
Math 6396, Riemannian Geometry(Theory of Surfaces)

by Min Ru

1 Surfaces

• Parameterized Surfaces: A parameterized surface is a map x from an (connected)

open subset U of R2 to R3. We can write x(u, v) = (x1(u, v), x2(u, v), x3(u, v)), where

(u, v) ∈ U . Here variables u, v are called the parameters, they are coming from a (con-

nected) open subset U of R2. If x is differentiable, the surface is called a differentiable

surface.

• Regular Parameterized Surface: A parameterized surface x : U → R3 is said to

be regular if it is smooth(its partial derivatives are continuous) and the vectors xu,σv

are linearly independent at all points (u, v) ∈ U(or equivalently, xu × xv 6= 0 for all

points (u, v) ∈ U), where xu,xv are the partial derivatives of x.

• Tangent Space: Let S be a regular surface. The tangent space TP (S) of S at P is

the set of vectors which arise as velocity vectors(the derivative of the curve) of curves

on S. The following is the precise definition.

Definition. Let x : U → R3 be a parametrized surface(we call this surface S). Let

P ∈ S. We say a vector vP is tangent to S at the point P if vP is the tangent vector

of some curve on S. That is, there is some α : I → S with α(0) = P,α′(0) = vP .

Usually we write v instead of vP when no confusion will arise. The tangent space

(plane) of S at P is defined to be

TP (S) = {v | v is tangent to S at P}.
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Let x : U → R3 be a parametrized surface(we call this surface S). There are two

(special) curves on S which passing through P are so-called u-parameter curve (resp.

u-parameter curve) α(u) = x(u, v0) (resp. α(v) = x(u0, v)). Their velocity vectors

are xu,xv. They are linearly independent. Hence, {xu,xv} form a basis of the vector

space TP (S), i.e. v ∈ TP (S) if and only if v = axu + bxv, where xu,xv are evaluated

at (u0, v0). This best describes what the tangent space TP (M) looks like.

• Normal Vectors. The unit vector

nP =
xu(u0, v0)× xv(u0, v0)

‖xu(u0, v0)× xv(u0, v0)‖
is (unit) normal vector to the surface S at the point P .

2 The First Fundamental Form, Length and Surface

Area

• Inner Product: Recall that an inner(dot) product on R3 determines the length(norm)

of vectors in R3 and the angle of vectors in R3 as follows: |v|2 =< v,v > and

cos θ =
< v,v >

|v||w|
.

• Length: Let x : U → R3 be a parametrization of a surface S. Its first fundamental

form or metric is

ds2 = Edu2 + 2Fdudv +Gdv2,

where E =< xu,xu >,F =< xu,xv >,G =< xv,xv >. It is an intrinsic quantity that

it relates to measurements (of length, area, and angle etc.) inside the surface.

The length of a curve α(t) = x(u(t), v(t)) in the surface S from α(t0) to α(t1) is given

by

L =
∫ t1

t0

∣∣∣∣∣dxdt
∣∣∣∣∣ dt =

∫ t1

t0
|xuu

′ + xvv
′| dt
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=
∫ t1

t0

√
< xu,xu > u′2 + 2 < xu,xv > u′v′+ < xv,xv > v′2 dt

=
∫ t1

t0

√
Edu′2 + 2Fu′v′ +Gv′2 dt.

• Surface Area: Let R ⊂ S be a bounded region (the image of x : Q→ R3, where Q ⊂

U) of a regular surface contained in the coordinate neighborhood of the parametrization

x : U → R3. Then the surface area of R is given by

Area of R =
∫ ∫

R
dσ =

∫ ∫
Q

√
EG− F 2 dudv.

3 The Gauss map, the Shape Operator and the Second

Fundamental Form

• The Directional Derivatives: Let S ⊂ R3 be a surface and let g(x, y, z) be a

function defined on S ⊂ R3, Let v ∈ TP (S), then v is the velocity vector of some

curve α on S, i.e. α(0) = P , α′(0) = v. We define, for v ∈ TP(M), the directional

derivative of g in the v-direction by

5vg(P ) =
d

dt
(g(α(t)))|t=0 = 5g(α(t)) · v.

This definition only depends on g and v, independent of the choice of α.

Given a parametrization σ : U →M . Write g(u, v) = g(σ(u, v)), then g is (viewed) as

a function of u, v. Hence, we may write

gu =
∂(g(σ(u, v))

∂u
, gv =

∂(g(σ(u, v))

∂v
.

Then, since d
du

(σ(u, v0)) = σu, we have, by definition (taking α(t) = σ(t+ u0, v0)),

5σug =
d

du
(g(σ(u, v0))|u=u0 =

∂g

∂u
|u=u0 .
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Similarly,

5σvg =
∂g

∂v
.

For a vector valued function(called vector field over S) g = (g1, g2, g3) : S → R3, we

define, for v ∈ TP (M), the directional derivative of g in the v-direction by

5vg = (5vg1,5vg2,5vg3).

Also, with a parametrization σ : U →M , write g(u, v) = g(σ(u, v)). Then,

5σug =
∂g

∂u
, 5σv g =

∂g

∂v
.

• The Gauss Map: The Gauss map of S is the map n : S → S2 ⊂ R3, which sends

every point P ∈ S to the unit normal nP to the surface S at the point P .

• Shape Operator:

Theorem. For any v ∈ TP (S), the directional derivative 5vn(P ) ∈ TP (S). Moreover,

the linear map SP : TP (S) → TP (S) defined by

SP (v) = −5v n(P )

is a symmetric linear map, where 5vn(P ) is the directional derivative of n along the

direction v. Here that SP is symmetric means that, for any u,v ∈ TP (M), we have

SP (u) · v = u · SP (v).

Definition. SP : TP (S) → TP (S) defined by

SP (v) = −5v n(P )

is called the shape operator of S at P .
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• The Second Fundamental Form:

Definition. Let S be a regular surface. The second fundamental form, denoted by

II, assigns, for every P ∈ S, a map IIP : TP (S)× TP (S) → R defined by IIP (u,v) =

v · SP (u), for u,v ∈ TP (S).

In terms of local parameterization x : U → S ⊂ R3 of the surface S, u = axu + bxv,

v = cxu + dxv. Hence, by linearity,

IIP (u,v) = acIIP (xu,xu) + (bc+ ad)IIP (xu,xv) + bdIIP (xv,xv).

Write e = IIP (xu,xu), f = IIP (xu,xv), g = IIP (xv,xv). Then

IIP (u,v) = e(ac) + f(bc+ ad) + g(bd).

Hence, the second fundamental form II only depends on the data {e, f, g}, we some-

times also call the data {e, f, g} the second fundamental form, if no confusion arises.

By calculation,

e = −xu · nu = n · xuu, f = −nu · xv = n · xuv, g = −xv · nv = n · xvv.

• The matrix of the shape operator SP :

The matrix of the shape operator SP with respect to the basis {xu,xv} is

A = −F−1
I FII ,

where

FI =

 E F

F G

 , FII =

 e f

f g

 .
If we write

A =

 a c

b d

 ,
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i.e.

SP (xu) = axu + bxv

SP (xv) = cxu + dxv

then

a = − fF − eG

EG− F 2
, b = − eF − fE

EG− F 2
,

c = − gF − fG

EG− F 2
, d = −fF − gE

EG− F 2
.

4 Curvatures

• The Normal Curvature of Curves on a Surface:

Let v ∈ TP (S) be a unit vector. We slice the surface S with the plane through

P spanned by n(P ) (the unit-normal at P ) and a unit vector v ∈ TP (M). Let α

be the arc-length-parametrized curve obtained by taking such slice. We have such

that α(0) = P,α′(0) = v. α′ (evaluated at 0) is perpendicular to n(the normal to

the surface S), so {α′,n,n × α′} are mutually perpendicular unit vector(called an

orthonormal basis). Since α′′ is perpendicular to α′ (use the unit vector trick!), α′′ is

a linear transformation of n,n×α′, i.e.

α′′ = κnn + κgn×α′.

The scalars κn and κg are called the normal curvature and the geodesic curvature of α.

We have

κn = IIP (v,v) = v · SP (v)

where IIp is the second fundamental form of S(so the normal curvature can be defined

by the second fundamental form).
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• The Principal Curvatures of a Surface: The eigenvalues of the shape operator SP

are called the Principal curvatures of S.

Since the matrix of the shape operator SP with respect to the basis {xu,xv} is

A = −F−1
I FII ,

we have that the principal curvatures κ1, κ2 of S are the roots of the equation

det(FII − κFI) = 0.

The corresponding principal directions are non-zero 2× 1 column matrix T such that

(FII − κFI)T = 0.

Let e1, e2 be unit vectors in the principal directions at P corresponding principal

curvatures κ1, κ2. Then v = cos θe1 + sin θe2 for some θ ∈ [0, 2π). Hence

IIP (v,v) = SP (v) · v = κ1 cos2 θ + κ2 sin2 θ

This shows that the principal curvatures are the maximum and minimum (singed)

curvature of the various normal slices.

• The Gauss Curvature and Mean Curvature: Let κ1, κ2 be the eigenvalues of the

shape operator SP . Then

K = κ1κ2

is called the Gaussian curvature of S and

H = κ1 + κ2

is called the mean curvature of S.
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K =
eg − f 2

EG− F 2
,

H =
eG− 2fF + gE

2(EG− F 2)
.

5 Gauss Curvature, Gauss equation and the Codazzi-

Mainardi equations

• Gauss Curvature: Recall that the Gauss curvature is given by

K =
eg − f 2

EG− F 2
.

Although the above formula involves the second fundamental form, Gauss theorem

egregium tells us that we can actually calculate the Gauss curvature in terms of E, F

and G only, i.e. we can get a formula which only involves the first fundamental form.

So the Gauss curvature is, in fact, an intrinsic quantity(which depends on the surface

only).

• Christoffel symbols: By expressing the derivatives of the vectors xu,xv and n in the

basis {xu,xv,n}, we obtain

xuu = Γ1
11xu + Γ2

11xv + en,

xuv = Γ1
12xu + Γ2

12xv + fn,

xvu = Γ1
21xu + Γ2

21xv + fn,

xvv = Γ1
22xu + Γ2

22xv + gn,

nu = a11xu + a21xv,

nv = a12xu + a22xv,
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where  a11 a12

a21 a22

 = FIIF−1
I .

The six functions Γl
ik = Γl

ki, 1 ≤ i, l, k ≤ 2, are called the Christoffel symbols.

To compute the Christoffel symbols, we take the inner product of the first four relations

with xu and xv, for example, in the first two relations(note that xu · n = xv · n = 0),

we get

Γ1
11E + Γ2

11F =< xuu,xu >=
1

2
Eu,

Γ1
11F + Γ2

11G =< xuu,xv >= Fu −
1

2
Ev.

Solving the above system of linear equations, we get Γl
11 and Γ2

11. Other Christoffel

symbols can be computed in a similar way:

Γ1
12E + Γ2

12F =
1

2
Ev,

Γ1
12F + Γ2

12G =
1

2
Gu.

Γ1
22E + Γ2

22F = Fv −
1

2
Gu,

Γ1
22F + Γ2

22G =
1

2
Gv.

Note, the term Γ1
11xu + Γ2

11xv represents the orthogonal projection of xuu(p) to the

tangent space Tp(S), which will be called the covariant derivative of xu in the direction

xu, we will denote it by

Dxuxu = Γ1
11xu + Γ2

11xv.

Other covariant derivatives are defined in a similar way. We have

Γ1
11 =

GEu − 2FFu + FEv

2(EG− F 2)
, Γ2

11 =
2EFu − FEv − FEu

2(EG− F 2)
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Γ1
12 =

GEv − FGu

2(EG− F 2)
, Γ2

12 =
EGu − FEv

2(EG− F 2)

Γ1
22 =

2GFv −GGu − FGu

2(EG− F 2)
, Γ2

22 =
EGv − 2FFv + FGu

2(EG− F 2)
.

• Gauss equations and Codazzi-Mainardi equations: Using the fact that xuuv =

xuvu, xvvu = xvuv and nuv = nvu, we easily get the following two equations which called

the Gauss equations,

(Γ2
12)u − (Γ2

11)v + Γ1
12Γ

2
11 + Γ2

12Γ
2
12 − Γ2

11Γ
2
22 − Γ1

11Γ
2
12 = −EK;

(Γ1
12)u − (Γ1

11)v + Γ2
12Γ

1
12 − Γ2

11Γ
1
22 = FK;

and the following two equations which called the Codazzi-Mainardi equations:

ev − fu = eΓ1
12 + f(Γ2

12 − Γ1
11)− gΓ2

11;

fv − gu = eΓ1
22 + f(Γ2

22 − Γ1
12)− gΓ2

12.

The Gauss equations allows us to calculate the Gauss curvature in terms of the first

fundamental form only. Assume F = 0, then, from the Gauss euations above, we have

K =
−1

2
√
EG

((
Ev√
EG

)
v

+

(
Gu√
EG

)
u

)
.

6 Vector Fields and Covariant Derivatives

• A vector field w on S is a vector valued function, i.e. w : S → R3.

• Let y ∈ Tp(S). The covariant derivative at p of the vector field w relative to the vector

y, denoted by Dyw(p), is the tangential component of 5yw(p), where 5yw(p) is the

directional derivative defined earlier.
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• Let α : I → S be a parametrized curve in S and let w be a vector field along α, then

the covariant derivative of the vector field w along the curve α, denoted by (Dw/dt)(t),

is the tangential component of (dw/dt)(t).

Let x : U → R3 be a parameterization for S. Since α is a curve on S, we write

α(t) = x(u(t), v(t)). Also, since w(t) ∈ Tα(t)S, we can write

w(t) = a(u(t), v(t))xu + b(u(t), v(t))xv = a(t)xu + b(t)xv.

Thus, we have

dw

dt
(t) = a(xuuu

′ + xuvv
′) + b(xvuu

′ + xvvv
′) + a′xu + b′xv.

By definition,
Dw

dt
= pr ◦ (dw/dt),

hence,

Dw

dt
= (a′+Γ1

11au
′+Γ1

12av
′+Γ1

12bu
′+Γ1

22bv
′)xu+(b′+Γ2

11au
′+Γ2

12av
′+Γ2

12bu
′+Γ2

22bv
′)xv.

• Remark: Dw/dt is an intrinsic geometric quantity whose expression in local coordi-

nates involves Christoffel symbols.

7 Parallel Transport and Geodesics

• Parallel Transport: Let α : I → R3 be a curve on a surface S. Let w : I → R3 be

a tangential vector field along α. We say that w is parallel along α if

Dw/dt = 0

for every t ∈ I.
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By the formular above, w is parallel along α if and only if, along α,

a′ + Γ1
11au

′ + Γ1
12av

′ + Γ1
12bu

′ + Γ1
22bv

′ = 0 (∗)

and

b′ + Γ2
11au

′ + Γ2
12av

′ + Γ2
12bu

′ + Γ2
22bv

′ = 0. (∗∗)

Let α : I → R3 be a curve on a surface S and w0 ∈ Tα(t0)(S), t0 ∈ I. The vector

w1 ∈ Tα(t1)(S), t1 ∈ I is said to be the Parallel Transport of w0 along α if there exists

a parallel vector field w(t) along α such that w0 = w(t0) and w1 = w(t1).

• Geodesics, and geodesic equations: Let α : I → S be a parametrized curve on a

surface S. Then α is a geodesic if and only if the field of α′(t) is parallel along α, i.e.,

Dα′(t)

dt
= 0,

on I.

A regular connected curve C in S is siad to be a geodesic if, for every p ∈ C, the

parametrization α(s) of a coordinate neighborhood of p by the arc length s is geodesic,

i.e., field of α′(s) is parallel along α.

Let x : U → S be a parametrization for S, and let α be a curve on S. Write

α(t) = x(u(t), v(t)). Then α is a geodesic if and only if (Dα′(t)/dt) = 0, that is

u′′ + Γ1
11(u

′)2 + 2Γ1
12u

′v′ + Γ1
22(v

′)2 = 0 (∗)

and

v′′ + Γ2
11(u

′)2 + 2Γ2
12u

′v′ + Γ2
22(v

′)2 = 0. (∗∗)
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• Geodesic Curvature: Recall that

κg = α′′ · (n×α′).

It is easy to check that a curve α in the surface S is geodesic if and only if κg ≡ 0.

• Liouville’s theorem:

Liouville’s theorem: Let x(u, v) be an orthgonal parametrization (i.e., F = 0),

then

κg =
1

2
√
EG

{
Gu

dv

ds
− Ev

du

ds

}
+
dφ

ds
,

where φ(s) is the angle that xu makes with α′(s) in the given orientation. In particular,

we can write:

κg = (κg)1 cosφ+ (κg)2 sinφ+
dφ

dt
,

where (κg)1 and (κg)2 are the geodesic curvatures of the coordinate curves v = cost and

u = cost respectively.

Let φ12(s) := 1
2
√

EG
(Guv

′ − Evu
′), then we can write

κg = φ12(s) + φ′(s).

Here we give a direct proof of above formula(Liouville’s formula). Let

e1 =
xu√
E
, e2 =

xv√
G
,

then e1, e2 gives an orthonomal basis for Tp(S). Write α(s) = x(u(s), v(s)), and we

set

φ12 =
d

ds
< e1(u(s), v(s)), e2(u(s), v(s)) >,
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which we may write more cacually as φ12 = e′1(s) ·e2(s). Then (take the full advantage

of the orthogonality of xu and xv),

φ12 =

(
d

ds

(
xu√
E

))
·
(

xv√
G

)

=
1√
EG

(xuuu
′ + xuvv

′) · xv

=
1√
EG

((Γ1
11xu + Γ2

11xv)u
′ + (Γ1

12xu + Γ2
12xv)v

′) · xv

=
G√
EG

(Γ2
11u

′ + Γ2
12v

′) =
1

2
√
EG

(Guv
′ − Evu

′).

We now show that κg = φ12(s) + φ′(s). In fact, κg = α′′ · (n × α′). Now, since

α′ = cos θe1 + sin θe2, n × α′ = − sin θe1 + cos θe2. Hence, by a calculation, we have

κg = φ12 + θ′. This proves the formula.

Note, the above formula and the formula for Gauss curvature (assume F = 0)

K =
−1

2
√
EG

((
Ev√
EG

)
v

+

(
Gu√
EG

)
u

)
are the key to prove Gauss-Bennet (in applying the Green’s formula).

• Angle change of the parallel vector field along the curve α: Let α : [0, l] → S

be a closed curve in S. Let C be the tarce of α. Let w(t) to be the parallel transprot

of v0 ∈ Tα(0)S along C, write w(t) = cosψ(t)e1 + sinψ(t)e2, taking ψ(0) = 0. Then

w is parallel along α if and only if φ12 + ψ′ = 0. Hence we have

4ψ = ψ(l)− ψ(0) = −
∫ l

0
φ12(s)ds.

On the other hand, by the Gauss curvature formula above and by Green’s theorem, we

have ∫ l

0
φ12(s)ds = −

∫ ∫
int(α)

Kdσ,

where int(α) means the interior of the curve α. Hence

4ψ = ψ(l)− ψ(0) =
∫ ∫

int(α)
Kdσ.
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8 The Gauss-Bonnet Theorem

Gauss-Bonnet Theorem(Local). Let x : U → S be an orthgonal parametrization (i.e

F = 0) of a neighborhood of an oriented surface S, where U ⊂ R2 is homeomorphic to an

open disk. Let R ⊂ x(U) be a simple region of S and let α : I → S be such that ∂R = α(I).

Assume that α is positively oriented, parametrized by arc length s, and let α(s0), . . . ,α(sk)

and θ0, . . . , θk be, respectively, the vertices and the external angles of α. Then

k∑
i=0

∫ si+1

si

κg(s)ds+
∫ ∫

R
Kdσ +

k∑
i=0

θi = 2π,

or we can write ∫
∂R
κg(s)ds+

∫ ∫
R
Kdσ +

k∑
i=0

θi = 2π,

Gauss-Bonnet Theorem. Let R ⊂ S be a regular region of an oriented surface and let

C1, . . . , C − n be the closed, simple, piecewise regular curves which from ∂R. Suposed that

Ci is positively oriented and let θ1, . . . , θp be the set of external angles of C1, . . . , Cn. Then

∫
∂R
κg(s)ds+

∫ ∫
R
Kdσ +

p∑
i=1

θi = 2πχ(R),

where χ(R) is he Euler-Poincare characteristic of R.

In particular, if S is an orientable compact surface, then

∫ ∫
S
Kdσ = 2πχ(S).
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