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Outline for the talk

Clinical motivation.

Data sets and computational models.

A registration problem (w/ Lior, Weigand).

A modeling problem (w/ LaPole, Olufsen, Lior, Weigand).



Hypoplastic left heart syndrome

Normal Heart HLHS Heart

(Figure adapted from http://www.cdc.gov/ncbddd/heartdefects/hlhs.html.)


http://www.cdc.gov/ncbddd/heartdefects/hlhs.html

Normal and Fontan circulations
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The Fontan circulation
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effects of aortic reconstruction on flow and perfusion?



Multi-institutional registry data
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Multi-institutional registry data

> 4000 unique patients...

e 4D flow data: blood velocity field over a cardiac cycle.

MRA data: high resolution imaging of anatomy.

Demographic information.

Type of surgical technique.

Clinical outcomes: survival rate, time-to-transplant,
complications, etc...



Imaging data

e 4D Flow (velocity): can be used to quantify hemodynamics.

poor spatial resolution.

e MRA (geometry): provides “gold standard” anatomy.

no hemodynamic information.
e Both types can be used in computer simulations.

4D Flow — to set boundary conditions and to
calibrate/validate.

MRA — to construct the computational domain.



Visualization of data

velocity mag. (4D FIow) magnitude (4D Flow)  density (MR)

Goal: Simultaneously use MRA and 4D Flow data.



Misalignment of MRA and 4D Flow data

Main sources of misalignment: patient shifting between scans,
or scans taken at separate times.
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Registration of MRA and 4D Flow data
Two key hypotheses:
1. Vessel centerlines can be extracted from noisy data.
2. Registration determined by the alignment of centerlines.
™
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Proposed registration procedure

1. Create centerlines [fixeq from 4D Flow and [foating from MRA.

2. Compute a rigid transformation Tigiq so that:
Trigid (Mfloating) =~ I fixed-
3. Compute a nonrigid transformation Tponrigid SO that:
Thonrigid ( Trigid (Mioating)) = Tixed-

4. Extend d(u) = Tnonrigid(Trigid(u)) —u, uc rf|oating, to R3.
5. Apply extended displacement field to MRA segmentation.

Lior et al., arXiv:2312.03116, 2025.
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Rigid transformation Tgq

An association of points along each centerline is defined:
For each u € lfoating, compute the “closest” i € [fixed-

A rigid transformation is the solution to the following:
inn 12 Pfioating — Prixed || F
st. QTQ=1.

This is called the “Procrustes” problem.

This procedure is applied iteratively until Q ~ /.

Trigia is defined as the composition of all {2's from all iterations.

13



Movie: [fixed is red and [oating is black.
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Movie: [fixed is red and [oating is black.
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Nonrigid transformation T, onrigid

An association of points along each centerline is defined:
For each u € Tyigid(Mfioating), compute the “closest” i € lfiyed-

For a parameter 0 < o < 1, define:
V(u)=ou+(1-o0)0.

This procedure is applied iteratively until max distance between
any two points is less than a tolerance.

Tronrigid is defined as the composition of all W's from all iterations.

16



Movie: Tfixed is red, Tyigid(Mfioating) is black, and the intermediate
is blue.
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Movie: Tfixed is red, Tyigid(Mfioating) is black, and the intermediate

1
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Extension of centerline displacement

Given a displacement field defined on a centerline:

d(u) - Tnonrigid(Trigid(u)) —u, uc rfloatingy

e Define a grid of B-splines on the imaged region. Denote

a = degrees of freedom for the B-spline field,
®(«v) = B-spline field,

Z[®(«)] = interpolation of B-spline field to centerline.

e Solve the following optimization problem:
min [ Z[®(a)] = d]13 +yllol3 + Bl Lal3

where L is the graph Laplacian on the grid of B-splines.
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What to do with the data?

Geometric analysis using the MRA segmentation:

e Calculate scalar features along the centerline and do
“standard” statistical analysis of these quantities.

e Can we take functions of the vessel centerline directly into the
analysis?
e Can we do more sophisticated shape analysis?

Analysis of 4D flow with registered MRA:

e Calculate features from velocity field.

e Correlate geometric and velocity derived features.

Translation of these results:
o Identify relationships between features and clinical outcomes.

e Can we use models to tell the surgeon what to do?
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Preliminary geometric analysis

Feature Mean p-value Creneits Clinical Correlate

Interpretation
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22



Computer modeling for Fontan

e Compartmental models: exercise tolerance, fenestration, ...

e Vessel network models: fenestration, aortic reconstruction,
liver perfusion, uncertainty quantification ...

e CFD and FSI models: to be done ... nothing published yet...
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A model for flow in a single vessel
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vessel wall

e A = 1R? is the vessel cross—sectional area.
e @ = AU is the momentum, where U is the average axial
velocity.
e p is the pressure.
Canic and Kim, Math Method Appl! Sci, 2003

Hughes, PhD thesis, University of California, Berkeley, 1974
Hughes and Lubliner, Math Biosci, 1973
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Calibrated models to 4Dflow and pressure data

= Prediction = = = Data - = = Systolic = = = Diastolic

Taylor-LaPole, Colebank, Weigand, Olufsen, Puelz, Biomech Model Mechan, 2023
Taylor-LaPole, Paun, Lior, Weigand, Puelz, Olufsen, J R Soc Interface, 2025
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Vessel network models to predict perfusion

Taylor-LaPole, Colebank, Weigand, Olufsen,
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Cerebral 8.6 73
Liverand gut 24.3 15.7
Lower body — 25.7 48.0
Other 41.4 29.0

4.8 52
20.2 9.4
40.0 60.8
350 24.6

These values are shown as percentages of the stroke volume

Puelz, Biomech Model Mechan, 2023
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