1)!
+

n + 1

(n + 2)!
by (IH)

= = 1− 1

(n + 1)!

(
1− n + 1

n + 2

)
= 1− 1

(n + 1)!

(
1

n + 2

)
= 1− 1

(n + 2)!
.

Hence, by induction, we have proved that

1

2!
+

2

3!
+ · · ·+ n

(n + 1)!
= 1− 1

(n + 1)!
.

Section 11, Ordered Fields

This section explains that is a field and what an order is.

When we say that R is a field(click here to see more), we mean that there are two
operations “+” (addition) and “·”(multiplication) on R which satisfy 11 properties
(see Page 108-109, A1-DL).

By the ordered field(click here to see more), we mean that, in addition to two
operations “+” (addition) and “·”(multiplication) on R, there is also an order or re-
lation ” < ” which satisfy Q1-Q4 properties on Page 109. We assume these properties
at the beginning which are called axioms, i.e. we admit them automatically without
proofs.

Based on these axioms, this chapter continues derives Theorems. see, for exam-
ple, Theorem 11.1, Theorem 11.7. Read Practice 11.2-11.6 and Example 11.5
carefully to see how to use these axioms and theorems to do the proofs(helpful in
doing HWs).

On Page 113, it introduces the concept of absolute value by using the order “¡”.
Then it derives the properties of the absolute value. The concept of absolute value is
essential in section 13.

Note that in doing HW, what you can use freely are those assumptions in the
axiom (of ordered field) plus the theorems or results which you have already proved.
See the following example.
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11.3(a): Show that −(−x) = x.
Proof:

(−x) + (−(−x)) = 0 = x + (−x) by Axiom A5

(−x) + (−(−x)) = (−x) + x by Axiom A2

x + ((−x) + (−(−x))) = x + ((−x) + x) by Axiom A1

(x + (−x)) + (−(−x)) = (x + (−x)) + x by Axiom A3

0 + (−(−x)) = 0 + x by Axiom A5

(−(−x)) + 0 = x + 0 by Axiom A2

−(−x) = x by Axiom A4.
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Section 12: The Completeness Axiom

Note that the axioms about “+”,“·” and “<” does not fully characterize R. We
need another important axiom on R in section 12, called completeness axiom as
follows: Every nonempty subset S of R that is bounded above has a least upper bound.
That is, sup S exists and is a real number. This means that the set R is big enough,
it contains all sup S for every subset S. So the full characterization for R is that R
is a complete ordered field (click here to see more),

First of all, in this section, you need to make clear what are the meanings of upper
bound, least upper bound(or supremum (click here to see more), greatest lower
bound(or infimum (click here to see more), maximum (the achieved upper bound,
i.e. it is the (least) upper bound which is also in the set S), and minimum (also
achieved).

Here are some highlights:

• 1. The axiom of R is complete is essential, i.e. for every subset S of R
which is bounded above, sup S always exists!!!. Note, Q, the set of all
rational numbers, however, does not have such property, for example, let
S = {q ∈ Q | 0 ≤ q ≤

√
2}, then sup S does not exist in Q. In fact, sup S =

√
2

is not a rational number. This shows that Q is not bigger enough!, you now
see why we need to study R, rather than Q.

• 2. Although sup S always exists, for all subset S of R which is bounded above,
sup S may not be in the set S. For example, let S = {x ∈ R | 0 ≤ x <

√
2},

then sup S =
√

2, however,
√

2 6∈ S. If sup S is in S, then we call it maximum
of S, denoted by max S.

• 3. If S is a finite set, then max S and min S always exist. This property is
frequently use in section 14 (the concept of compactness allows us pass from
infiniteness to finiteness.

The last part of the section deals with the density of rational numbers in the
real numbers, i.e. for every two real numbers x < y, there is a rational number
r such that x < r < y.

Section 13: The Topology of the Reals

By the topology of R, we mean the collection (or the set) of all open subset of
R. Hence, you see that the main purpose of this section is to introduce the concept
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of open set (of course, as well as other notions: interior point, boundary point,
closed set, open set, accumulation point of a set S, isolated point of S, the
closure of S, etc.).

The approach is to use the distance (or absolute value). First, it introduce the
concept of neighborhood of a point x ∈ R (denoted by N(x, ε) see (page 129)(see
also the deleted neighborhood). It is the most convenient concept (think about
what does your neighbor mean: it means someone lives within your distance). It
then introduces interior point (i.e. if you are surrounded by your neighbors, then
you are the interior point), boundary point, ....

Read the examples and try to do exercises to see (1): how to determine whether it
is open, close, interior points, etc., (2) How to write rigorous proofs once you conclude
your answer.

One of the most important properties is: (a) The union of any collection (can be
infinite) of open sets is an open set, (b) The intersection of any finite collection of
open sets is an open set. The topology of R refers to the collection of all open sets of
R (i.e., in the abstract setting: A topological space X is a set with a collection of
subsets, denoted T (elements in T are called open sets), such that (a) and (b) holds).

For the closed set, we have the following properties: (a) The finite union of any
collection of closed sets is a closed set, (b) The intersection of any collection (can be
infinite) of closed sets is closed set.

Try to use the terms we introduced to do some proofs.

11.9(a): Prove that an accumulation point of a set S is either an interior point of S
or a boundary point of S.
Proof: Let x ∈ R be an accumulation point of S, and assume that x is not an interior
point of S(otherwise we are done). We need to show that x is boundary point of
S. So let ε > 0; we need to show that N(x; ε) ∩ S 6= ∅ and N(x; ε) ∩ (R\S 6= ∅.
On the one hand, since x is an accumulation point of S, we know by definition that
N∗(x; ε) ∩ S 6= ∅; since N∗(x; ε) ⊂ N(x; ε), it follows that N(x; ε) ∩ S 6= ∅. On the
other hand, since x is not an interior point of S, we cannot have N(x; ε) ⊂ S; that is
N(x; ε) ∩ (R\S 6= ∅. This proves our claim.

Section 14: Compact Sets
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A set S is compact (click here to see more),if and only if every open cover F
(usually it contains infinitely many open sets) has a finite subcover G. This impor-
tant property allows us to pass from infinitely many to finitely many. Almost
all proofs of this section uses this important property.

The set (0, 1] is not compact (it is not closed), for example, the {(1/n, 1+(1/n))}
is an open cover for (0, 1] but you can not find a finite sub-cover.

As I mentioned, the important property of compactness allows us to pass from
infinitely many to finitely many. In practice, how to do it? Step 1, construct an
open cover, step 2 Use the compactness to pass from infinitely cover to a finitely
subcover, and see how to derive your conclusion by using the finiteness property.
Note the proof is often combined with the method of proof by contradiction (see
the proof of Theorem 14.7 on P. 142).

As a warm up, the proof of the statement that If a set S in R is compact, then it
is bounded goes as follows: We can cover the set S by In = (−n, n), i.e. S ⊂ ∪∞n=1In.
Since S is compact, this open cover {In} has a finite subcover, i.e. there exist finite
many integers n1, . . . , nk such that

S ⊂ (In1 ∪ · · · ∪ Ink
.

Let m = max{n1, . . . , nk} (note for a finite set, a maximum always exists!!!). Hence
S ⊂ (−m, m). SO S is bounded. Note, you should learn from this proof how to: Step
1, construct an open cover, step 2 Use the compactness to pass from infinitely
cover to a finitely subcover, and see how to derive your conclusion by using the
finiteness property.

Another warm up: try to prove the statement that If a set S in R is compact,
then it is closed.

Of course, Heine-Borel (see Theorem 14.5) (click here to see more), gives an im-
portant characterization: A set S in R is compact if and only if it is closed and
bounded.
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