Math 6396, Riemannian Geometry(Theory of Surfaces) by Min Ru

1 Surfaces

- Parameterized Surfaces: A parameterized surface is a map x from an (connected) open subset U of R² to R³. We can write x(u, v) = (x₁(u, v), x₂(u, v), x₃(u, v)), where (u, v) ∈ U. Here variables u, v are called the *parameters*, they are coming from a (connected) open subset U of R². If x is differentiable, the surface is called a differentiable surface.
- Regular Parameterized Surface: A parameterized surface x : U → R³ is said to be *regular* if it is smooth(its partial derivatives are continuous) and the vectors x_u, σ_v are linearly independent at all points (u, v) ∈ U(or equivalently, x_u × x_v ≠ 0 for all points (u, v) ∈ U), where x_u, x_v are the partial derivatives of x.
- Tangent Space: Let S be a regular surface. The tangent space $T_P(S)$ of S at P is the set of vectors which arise as velocity vectors(the derivative of the curve) of curves on S. The following is the precise definition.

Definition. Let $\mathbf{x} : U \to \mathbf{R}^3$ be a parametrized surface (we call this surface S). Let $P \in S$. We say a vector \mathbf{v}_P is **tangent to** S at the point P if \mathbf{v}_P is the tangent vector of some curve on S. That is, there is some $\boldsymbol{\alpha} : I \to S$ with $\boldsymbol{\alpha}(0) = P, \boldsymbol{\alpha}'(0) = \mathbf{v}_P$. Usually we write \mathbf{v} instead of \mathbf{v}_P when no confusion will arise. The **tangent space** (plane) of S at P is defined to be

$$T_P(S) = \{ \mathbf{v} \mid \mathbf{v} \text{ is tangent to } S \text{ at } P \}.$$

Let $\mathbf{x} : U \to \mathbf{R}^3$ be a parametrized surface (we call this surface S). There are two (special) curves on S which passing through P are so-called *u*-parameter curve (resp. *u*-parameter curve) $\boldsymbol{\alpha}(u) = \mathbf{x}(u, v_0)$ (resp. $\boldsymbol{\alpha}(v) = \mathbf{x}(u_0, v)$). Their velocity vectors are $\mathbf{x}_u, \mathbf{x}_v$. They are linearly independent. Hence, $\{\mathbf{x}_u, \mathbf{x}_v\}$ form a basis of the vector space $T_P(S)$, i.e. $\mathbf{v} \in T_P(S)$ if and only if $\mathbf{v} = a\mathbf{x}_u + b\mathbf{x}_v$, where $\mathbf{x}_u, \mathbf{x}_v$ are evaluated at (u_0, v_0) . This best describes what the tangent space $T_P(M)$ looks like.

• Normal Vectors. The unit vector

$$\mathbf{n}_P = \frac{\mathbf{x}_u(u_0, v_0) \times \mathbf{x}_v(u_0, v_0)}{\|\mathbf{x}_u(u_0, v_0) \times \mathbf{x}_v(u_0, v_0)\|}$$

is (unit) normal vector to the surface S at the point P.

2 The First Fundamental Form, Length and Surface Area

- Inner Product: Recall that an inner(dot) product on \mathbf{R}^3 determines the length(norm) of vectors in \mathbf{R}^3 and the angle of vectors in \mathbf{R}^3 as follows: $|\mathbf{v}|^2 = \langle \mathbf{v}, \mathbf{v} \rangle$ and $\cos \theta = \frac{\langle \mathbf{v}, \mathbf{v} \rangle}{|\mathbf{v}||\mathbf{w}|}$.
- Length: Let x : U → R³ be a parametrization of a surface S. Its first fundamental form or metric is

$$ds^2 = Edu^2 + 2Fdudv + Gdv^2,$$

where $E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle$, $F = \langle \mathbf{x}_u, \mathbf{x}_v \rangle$, $G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle$. It is an **intrinsic** quantity that it relates to measurements (of length, area, and angle etc.) inside the surface.

The length of a curve $\boldsymbol{\alpha}(t) = \mathbf{x}(u(t), v(t))$ in the surface S from $\boldsymbol{\alpha}(t_0)$ to $\boldsymbol{\alpha}(t_1)$ is given by

$$L = \int_{t_0}^{t_1} \left| \frac{d\mathbf{x}}{dt} \right| dt = \int_{t_0}^{t_1} |\mathbf{x}_u u' + \mathbf{x}_v v'| dt$$

$$= \int_{t_0}^{t_1} \sqrt{\langle \mathbf{x}_u, \mathbf{x}_u \rangle u'^2 + 2 \langle \mathbf{x}_u, \mathbf{x}_v \rangle u'v' + \langle \mathbf{x}_v, \mathbf{x}_v \rangle v'^2} dt$$

= $\int_{t_0}^{t_1} \sqrt{Edu'^2 + 2Fu'v' + Gv'^2} dt.$

Surface Area: Let R ⊂ S be a bounded region (the image of x : Q → R³, where Q ⊂ U) of a regular surface contained in the coordinate neighborhood of the parametrization x : U → R³. Then the surface area of R is given by

Area of
$$R = \int \int_R d\sigma = \int \int_Q \sqrt{EG - F^2} \, du dv$$

3 The Gauss map, the Shape Operator and the Second Fundamental Form

• The Directional Derivatives: Let $S \subset \mathbf{R}^3$ be a surface and let g(x, y, z) be a function defined on $S \subset \mathbf{R}^3$, Let $\mathbf{v} \in T_P(S)$, then \mathbf{v} is the velocity vector of some curve $\boldsymbol{\alpha}$ on S, i.e. $\boldsymbol{\alpha}(0) = P$, $\boldsymbol{\alpha}'(0) = \mathbf{v}$. We define, for $\mathbf{v} \in \mathbf{T}_{\mathbf{P}}(\mathbf{M})$, the directional derivative of g in the \mathbf{v} -direction by

$$\nabla_{\mathbf{v}} g(P) = \frac{d}{dt} (g(\boldsymbol{\alpha}(t)))|_{t=0} = \nabla g(\boldsymbol{\alpha}(t)) \cdot \mathbf{v}.$$

This definition only depends on g and \mathbf{v} , independent of the choice of $\boldsymbol{\alpha}$.

Given a parametrization $\boldsymbol{\sigma}: U \to M$. Write $g(u, v) = g(\boldsymbol{\sigma}(u, v))$, then g is (viewed) as a function of u, v. Hence, we may write

$$g_u = \frac{\partial(g(\boldsymbol{\sigma}(u,v)))}{\partial u}, \quad g_v = \frac{\partial(g(\boldsymbol{\sigma}(u,v)))}{\partial v}$$

Then, since $\frac{d}{du}(\boldsymbol{\sigma}(u,v_0)) = \boldsymbol{\sigma}_u$, we have, by definition (taking $\boldsymbol{\alpha}(t) = \boldsymbol{\sigma}(t+u_0,v_0)$),

$$\nabla \boldsymbol{\sigma}_{u}g = \frac{d}{du}(g(\boldsymbol{\sigma}(u,v_{0})))|_{u=u_{0}} = \frac{\partial g}{\partial u}|_{u=u_{0}}.$$

Similarly,

$$\nabla \boldsymbol{\sigma}_{v}g = rac{\partial g}{\partial v}.$$

For a vector valued function (called vector field over S) $\mathbf{g} = (g_1, g_2, g_3) : S \to \mathbf{R}^3$, we define, for $\mathbf{v} \in T_P(M)$, the directional derivative of \mathbf{g} in the \mathbf{v} -direction by

$$\bigtriangledown_{\mathbf{v}} \mathbf{g} = (\bigtriangledown_{\mathbf{v}} g_1, \bigtriangledown_{\mathbf{v}} g_2, \bigtriangledown_{\mathbf{v}} g_3),$$

Also, with a parametrization $\boldsymbol{\sigma}: U \to M$, write $\mathbf{g}(u, v) = \mathbf{g}(\boldsymbol{\sigma}(u, v))$. Then,

$$abla \boldsymbol{\sigma}_{\boldsymbol{u}} g = rac{\partial g}{\partial u}, \qquad
abla \boldsymbol{\sigma}_{\boldsymbol{v}} g = rac{\partial g}{\partial v}.$$

- The Gauss Map: The Gauss map of S is the map $\mathbf{n}: S \to S^2 \subset \mathbf{R}^3$, which sends every point $P \in S$ to the unit normal \mathbf{n}_P to the surface S at the point P.
- Shape Operator:

Theorem. For any $\mathbf{v} \in T_P(S)$, the directional derivative $\bigtriangledown_{\mathbf{v}} \mathbf{n}(P) \in T_P(S)$. Moreover, the linear map $S_P : T_P(S) \to T_P(S)$ defined by

$$S_P(\mathbf{v}) = - \bigtriangledown_{\mathbf{v}} \mathbf{n}(P)$$

is a symmetric linear map, where $\nabla_{\mathbf{v}} \mathbf{n}(P)$ is the directional derivative of \mathbf{n} along the direction \mathbf{v} . Here that S_P is symmetric means that, for any $\mathbf{u}, \mathbf{v} \in T_P(M)$, we have

$$S_P(\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot S_P(\mathbf{v}).$$

Definition. $S_P: T_P(S) \to T_P(S)$ defined by

$$S_P(\mathbf{v}) = - \nabla_{\mathbf{v}} \mathbf{n}(P)$$

is called the shape operator of S at P.

• The Second Fundamental Form:

Definition. Let S be a regular surface. The second fundamental form, denoted by II, assigns, for every $P \in S$, a map $II_P : T_P(S) \times T_P(S) \to \mathbf{R}$ defined by $II_P(\mathbf{u}, \mathbf{v}) = \mathbf{v} \cdot S_P(\mathbf{u})$, for $\mathbf{u}, \mathbf{v} \in T_P(S)$.

In terms of local parameterization $\mathbf{x} : U \to S \subset \mathbf{R}^3$ of the surface S, $\mathbf{u} = a\mathbf{x}_u + b\mathbf{x}_v$, $\mathbf{v} = c\mathbf{x}_u + d\mathbf{x}_v$. Hence, by linearity,

$$II_P(\mathbf{u}, \mathbf{v}) = acII_P(\mathbf{x}_u, \mathbf{x}_u) + (bc + ad)II_P(\mathbf{x}_u, \mathbf{x}_v) + bdII_P(\mathbf{x}_v, \mathbf{x}_v)$$

Write $e = II_P(\mathbf{x}_u, \mathbf{x}_u), f = II_P(\mathbf{x}_u, \mathbf{x}_v), g = II_P(\mathbf{x}_v, \mathbf{x}_v)$. Then

$$II_P(\mathbf{u}, \mathbf{v}) = e(ac) + f(bc + ad) + g(bd).$$

Hence, the second fundamental form II only depends on the data $\{e, f, g\}$, we sometimes also call the data $\{e, f, g\}$ the second fundamental form, if no confusion arises. By calculation,

$$e = -\mathbf{x}_u \cdot \mathbf{n}_u = \mathbf{n} \cdot \mathbf{x}_{uu}, \quad f = -\mathbf{n}_u \cdot \mathbf{x}_v = \mathbf{n} \cdot \mathbf{x}_{uv}, \quad g = -\mathbf{x}_v \cdot \mathbf{n}_v = \mathbf{n} \cdot \mathbf{x}_{vv}$$

• The matrix of the shape operator S_P :

The matrix of the shape operator S_P with respect to the basis $\{\mathbf{x}_u, \mathbf{x}_v\}$ is

$$A = -\mathcal{F}_I^{-1}\mathcal{F}_{II},$$

where

$$\mathcal{F}_I = \begin{pmatrix} E & F \\ F & G \end{pmatrix}, \quad \mathcal{F}_{II} = \begin{pmatrix} e & f \\ f & g \end{pmatrix}.$$

If we write

$$A = \left(\begin{array}{cc} a & c \\ b & d \end{array}\right)$$

i.e.

$$S_P(\mathbf{x}_u) = a\mathbf{x}_u + b\mathbf{x}_v$$
$$S_P(\mathbf{x}_v) = c\mathbf{x}_u + d\mathbf{x}_v$$

then

$$a = -\frac{fF - eG}{EG - F^2}, \quad b = -\frac{eF - fE}{EG - F^2},$$
$$c = -\frac{gF - fG}{EG - F^2}, \quad d = -\frac{fF - gE}{EG - F^2}.$$

4 Curvatures

• The Normal Curvature of Curves on a Surface:

Let $\mathbf{v} \in T_P(S)$ be a unit vector. We slice the surface S with the plane through P spanned by $\mathbf{n}(P)$ (the unit-normal at P) and a *unit* vector $\mathbf{v} \in T_P(M)$. Let $\boldsymbol{\alpha}$ be the arc-length-parametrized curve obtained by taking such slice. We have such that $\boldsymbol{\alpha}(0) = P, \boldsymbol{\alpha}'(0) = \mathbf{v}. \ \boldsymbol{\alpha}'$ (evaluated at 0) is perpendicular to \mathbf{n} (the normal to the surface S), so $\{\boldsymbol{\alpha}', \mathbf{n}, \mathbf{n} \times \boldsymbol{\alpha}'\}$ are mutually perpendicular unit vector(called an orthonormal basis). Since $\boldsymbol{\alpha}''$ is perpendicular to $\boldsymbol{\alpha}'$ (use the unit vector trick!), $\boldsymbol{\alpha}''$ is a linear transformation of $\mathbf{n}, \mathbf{n} \times \boldsymbol{\alpha}'$, i.e.

$$\boldsymbol{\alpha}'' = \kappa_n \mathbf{n} + \kappa_q \mathbf{n} \times \boldsymbol{\alpha}'.$$

The scalars κ_n and κ_g are called the *normal curvature* and the *geodesic curvature* of α .

We have

$$\kappa_n = II_P(\mathbf{v}, \mathbf{v}) = \mathbf{v} \cdot S_P(\mathbf{v})$$

where II_p is the second fundamental form of S (so the normal curvature can be defined by the second fundamental form).

• The Principal Curvatures of a Surface: The eigenvalues of the shape operator S_P are called the *Principal curvatures* of S.

Since the matrix of the shape operator S_P with respect to the basis $\{\mathbf{x}_u, \mathbf{x}_v\}$ is

$$A = -\mathcal{F}_I^{-1}\mathcal{F}_{II}$$

we have that the principal curvatures κ_1, κ_2 of S are the roots of the equation

$$\det(\mathcal{F}_{II} - \kappa \mathcal{F}_I) = 0.$$

The corresponding principal directions are non-zero 2×1 column matrix T such that

$$(\mathcal{F}_{II} - \kappa \mathcal{F}_I)T = 0.$$

Let $\mathbf{e}_1, \mathbf{e}_2$ be unit vectors in the principal directions at P corresponding principal curvatures κ_1, κ_2 . Then $\mathbf{v} = \cos \theta \mathbf{e}_1 + \sin \theta \mathbf{e}_2$ for some $\theta \in [0, 2\pi)$. Hence

$$II_P(\mathbf{v}, \mathbf{v}) = S_P(\mathbf{v}) \cdot \mathbf{v} = \kappa_1 \cos^2 \theta + \kappa_2 \sin^2 \theta$$

This shows that the principal curvatures are the maximum and minimum (singed) curvature of the various normal slices.

The Gauss Curvature and Mean Curvature: Let κ₁, κ₂ be the eigenvalues of the shape operator S_P. Then

$$K = \kappa_1 \kappa_2$$

is called the *Gaussian curvature* of S and

$$H = \kappa_1 + \kappa_2$$

is called the *mean curvature* of S.

$$K = \frac{eg - f^2}{EG - F^2},$$
$$H = \frac{eG - 2fF + gE}{2(EG - F^2)}.$$

5 Gauss Curvature, Gauss equation and the Codazzi-Mainardi equations

• Gauss Curvature: Recall that the Gauss curvature is given by

$$K = \frac{eg - f^2}{EG - F^2}$$

Although the above formula involves the second fundamental form, Gauss theorem egregium tells us that we can actually calculate the Gauss curvature in terms of E, F and G only, i.e. we can get a formula which only involves the first fundamental form. So the Gauss curvature is, in fact, an *intrinsic quantity*(which depends on the surface only).

• Christoffel symbols: By expressing the derivatives of the vectors $\mathbf{x}_u, \mathbf{x}_v$ and \mathbf{n} in the basis $\{\mathbf{x}_u, \mathbf{x}_v, \mathbf{n}\}$, we obtain

$$\begin{aligned} \mathbf{x}_{uu} &= \Gamma_{11}^1 \mathbf{x}_u + \Gamma_{11}^2 \mathbf{x}_v + e\mathbf{n}, \\ \mathbf{x}_{uv} &= \Gamma_{12}^1 \mathbf{x}_u + \Gamma_{12}^2 \mathbf{x}_v + f\mathbf{n}, \\ \mathbf{x}_{vu} &= \Gamma_{21}^1 \mathbf{x}_u + \Gamma_{21}^2 \mathbf{x}_v + f\mathbf{n}, \\ \mathbf{x}_{vv} &= \Gamma_{22}^1 \mathbf{x}_u + \Gamma_{22}^2 \mathbf{x}_v + g\mathbf{n}, \\ \mathbf{n}_u &= a_{11} \mathbf{x}_u + a_{21} \mathbf{x}_v, \\ \mathbf{n}_v &= a_{12} \mathbf{x}_u + a_{22} \mathbf{x}_v, \end{aligned}$$

where

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \mathcal{F}_{II}\mathcal{F}_{I}^{-1}.$$

The six functions $\Gamma_{ik}^l = \Gamma_{ki}^l, 1 \le i, l, k \le 2$, are called the **Christoffel symbols**.

To compute the Christoffel symbols, we take the inner product of the first four relations with \mathbf{x}_u and \mathbf{x}_v , for example, in the first two relations(note that $\mathbf{x}_u \cdot \mathbf{n} = \mathbf{x}_v \cdot \mathbf{n} = 0$), we get

$$\Gamma_{11}^{1}E + \Gamma_{11}^{2}F = \langle \mathbf{x}_{uu}, \mathbf{x}_{u} \rangle = \frac{1}{2}E_{u},$$

$$\Gamma_{11}^{1}F + \Gamma_{11}^{2}G = \langle \mathbf{x}_{uu}, \mathbf{x}_{v} \rangle = F_{u} - \frac{1}{2}E_{v}$$

•

Solving the above system of linear equations, we get Γ_{11}^l and Γ_{11}^2 . Other Christoffel symbols can be computed in a similar way:

$$\Gamma_{12}^{1}E + \Gamma_{12}^{2}F = \frac{1}{2}E_{v},$$

$$\Gamma_{12}^{1}F + \Gamma_{12}^{2}G = \frac{1}{2}G_{u}.$$

$$\Gamma_{22}^{1}E + \Gamma_{22}^{2}F = F_{v} - \frac{1}{2}G_{u},$$

$$\Gamma_{22}^{1}F + \Gamma_{22}^{2}G = \frac{1}{2}G_{v}.$$

Note, the term $\Gamma_{11}^1 \mathbf{x}_u + \Gamma_{11}^2 \mathbf{x}_v$ represents the orthogonal projection of $\mathbf{x}_{uu}(p)$ to the tangent space $T_p(S)$, which will be called the *covariant derivative* of \mathbf{x}_u in the direction \mathbf{x}_u , we will denote it by

$$D_{\mathbf{x}_u}\mathbf{x}_u = \Gamma_{11}^1\mathbf{x}_u + \Gamma_{11}^2\mathbf{x}_v.$$

Other covariant derivatives are defined in a similar way. We have

$$\Gamma_{11}^{1} = \frac{GE_u - 2FF_u + FE_v}{2(EG - F^2)}, \qquad \Gamma_{11}^{2} = \frac{2EF_u - FE_v - FE_u}{2(EG - F^2)}$$

$$\Gamma_{12}^{1} = \frac{GE_{v} - FG_{u}}{2(EG - F^{2})}, \quad \Gamma_{12}^{2} = \frac{EG_{u} - FE_{v}}{2(EG - F^{2})}$$

$$\Gamma_{22}^{1} = \frac{2GF_{v} - GG_{u} - FG_{u}}{2(EG - F^{2})}, \quad \Gamma_{22}^{2} = \frac{EG_{v} - 2FF_{v} + FG_{u}}{2(EG - F^{2})}.$$

• Gauss equations and Codazzi-Mainardi equations: Using the fact that $\mathbf{x}_{uuv} = \mathbf{x}_{uvu}$, $\mathbf{x}_{vvu} = \mathbf{x}_{vuv}$ and $\mathbf{n}_{uv} = \mathbf{n}_{vu}$, we easily get the following two equations which called the *Gauss equations*,

$$(\Gamma_{12}^2)_u - (\Gamma_{11}^2)_v + \Gamma_{12}^1\Gamma_{11}^2 + \Gamma_{12}^2\Gamma_{12}^2 - \Gamma_{11}^2\Gamma_{22}^2 - \Gamma_{11}^1\Gamma_{12}^2 = -EK;$$

$$(\Gamma_{12}^1)_u - (\Gamma_{11}^1)_v + \Gamma_{12}^2\Gamma_{12}^1 - \Gamma_{11}^2\Gamma_{22}^1 = FK;$$

and the following two equations which called the Codazzi-Mainardi equations:

$$e_v - f_u = e\Gamma_{12}^1 + f(\Gamma_{12}^2 - \Gamma_{11}^1) - g\Gamma_{11}^2;$$

$$f_v - g_u = e\Gamma_{22}^1 + f(\Gamma_{22}^2 - \Gamma_{12}^1) - g\Gamma_{12}^2.$$

The Gauss equations allows us to calculate the Gauss curvature in terms of the first fundamental form only. Assume F = 0, then, from the Gauss evations above, we have

$$K = \frac{-1}{2\sqrt{EG}} \left(\left(\frac{E_v}{\sqrt{EG}} \right)_v + \left(\frac{G_u}{\sqrt{EG}} \right)_u \right).$$

6 Vector Fields and Covariant Derivatives

- A vector field \mathbf{w} on S is a vector valued function, i.e. $\mathbf{w}: S \to \mathbf{R}^3$.
- Let y ∈ T_p(S). The covariant derivative at p of the vector field w relative to the vector y, denoted by D_yw(p), is the tangential component of ¬_yw(p), where ¬_yw(p) is the directional derivative defined earlier.

 Let α : I → S be a parametrized curve in S and let w be a vector field along α, then the covariant derivative of the vector field w along the curve α, denoted by (Dw/dt)(t), is the tangential component of (dw/dt)(t).

Let $\mathbf{x} : U \to \mathbf{R}^3$ be a parameterization for S. Since $\boldsymbol{\alpha}$ is a curve on S, we write $\boldsymbol{\alpha}(t) = \mathbf{x}(u(t), v(t))$. Also, since $\mathbf{w}(t) \in T_{\boldsymbol{\alpha}(t)}S$, we can write

$$\mathbf{w}(t) = a(u(t), v(t))\mathbf{x}_u + b(u(t), v(t))\mathbf{x}_v = a(t)\mathbf{x}_u + b(t)\mathbf{x}_v.$$

Thus, we have

$$\frac{d\mathbf{w}}{dt}(t) = a(\mathbf{x}_{uu}u' + \mathbf{x}_{uv}v') + b(\mathbf{x}_{vu}u' + \mathbf{x}_{vv}v') + a'\mathbf{x}_u + b'\mathbf{x}_v.$$

By definition,

$$\frac{D\mathbf{w}}{dt} = pr \circ (d\mathbf{w}/dt),$$

hence,

$$\frac{D\mathbf{w}}{dt} = (a' + \Gamma_{11}^1 au' + \Gamma_{12}^1 av' + \Gamma_{12}^1 bu' + \Gamma_{22}^1 bv')\mathbf{x}_u + (b' + \Gamma_{11}^2 au' + \Gamma_{12}^2 av' + \Gamma_{12}^2 bu' + \Gamma_{22}^2 bv')\mathbf{x}_v.$$

• Remark: Dw/dt is an intrinsic geometric quantity whose expression in local coordinates involves Christoffel symbols.

7 Parallel Transport and Geodesics

• Parallel Transport: Let $\alpha : I \to \mathbb{R}^3$ be a curve on a surface S. Let $\mathbf{w} : I \to \mathbb{R}^3$ be a tangential vector field along α . We say that \mathbf{w} is parallel along α if

$$D\mathbf{w}/dt = 0$$

for every $t \in I$.

By the formular above, **w** is parallel along α if and only if, along α ,

$$a' + \Gamma_{11}^{1}au' + \Gamma_{12}^{1}av' + \Gamma_{12}^{1}bu' + \Gamma_{22}^{1}bv' = 0 \tag{(*)}$$

and

$$b' + \Gamma_{11}^2 a u' + \Gamma_{12}^2 a v' + \Gamma_{12}^2 b u' + \Gamma_{22}^2 b v' = 0.$$
(**)

Let $\boldsymbol{\alpha} : I \to \mathbf{R}^3$ be a curve on a surface S and $\mathbf{w}_0 \in T_{\boldsymbol{\alpha}(t_0)}(S), t_0 \in I$. The vector $\mathbf{w}_1 \in T_{\boldsymbol{\alpha}(t_1)}(S), t_1 \in I$ is said to be the Parallel Transport of \mathbf{w}_0 along $\boldsymbol{\alpha}$ if there exists a parallel vector field $\mathbf{w}(t)$ along $\boldsymbol{\alpha}$ such that $\mathbf{w}_0 = \mathbf{w}(t_0)$ and $\mathbf{w}_1 = \mathbf{w}(t_1)$.

• Geodesics, and geodesic equations: Let $\alpha : I \to S$ be a parametrized curve on a surface S. Then α is a geodesic if and only if the field of $\alpha'(t)$ is parallel along α , i.e.,

$$\frac{D\boldsymbol{\alpha}'(t)}{dt} = 0,$$

on I.

A regular connected curve C in S is siad to be a *geodesic* if, for every $p \in C$, the parametrization $\alpha(s)$ of a coordinate neighborhood of p by the **arc length** s is geodesic, i.e., field of $\alpha'(s)$ is parallel along α .

Let $\mathbf{x} : U \to S$ be a parametrization for S, and let $\boldsymbol{\alpha}$ be a curve on S. Write $\boldsymbol{\alpha}(t) = \mathbf{x}(u(t), v(t))$. Then $\boldsymbol{\alpha}$ is a geodesic if and only if $(D\boldsymbol{\alpha}'(t)/dt) = 0$, that is

$$u'' + \Gamma_{11}^{1}(u')^{2} + 2\Gamma_{12}^{1}u'v' + \Gamma_{22}^{1}(v')^{2} = 0 \qquad (*)$$

and

$$v'' + \Gamma_{11}^2 (u')^2 + 2\Gamma_{12}^2 u'v' + \Gamma_{22}^2 (v')^2 = 0.$$
 (**)

• Geodesic Curvature: Recall that

$$\kappa_g = \boldsymbol{\alpha}'' \cdot (\mathbf{n} \times \boldsymbol{\alpha}').$$

It is easy to check that a curve α in the surface S is geodesic if and only if $\kappa_g \equiv 0$.

• Liouville's theorem:

Liouville's theorem: Let $\mathbf{x}(u, v)$ be an orthogonal parametrization (i.e., F = 0), then

$$\kappa_g = \frac{1}{2\sqrt{EG}} \left\{ G_u \frac{dv}{ds} - E_v \frac{du}{ds} \right\} + \frac{d\phi}{ds},$$

where $\phi(s)$ is the angle that \mathbf{x}_u makes with $\boldsymbol{\alpha}'(s)$ in the given orientation. In particular, we can write:

$$\kappa_g = (\kappa_g)_1 \cos \phi + (\kappa_g)_2 \sin \phi + \frac{d\phi}{dt},$$

where $(\kappa_g)_1$ and $(\kappa_g)_2$ are the geodesic curvatures of the coordinate curves $v = \cos t$ and $u = \cos t$ respectively.

Let $\phi_{12}(s) := \frac{1}{2\sqrt{EG}}(G_u v' - E_v u')$, then we can write

$$\kappa_g = \phi_{12}(s) + \phi'(s).$$

Here we give a direct proof of above formula(Liouville's formula). Let

$$\mathbf{e}_1 = \frac{\mathbf{x}_u}{\sqrt{E}}, \mathbf{e}_2 = \frac{\mathbf{x}_v}{\sqrt{G}},$$

then $\mathbf{e}_1, \mathbf{e}_2$ gives an orthonomal basis for $T_p(S)$. Write $\boldsymbol{\alpha}(s) = \mathbf{x}(u(s), v(s))$, and we set

$$\phi_{12} = \frac{d}{ds} < \mathbf{e}_1(u(s), v(s)), \mathbf{e}_2(u(s), v(s)) >,$$

which we may write more cacually as $\phi_{12} = \mathbf{e}'_1(s) \cdot \mathbf{e}_2(s)$. Then (take the full advantage of the orthogonality of \mathbf{x}_u and \mathbf{x}_v),

$$\phi_{12} = \left(\frac{d}{ds}\left(\frac{\mathbf{x}_u}{\sqrt{E}}\right)\right) \cdot \left(\frac{\mathbf{x}_v}{\sqrt{G}}\right)$$
$$= \frac{1}{\sqrt{EG}}(\mathbf{x}_{uu}u' + \mathbf{x}_{uv}v') \cdot \mathbf{x}_v$$
$$= \frac{1}{\sqrt{EG}}((\Gamma_{11}^1\mathbf{x}_u + \Gamma_{11}^2\mathbf{x}_v)u' + (\Gamma_{12}^1\mathbf{x}_u + \Gamma_{12}^2\mathbf{x}_v)v') \cdot \mathbf{x}_v$$
$$= \frac{G}{\sqrt{EG}}(\Gamma_{11}^2u' + \Gamma_{12}^2v') = \frac{1}{2\sqrt{EG}}(G_uv' - E_vu').$$

We now show that $\kappa_g = \phi_{12}(s) + \phi'(s)$. In fact, $\kappa_g = \alpha'' \cdot (\mathbf{n} \times \alpha')$. Now, since $\alpha' = \cos \theta \mathbf{e}_1 + \sin \theta \mathbf{e}_2$, $\mathbf{n} \times \alpha' = -\sin \theta \mathbf{e}_1 + \cos \theta \mathbf{e}_2$. Hence, by a calculation, we have $\kappa_g = \phi_{12} + \theta'$. This proves the formula.

Note, the above formula and the formula for Gauss curvature (assume F = 0)

$$K = \frac{-1}{2\sqrt{EG}} \left(\left(\frac{E_v}{\sqrt{EG}} \right)_v + \left(\frac{G_u}{\sqrt{EG}} \right)_u \right)$$

are the key to prove Gauss-Bennet (in applying the Green's formula).

Angle change of the parallel vector field along the curve α: Let α : [0, l] → S be a closed curve in S. Let C be the tarce of α. Let w(t) to be the parallel transprot of v₀ ∈ T_{α(0)}S along C, write w(t) = cos ψ(t)e₁ + sin ψ(t)e₂, taking ψ(0) = 0. Then w is parallel along α if and only if φ₁₂ + ψ' = 0. Hence we have

$$\Delta \psi = \psi(l) - \psi(0) = -\int_0^l \phi_{12}(s) ds$$

On the other hand, by the Gauss curvature formula above and by Green's theorem, we have

$$\int_0^l \phi_{12}(s) ds = -\int \int_{int(\boldsymbol{\alpha})} K d\sigma,$$

where $int(\boldsymbol{\alpha})$ means the interior of the curve $\boldsymbol{\alpha}$. Hence

$$\Delta \psi = \psi(l) - \psi(0) = \int \int_{int(\boldsymbol{\alpha})} K d\sigma.$$

8 The Gauss-Bonnet Theorem

Gauss-Bonnet Theorem(Local). Let $\mathbf{x} : U \to S$ be an orthogical parametrization (i.e. F = 0) of a neighborhood of an oriented surface S, where $U \subset \mathbf{R}^2$ is homeomorphic to an open disk. Let $R \subset \mathbf{x}(U)$ be a simple region of S and let $\boldsymbol{\alpha} : I \to S$ be such that $\partial R = \boldsymbol{\alpha}(I)$. Assume that $\boldsymbol{\alpha}$ is positively oriented, parametrized by arc length s, and let $\boldsymbol{\alpha}(s_0), \ldots, \boldsymbol{\alpha}(s_k)$ and $\theta_0, \ldots, \theta_k$ be, respectively, the vertices and the external angles of $\boldsymbol{\alpha}$. Then

$$\sum_{i=0}^{k} \int_{s_i}^{s_{i+1}} \kappa_g(s) ds + \int \int_R K d\sigma + \sum_{i=0}^{k} \theta_i = 2\pi$$

or we can write

$$\int_{\partial R} \kappa_g(s) ds + \int \int_R K d\sigma + \sum_{i=0}^k \theta_i = 2\pi,$$

Gauss-Bonnet Theorem. Let $R \subset S$ be a regular region of an oriented surface and let $C_1, \ldots, C - n$ be the closed, simple, piecewise regular curves which from ∂R . Suposed that C_i is positively oriented and let $\theta_1, \ldots, \theta_p$ be the set of external angles of C_1, \ldots, C_n . Then

$$\int_{\partial R} \kappa_g(s) ds + \int \int_R K d\sigma + \sum_{i=1}^p \theta_i = 2\pi \chi(R),$$

where $\chi(R)$ is he Euler-Poincare characteristic of R.

In particular, if S is an orientable **compact** surface, then

$$\int \int_{S} K d\sigma = 2\pi \chi(S).$$